Araştırma Makalesi
BibTex RIS Kaynak Göster

Synthesis of Mesoporous SiO2-supported Gold Nanoparticles from Gold Processing Wastewater

Yıl 2023, Cilt: 8 Sayı: 3, 421 - 427, 30.09.2023
https://doi.org/10.35229/jaes.1267476

Öz

In this study, 1% by mass of gold in the last remaining waste solution due to purification of ramate gold by pyrometallurgical and hydrometallurgical techniques was attached to the mesoporous SiO2 and its surface as nanoparticles by entrapping it in a polyethylene glycol micelle. For this purpose, gold nanoparticles were prepared in mesoporous SiO2 from a waste solution containing Au3+ by using 35000 (PEG35000) compound of polyethylene glycol and tetra ethyl ortho silicate. It was determined by ICP-OES and FESEM analysis that the final product obtained contained 0.4% gold by mass. When the resulting nanomaterials were examined by SEM mapping analysis, it was observed that the gold nanoparticles were distributed very homogeneously in the mesoporous SiO2, and there was no aggregation. The TEM images show that there are two types of formations, regular hexagonal gold nanoparticles attached to the inside and surfaces of this structure and gold nanoparticles embedded in mesoporous SiO2, which is formed in a spherical form, as opposed to the smooth channels formed in the first formation. In both formations, it is seen that the sizes of gold nanoparticles are smaller than 10 nm. This study reveals a new product for obtaining gold nanoparticles by recovering the gold trapped in wastewater.

Kaynakça

  • Ahmad, B., Hafeez, N., Bashir, S., Rauf ,A. & Mujeebur, R. (2017). Phytofabricated gold nanoparticles and their biomedical applications. Biomedicine & Pharmacotherapy 89, 414-425. DOI: 10.1016/j.biopha.2017.02.058
  • Asuha, S., Wan, H.L., Zhao S., Deligeer, W., Wu, H.Y., Song, L. & Tegus, O. (2012). Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceramics International, 38, 6579- 6584. DOI: 10.1016/j.ceramint.2012.05.042
  • Aylmore, M.G. (2016). Alternative Lixiviants to Cyanide for Leaching Gold Ores. Gold Ore Processing. Elsevier: 447-484. DOI: 10.1016/B978-0-444- 63658-4.00027-X
  • Berners‐Price, S.J. (2011). Gold‐Based Therapeutic Agents: A New Perspective. Bioinorganic Medicinal Chemistry,. Wiley: 197-222. DOI: 10.1002/9783527633104.ch7
  • Birich, A., Stopic, S. & Friedrich, B. (2019). Kinetic Investigation and Dissolution Behavior of Cyanide Alternative Gold Leaching Reagents. Scientific Reports, 9(1), 7191-7191. DOI: 10.1038/s41598-019-43383-4
  • Brückner, L., Frank, J. & T. Elwert, T. (2020). Industrial Recycling of Lithium-Ion Batteries-A Critical Review of Metallurgical Process Routes. Metals 10(8), 1107-1107. DOI: 10.3390/met10081107
  • Calderon, A. R. M., Alorro, R. D., Tadesse, B., Yoo, K. & Tabelin, C.B. (2020). Repurposing of nickeliferous pyrrhotite from mine tailings as magnetic adsorbent for the recovery of gold from chloride solution. Resources, Conservation & Recycling 161, 104971-104971. DOI: 10.1016/j.resconrec.2020.104971
  • Chen, M., Wang, J., Chen, H., Ogunseitan, O.A., Zhang, M., Zang H. & Hu,J. (2013). Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Technology 47(21), 12409-12416. DOI: 10.1021/es402102t
  • Chen, Y. & Iroh, J.O. (1999). Synthesis and Characterization of Polyimide/Silica Hybrid Composites. Chemistry of Materials, 11(5), 1218- 1222. DOI: 10.1021/cm980428l
  • Delfini, M., Manni, A. & Massacci, P. (2000). Gold recovery from jewellery waste. Minerals Engineering 13(6), 663-666. DOI: 10.1016/S0892-6875(00)00048-0
  • Deng, H. & Li, X. (1987). Chloride roasting of a complex gold ore and treatment of chlorine fume for precious-metal recovery-experimental results. Transactions Institution of Mining and Metallurgy (C: Mineral Processing Extractive Metallurgy) 96, 44-46. DOI: 10.1016/j.mineng.2008.09.002
  • Ferrini, M., Manni, A. & Massacci, P. (1998). Characterization and sampling of jewelry waste in Italy. In Proc. Second Biennial International Conference on Chemical Measurement and Monitoring of the Environment. Enviro Analysis, Ottawa, 98, 529-534
  • Gökelma, M., Birich, A., Stopic, S. & Friedrich, B. (2016). A Review on Alternative Gold Recovery Re-agents to Cyanide. Journal of Materials Science and Chemical Engineering, 04(08), 8-17. DOI: 10.4236/msce.2016.48002
  • Hilson, G. & Monhemius, A.J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14(12-13), 1158-1167. DOI: 10.1016/j.jclepro.2004.09.005
  • Hwu, S., Garzuel, M., Forró, C., Ihle, S.J., Reichmuth, A.M., Kurdzesau, F. & Vörös, J. (2020). An analytical method to control the surface density and stability of DNA- gold nanoparticles for an optimized biosensor. Colloids and Surfaces B: Biointerfaces 187, 110650-110650. DOI: 10.1016/j.colsurfb.2019.110650
  • Kónya, Z., Puntes, V.F., Kiricsi, I., Zhu, J., Ager, J. M., Ko, M.K., Frei, H., Alivisatos, P. & Somorjai, G.A. (2003). Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. Chemistry of Materials 15(6), 1242-1248. DOI: 10.1021/cm020824a
  • Langley, R. C. (1971). Gold coatings for temperature control in space exploration.Gold Bulletin, 4(4), 62-66. DOI: 10.1007/BF03215144
  • Liang, Y., Ouyang, J., Wang, H., Wang, W., Chui, P. & Sun, K. (2012). Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Applied Surface Science, 258(8), 3689-3694. DOI: 10.1016/j.apsusc.2011.12.006
  • Méndez-Vivar, J. & Mendoza-Bandala, A. (2000). Spectroscopic study on the early stages of the polymerization of hybrid TEOS–RSi (OR′)3 sols. Journal of Non-Crystalline Solids, 261(1-3), 127- 136. DOI: 10.1016/S0022-3093(99)00605-5
  • Panias, D. & Neou-Syngouna, P. (1990). Gold extraction from pyrite cinders by high temperature chlorination. Erzmetal,l 43(1), 41-44.
  • Ray, S., Biswas, R., Banerjee R. & Biswas, P. (2020). A gold nanoparticle-intercalated mesoporous silicabased nanozyme for the selective colorimetric detection of dopamine. Nanoscale Advances, 2(2): 734-745. DOI: 10.1039/C9NA00508K
  • Sabah, E. & Oruc Sapci, F. (2020). Ramat Geri Kazanım Prosesinde Açığa Çıkan Cüruflardan Gravite Ayırması ile Altın Kazanımı. Journal of Polytechnic, DOI: 10.2339/politeknik.742859
  • Wu, P., Bai, P. Yan, Z. & Zhao, G.X.S. (2016). Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Scientific Reports 6(1), 18817-18817. DOI: 10.1038/srep18817

Altın İşleme Atık Suyundan Mezogözenekli SiO2 destekli Altın Nanopartiküllerinin Sentezi

Yıl 2023, Cilt: 8 Sayı: 3, 421 - 427, 30.09.2023
https://doi.org/10.35229/jaes.1267476

Öz

Bu çalışmada, ramat altınının pirometalurjik ve hidrometalurjik teknikle saflaştırılması sonucu en son kalan atık çözeltisindeki kütlece %1 olan altın, polietilen glikol miseli içerisinde hapsedilmesi ile mezogözenekli SiO2 içine ve yüzeyine nanopartikül olarak tutturulmuştur. Bu amaçla polietilen glikolün 35000 (PEG35000) bileşiği ile tetra etil orto silikat kullanılarak Au3+ içeren atık çözeltiden mezogözenekli SiO2 içinde altın nanopartikülleri hazırlanmıştır. Elde edilen son üründe kütlece %0,4 altın içerdiği ICP-OES ve FESEM analizi ile belirlenmiştir. Oluşan nano malzemeler SEM haritalama analizi ile incelendiğinde altın nanopartiküllerinin mezogözenekli SiO2 içerisinde oldukça homojen bir şekilde dağıldığı ve topaklanma olmadığı görülmüştür. TEM görüntülerinden iki tip oluşum olduğu, ilk oluşumda düzenli bir şekilde oluşmuş düz kanallarına karşılık düzgün altıgen ve bu yapının içi ve yüzeylerine tutunmuş altın nanopartikülleri ile küresel şekilde meydana gelen mezogözenekli SiO2’nin içine gömülmüş altın nanopartiküllerinin oluştuğunu göstermektedir. Her iki oluşumda da altın nanopartiküllerinin boyutlarının 10 nm’den küçük olduğu görülmektedir. Bu çalışma, atık suda kalmış altının geri kazanılarak altın nanopartikülleri elde edilmesi için yeni bir ürün olduğunu ortaya koymaktadır.

Kaynakça

  • Ahmad, B., Hafeez, N., Bashir, S., Rauf ,A. & Mujeebur, R. (2017). Phytofabricated gold nanoparticles and their biomedical applications. Biomedicine & Pharmacotherapy 89, 414-425. DOI: 10.1016/j.biopha.2017.02.058
  • Asuha, S., Wan, H.L., Zhao S., Deligeer, W., Wu, H.Y., Song, L. & Tegus, O. (2012). Water-soluble, mesoporous Fe3O4: synthesis, characterization, and properties. Ceramics International, 38, 6579- 6584. DOI: 10.1016/j.ceramint.2012.05.042
  • Aylmore, M.G. (2016). Alternative Lixiviants to Cyanide for Leaching Gold Ores. Gold Ore Processing. Elsevier: 447-484. DOI: 10.1016/B978-0-444- 63658-4.00027-X
  • Berners‐Price, S.J. (2011). Gold‐Based Therapeutic Agents: A New Perspective. Bioinorganic Medicinal Chemistry,. Wiley: 197-222. DOI: 10.1002/9783527633104.ch7
  • Birich, A., Stopic, S. & Friedrich, B. (2019). Kinetic Investigation and Dissolution Behavior of Cyanide Alternative Gold Leaching Reagents. Scientific Reports, 9(1), 7191-7191. DOI: 10.1038/s41598-019-43383-4
  • Brückner, L., Frank, J. & T. Elwert, T. (2020). Industrial Recycling of Lithium-Ion Batteries-A Critical Review of Metallurgical Process Routes. Metals 10(8), 1107-1107. DOI: 10.3390/met10081107
  • Calderon, A. R. M., Alorro, R. D., Tadesse, B., Yoo, K. & Tabelin, C.B. (2020). Repurposing of nickeliferous pyrrhotite from mine tailings as magnetic adsorbent for the recovery of gold from chloride solution. Resources, Conservation & Recycling 161, 104971-104971. DOI: 10.1016/j.resconrec.2020.104971
  • Chen, M., Wang, J., Chen, H., Ogunseitan, O.A., Zhang, M., Zang H. & Hu,J. (2013). Electronic Waste Disassembly with Industrial Waste Heat. Environmental Science & Technology 47(21), 12409-12416. DOI: 10.1021/es402102t
  • Chen, Y. & Iroh, J.O. (1999). Synthesis and Characterization of Polyimide/Silica Hybrid Composites. Chemistry of Materials, 11(5), 1218- 1222. DOI: 10.1021/cm980428l
  • Delfini, M., Manni, A. & Massacci, P. (2000). Gold recovery from jewellery waste. Minerals Engineering 13(6), 663-666. DOI: 10.1016/S0892-6875(00)00048-0
  • Deng, H. & Li, X. (1987). Chloride roasting of a complex gold ore and treatment of chlorine fume for precious-metal recovery-experimental results. Transactions Institution of Mining and Metallurgy (C: Mineral Processing Extractive Metallurgy) 96, 44-46. DOI: 10.1016/j.mineng.2008.09.002
  • Ferrini, M., Manni, A. & Massacci, P. (1998). Characterization and sampling of jewelry waste in Italy. In Proc. Second Biennial International Conference on Chemical Measurement and Monitoring of the Environment. Enviro Analysis, Ottawa, 98, 529-534
  • Gökelma, M., Birich, A., Stopic, S. & Friedrich, B. (2016). A Review on Alternative Gold Recovery Re-agents to Cyanide. Journal of Materials Science and Chemical Engineering, 04(08), 8-17. DOI: 10.4236/msce.2016.48002
  • Hilson, G. & Monhemius, A.J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner Production, 14(12-13), 1158-1167. DOI: 10.1016/j.jclepro.2004.09.005
  • Hwu, S., Garzuel, M., Forró, C., Ihle, S.J., Reichmuth, A.M., Kurdzesau, F. & Vörös, J. (2020). An analytical method to control the surface density and stability of DNA- gold nanoparticles for an optimized biosensor. Colloids and Surfaces B: Biointerfaces 187, 110650-110650. DOI: 10.1016/j.colsurfb.2019.110650
  • Kónya, Z., Puntes, V.F., Kiricsi, I., Zhu, J., Ager, J. M., Ko, M.K., Frei, H., Alivisatos, P. & Somorjai, G.A. (2003). Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. Chemistry of Materials 15(6), 1242-1248. DOI: 10.1021/cm020824a
  • Langley, R. C. (1971). Gold coatings for temperature control in space exploration.Gold Bulletin, 4(4), 62-66. DOI: 10.1007/BF03215144
  • Liang, Y., Ouyang, J., Wang, H., Wang, W., Chui, P. & Sun, K. (2012). Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Applied Surface Science, 258(8), 3689-3694. DOI: 10.1016/j.apsusc.2011.12.006
  • Méndez-Vivar, J. & Mendoza-Bandala, A. (2000). Spectroscopic study on the early stages of the polymerization of hybrid TEOS–RSi (OR′)3 sols. Journal of Non-Crystalline Solids, 261(1-3), 127- 136. DOI: 10.1016/S0022-3093(99)00605-5
  • Panias, D. & Neou-Syngouna, P. (1990). Gold extraction from pyrite cinders by high temperature chlorination. Erzmetal,l 43(1), 41-44.
  • Ray, S., Biswas, R., Banerjee R. & Biswas, P. (2020). A gold nanoparticle-intercalated mesoporous silicabased nanozyme for the selective colorimetric detection of dopamine. Nanoscale Advances, 2(2): 734-745. DOI: 10.1039/C9NA00508K
  • Sabah, E. & Oruc Sapci, F. (2020). Ramat Geri Kazanım Prosesinde Açığa Çıkan Cüruflardan Gravite Ayırması ile Altın Kazanımı. Journal of Polytechnic, DOI: 10.2339/politeknik.742859
  • Wu, P., Bai, P. Yan, Z. & Zhao, G.X.S. (2016). Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Scientific Reports 6(1), 18817-18817. DOI: 10.1038/srep18817
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Fatma Ulusal 0000-0001-6926-6251

Erken Görünüm Tarihi 15 Eylül 2023
Yayımlanma Tarihi 30 Eylül 2023
Gönderilme Tarihi 18 Mart 2023
Kabul Tarihi 7 Eylül 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 8 Sayı: 3

Kaynak Göster

APA Ulusal, F. (2023). Altın İşleme Atık Suyundan Mezogözenekli SiO2 destekli Altın Nanopartiküllerinin Sentezi. Journal of Anatolian Environmental and Animal Sciences, 8(3), 421-427. https://doi.org/10.35229/jaes.1267476


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS