Research Article
BibTex RIS Cite

Çeşitli Kimyasal Reaktifler Kullanılarak Koyun Gübresinden Süper Aktif Karbon Üretimi

Year 2023, Volume: 8 Issue: 3, 402 - 410, 30.09.2023
https://doi.org/10.35229/jaes.1278300

Abstract

Yüksek yüzey alanına sahip aktif karbon elde etmek amacıyla, koyun gübresinin çinko klorür (ZnCl2), potasyum hidroksit(KOH) ve fosforik asit (H3PO4) kimyasal ajanı kullanılarak kimyasal ve fiziksel aktivasyonu uygulanmıştır. Ham materyalin farklı partikül boyutları(-900+550, -550+350 ve -350+250 m), kimyasal aktivasyon ajanının farklı emdirme oranlarında(1/1, 2/1, 3/1 ve 4/1), farklı karbonizasyon sıcaklığı (400-900 oC), ve karbonizasyon süresi gibi aktivasyon parametrelerinin nihai ürünlerin özellikleri üzerindeki etkisi araştırılmıştır. Üretilen aktif karbonlar 77 K'de azot adsorpsiyon izotermleri ile karakterize edilmiştir. 3/1 emprenye oranında ZnCl2 kullanılarak 400 oC de karbonizasyon sıcaklığı ve 45 dakika karbonizasyon süresi ile elde edilen süper aktif karbonun yüzey alanı 2170 m2/g olarak ölçülmüştür. Bu aktif karbonun SEM, FTIR analizleri yardımıyla yüzey morfolojisi ve karakterizasyonu yapılmıştır.

Supporting Institution

Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü

Project Number

19253

Thanks

Bu çalışmanın yapılmasında verdiği destekten dolayı Harran Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğüne teşekkür ederiz.

References

  • Abu Al-Rub, F.A., Kandah, M. & Al-Dabaybeh, N. (2003). Competitive adsorption of nickel and cadmium on sheep manure wastes: experimental and prediction studies. Separation Science and Technology, 38(2), 483-497.
  • Awasthi, M.K., Duan, Y., Awasthi, S.K., Liu, T., Zhang, Z., Kim, S. H. & Pandey, A. (2020). Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. Renewable Energy, 152, 421-429.
  • Aydin Şamdan, C. (2013). Kabak çekirdeği kabuğundan kimyasal aktivasyonla aktif karbon üretimi. Boya ve ağır metal gideriminde değerlendirilmesi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, 174s.
  • Balçık, E. Ü., Torun, M., & Nadeem, H. Ş. (2020). Gıda Atıklarından Aktif Karbon Üretimi ve Aktif Karbonun Gıda Endüstrisinde Uygulamaları. Gıda, 45(2), 217-229.
  • Boostani, H.R., Najafi-Ghiri, M., Hardie, A.G. & Khalili, D. (2019). Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures. Applied Geochemistry, 102, 121-128.
  • Cha, J.S., Park, S.H., Jung, S.C., Ryu, C., Jeon, J.K., Shin, M.C. & Park, Y.K. (2016). Production and utilization of biochar: A review. Journal of Industrial & Engineering Chemistry, 40, 1-15.
  • Danish, M. & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21.
  • Demirbaş, E., Kobya, M., Öncel, S. & Şencan, S. (2002). Removal of Ni (II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84(3), 291-293.
  • Demirtaş, E.I., Nuri, AR.I., Arpacıoğlu, A., Harun, K.A.Y.A. & Özkan, C.F. (2005). Değişik organik kökenli gübrelerin kimyasal özellikleri. Derim, 22(2), 47-52.
  • Dilekoglu, M.F. & Yapici, M. (2023). Adsorption of naproxen pharmaceutical micropollutant from aqueous solutions on superior activated carbon synthesized from sheep manure: Kinetics, thermodynamics, and mechanism. Journal of Molecular Liquids, 381, 121839.
  • Iupac. (1985). IUPAC recommendations. Pure Appl. Chem, 57, 603-619.
  • Kandah, M. (2001). Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW). Chemical Engineering Journal, 84(3), 543-549.
  • Karacan, F., Ozden, U. & Karacan, S. (2007). Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology. Applied Thermal Engineering, 27(7), 1212-1218.
  • Karapınar, H.S. (2018). Yenidünya (Erıobotrya Japonıca) Çekirdeğinden Aktif Karbon Üretimi ve Özelliklerinin İncelenmesi. Doktora Tezi, Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü, 196 s.
  • Kwiatkowski, J.F. (2011). Activated carbon: classifications, properties and applications. Nova Science Publishers, Incorporated.
  • Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman, J. & Euverink, G.J.W. (2020). Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553-563.
  • Lillo-Ródenas, M.A., Marco-Lozar, J.P., CazorlaAmorós, D. & Linares-Solano, A. (2007). Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical And Applied Pyrolysis, 80(1), 166-174.
  • Liu, Q.S., Zheng, T., Wang, P. & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops And Products, 31(2), 233-238.
  • López-Cano, I., Roig, A., Cayuela, M.L., Alburquerque, J.A. & Sánchez-Monedero, M.A. (2016). Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Management, 49, 553-559.
  • Lu, Q., Wang, Z., Dong, C.Q., Zhang, Z.F., Zhang, Y., Yang, Y.P. & Zhu, X.F. (2011). Selective fast pyrolysis of biomass impregnated with ZnCl2: Furfural production together with acetic acid and activated carbon as by-products. Journal of Analytical And Applied Pyrolysis, 91(1), 273-279.
  • Lua, A.C. & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid And Interface Science, 274(2), 594- 601.
  • Malik, R., Ramteke, D.S. & Wate, S.R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27(9), 1129-1138.
  • Matos, J., Nahas, C., Rojas, L. & Rosales, M. (2011). Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis. Journal of Hazardous Materials, 196, 360-369.
  • Qian, Q., Machida, M. & Tatsumoto, H. (2007). Preparation of activated carbons from cattlemanure compost by zinc chloride activation. Bioresource Technology, 98(2), 353-360.
  • Şahin, Ö., Saka, C., Ceyhan, A.A. & Baytar, O. (2016). The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(12), 1756-1762.
  • Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W., ... & Zhao, R. (2010). Preparation of activated carbon from cattail and its application for dyes removal. Journal of Environmental Sciences, 22(1), 91-97.
  • Teng, H., Lin, Y.C. & Hsu, L.Y. (2000). Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. Journal of the Air & Waste Management Association, 50(11), 1940-1946.
  • Yahya, M.A., Al-Qodah, Z. & Ngah, C.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218-235.
  • Zhang, C., Zhu, X., Cao, M., Li, M., Li, N., Lai, L., ... & Wei, D. (2016). Hierarchical Porous Carbon Materials Derived from Sheep Manure for High‐ Capacity Supercapacitors. ChemSusChem, 9(9), 932-937.

Production of Super Activated Carbon from Sheep Manure Using Various Chemical Reagents

Year 2023, Volume: 8 Issue: 3, 402 - 410, 30.09.2023
https://doi.org/10.35229/jaes.1278300

Abstract

In order to obtain activated carbon with a high surface area, chemical and physical activation was applied to sheep manure using the chemical agent zinc chloride (ZnCl2), potassium hydroxide (KOH) and phosphoric acid (H3PO4). The effect of activation parameters such as different particle sizes of the raw material (-900+550, -550+350 and -350+250 m), different impregnation rates of the chemical activation agent (1/1, 2/1, 3/1 and 4/1), different carbonization temperature (400-900 oC), and carbonization time on the properties of the final products was investigated. The activated carbons produced are characterized by nitrogen adsorption isotherms at 77 K. Using ZnCl2 at an impregnation ratio of 3/1, the surface area of the superactivated carbon obtained with a carbonization temperature at 400 oC and a carbonization time of 45 minutes was measured as 2170 m2/g. Surface morphology and characterization of this activated carbon were performed with the help of SEM, FTIR analyzes.

Project Number

19253

References

  • Abu Al-Rub, F.A., Kandah, M. & Al-Dabaybeh, N. (2003). Competitive adsorption of nickel and cadmium on sheep manure wastes: experimental and prediction studies. Separation Science and Technology, 38(2), 483-497.
  • Awasthi, M.K., Duan, Y., Awasthi, S.K., Liu, T., Zhang, Z., Kim, S. H. & Pandey, A. (2020). Effect of biochar on emission, maturity and bacterial dynamics during sheep manure compositing. Renewable Energy, 152, 421-429.
  • Aydin Şamdan, C. (2013). Kabak çekirdeği kabuğundan kimyasal aktivasyonla aktif karbon üretimi. Boya ve ağır metal gideriminde değerlendirilmesi. Yüksek Lisans Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, 174s.
  • Balçık, E. Ü., Torun, M., & Nadeem, H. Ş. (2020). Gıda Atıklarından Aktif Karbon Üretimi ve Aktif Karbonun Gıda Endüstrisinde Uygulamaları. Gıda, 45(2), 217-229.
  • Boostani, H.R., Najafi-Ghiri, M., Hardie, A.G. & Khalili, D. (2019). Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures. Applied Geochemistry, 102, 121-128.
  • Cha, J.S., Park, S.H., Jung, S.C., Ryu, C., Jeon, J.K., Shin, M.C. & Park, Y.K. (2016). Production and utilization of biochar: A review. Journal of Industrial & Engineering Chemistry, 40, 1-15.
  • Danish, M. & Ahmad, T. (2018). A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renewable and Sustainable Energy Reviews, 87, 1-21.
  • Demirbaş, E., Kobya, M., Öncel, S. & Şencan, S. (2002). Removal of Ni (II) from aqueous solution by adsorption onto hazelnut shell activated carbon: equilibrium studies. Bioresource Technology, 84(3), 291-293.
  • Demirtaş, E.I., Nuri, AR.I., Arpacıoğlu, A., Harun, K.A.Y.A. & Özkan, C.F. (2005). Değişik organik kökenli gübrelerin kimyasal özellikleri. Derim, 22(2), 47-52.
  • Dilekoglu, M.F. & Yapici, M. (2023). Adsorption of naproxen pharmaceutical micropollutant from aqueous solutions on superior activated carbon synthesized from sheep manure: Kinetics, thermodynamics, and mechanism. Journal of Molecular Liquids, 381, 121839.
  • Iupac. (1985). IUPAC recommendations. Pure Appl. Chem, 57, 603-619.
  • Kandah, M. (2001). Zinc adsorption from aqueous solutions using disposal sheep manure waste (SMW). Chemical Engineering Journal, 84(3), 543-549.
  • Karacan, F., Ozden, U. & Karacan, S. (2007). Optimization of manufacturing conditions for activated carbon from Turkish lignite by chemical activation using response surface methodology. Applied Thermal Engineering, 27(7), 1212-1218.
  • Karapınar, H.S. (2018). Yenidünya (Erıobotrya Japonıca) Çekirdeğinden Aktif Karbon Üretimi ve Özelliklerinin İncelenmesi. Doktora Tezi, Karamanoğlu Mehmetbey Üniversitesi, Fen Bilimleri Enstitüsü, 196 s.
  • Kwiatkowski, J.F. (2011). Activated carbon: classifications, properties and applications. Nova Science Publishers, Incorporated.
  • Li, Y., Achinas, S., Zhao, J., Geurkink, B., Krooneman, J. & Euverink, G.J.W. (2020). Co-digestion of cow and sheep manure: Performance evaluation and relative microbial activity. Renewable Energy, 153, 553-563.
  • Lillo-Ródenas, M.A., Marco-Lozar, J.P., CazorlaAmorós, D. & Linares-Solano, A. (2007). Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. Journal of Analytical And Applied Pyrolysis, 80(1), 166-174.
  • Liu, Q.S., Zheng, T., Wang, P. & Guo, L. (2010). Preparation and characterization of activated carbon from bamboo by microwave-induced phosphoric acid activation. Industrial Crops And Products, 31(2), 233-238.
  • López-Cano, I., Roig, A., Cayuela, M.L., Alburquerque, J.A. & Sánchez-Monedero, M.A. (2016). Biochar improves N cycling during composting of olive mill wastes and sheep manure. Waste Management, 49, 553-559.
  • Lu, Q., Wang, Z., Dong, C.Q., Zhang, Z.F., Zhang, Y., Yang, Y.P. & Zhu, X.F. (2011). Selective fast pyrolysis of biomass impregnated with ZnCl2: Furfural production together with acetic acid and activated carbon as by-products. Journal of Analytical And Applied Pyrolysis, 91(1), 273-279.
  • Lua, A.C. & Yang, T. (2004). Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. Journal of Colloid And Interface Science, 274(2), 594- 601.
  • Malik, R., Ramteke, D.S. & Wate, S.R. (2007). Adsorption of malachite green on groundnut shell waste based powdered activated carbon. Waste Management, 27(9), 1129-1138.
  • Matos, J., Nahas, C., Rojas, L. & Rosales, M. (2011). Synthesis and characterization of activated carbon from sawdust of Algarroba wood. 1. Physical activation and pyrolysis. Journal of Hazardous Materials, 196, 360-369.
  • Qian, Q., Machida, M. & Tatsumoto, H. (2007). Preparation of activated carbons from cattlemanure compost by zinc chloride activation. Bioresource Technology, 98(2), 353-360.
  • Şahin, Ö., Saka, C., Ceyhan, A.A. & Baytar, O. (2016). The pyrolysis process of biomass by two-stage chemical activation with different methodology and iodine adsorption. Energy Sources, Part A: Recovery, Utilization, And Environmental Effects, 38(12), 1756-1762.
  • Shi, Q., Zhang, J., Zhang, C., Li, C., Zhang, B., Hu, W., ... & Zhao, R. (2010). Preparation of activated carbon from cattail and its application for dyes removal. Journal of Environmental Sciences, 22(1), 91-97.
  • Teng, H., Lin, Y.C. & Hsu, L.Y. (2000). Production of activated carbons from pyrolysis of waste tires impregnated with potassium hydroxide. Journal of the Air & Waste Management Association, 50(11), 1940-1946.
  • Yahya, M.A., Al-Qodah, Z. & Ngah, C.Z. (2015). Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renewable & Sustainable Energy Reviews, 46, 218-235.
  • Zhang, C., Zhu, X., Cao, M., Li, M., Li, N., Lai, L., ... & Wei, D. (2016). Hierarchical Porous Carbon Materials Derived from Sheep Manure for High‐ Capacity Supercapacitors. ChemSusChem, 9(9), 932-937.
There are 29 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Mehmet Fatih Dilekoğlu 0000-0001-7407-1635

Mazlum Yapici This is me 0000-0003-0642-3613

Project Number 19253
Early Pub Date September 15, 2023
Publication Date September 30, 2023
Submission Date April 6, 2023
Acceptance Date July 29, 2023
Published in Issue Year 2023 Volume: 8 Issue: 3

Cite

APA Dilekoğlu, M. F., & Yapici, M. (2023). Çeşitli Kimyasal Reaktifler Kullanılarak Koyun Gübresinden Süper Aktif Karbon Üretimi. Journal of Anatolian Environmental and Animal Sciences, 8(3), 402-410. https://doi.org/10.35229/jaes.1278300


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS