Research Article
BibTex RIS Cite

İnşaat Malzemesi Olarak Kullanılan Beton Örneklerinde Uçucu Külün Radyasyon Koruma Etkinliği Üzerindeki Etkilerinin EGS4 Kodu Kullanılarak Hesaplanması

Year 2024, Volume: 9 Issue: 1, 53 - 59
https://doi.org/10.35229/jaes.1399774

Abstract

Bu çalışmanın temel amacı, inşaat malzemesi olarak kullanılan beton örneklerinde çimentonun azaltılarak ve yerine uçucu kül kullanılmasının radyasyon koruma etkinliği üzerindeki etkilerini belirlemektir. Beton örneklerinin radyasyon koruma etkinliği, EGS4 kodu kullanılarak hesaplanmış ve teorik olarak XCOM verileri ile karşılaştırılarak tartışılmıştır. 59.5 ile 1332 keV arasındaki gama ışını enerji aralığında, uçucu kül ile karıştırılmış beton örneklerinin kütle soğurma katsayıları (μ/ρ), teorik olarak incelenmiştir; bu inceleme WinXcom ve EGS4 simülasyonlarıyla gerçekleştirilmiştir. Hesaplanan kütle soğurma katsayıları kullanılarak ortalama serbest yol (MFP), yarı değer tabakası (HVL), radyasyon koruma etkinliği (RPE), etkili atom numarası (Zeff) ve gama ışını kerma katsayıları (kγ) gibi çeşitli koruma parametreleri belirlenmiştir. İnşaat malzemesi olarak kullanıldığında betonun bileşiminde çimentonun azaltılması ve uçucu kül eklenmesinin, radyasyon koruma etkinliği üzerinde etkileyici değişikliklere yol açtığı gözlemlenmiştir.

References

  • Abdel-Rahman, W. & Podgorsak, E.B. (2010). Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach. Radiation Physics and Chemistry,79(5), 552-566. DOI: 10.1016/j.radphyschem.2010.01.007
  • Attix, F.H. (2008). Introduction to Radiological Physics and Radiation Domisetry. John Wiley & Sons, U.S.A.
  • Baltas, H. (2020). Evaluation of gamma attenuation parameters and kerma coefficients of YBaCuO and BiPbSrCaCuO superconductors using EGS4 code. Radiation Physics and Chemistry, 166, 108517. DOI: 10.1016/j.radphyschem.2019.108517
  • Berger, M.J. & Hubbell, J.H. (1999). XCOM: Photon cross-sections on a personnel computer (version 1.2). NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version, 3.
  • Celik, N. & Cevik, U. (2010). Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples. Appl. Radiat. Isot. 68, 1150-1153. DOI: 10.1016/j.apradiso.2010.01.031
  • Eke, C. (2023). Gamma-Ray Attenuation Characteristic of Various Chemical Fertilizers. Instruments and Experimental Techniques, 66(1), 111-118. DOI: 10.1134/S0020441223010098
  • El-Khayatt, A.M. &Vega-Carrillo, H.R. (2015). Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 792, 6-10. DOI: 10.1016/j.nima.2015.04.033
  • El-Khayatt, A.M. (2017). Semi-empirical determination of gamma-ray kerma coefficients for materials of shielding and dosimetry from mass attenuation coefficients. Prog. Nucl. Energy, 98, 277-284. DOI: 10.1016/j.pnucene.2017.04.006
  • Gaikwad, D.K., Sayyed, M.I., Botewad, S.N., Obaid, S.S., Khattari, Z.Y., Gawai, U.P., Afaneh, F., Shirshat, M.D. & Pawar, P.P. (2019). Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite based glasses. J. Non. Cryst. Solids, 503, 158-168. DOI: 10.1016/j.jnoncrysol.2018.09.038
  • Gasparro, J., Hult, M., Johnston, P.N. & Tagziria, H. (2008). Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 594, 196-201. DOI: 10.1016/j.nima.2008.06.022
  • Gerward, L., Guilbert, N., Jensen, K.B. & Levring, H. (2001). X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23-24. DOI: 10.1016/S0969-806X(00)00324-8
  • Gerward, L., Guilbert, N., Jensen, K.B. & Leving, H. (2004). WinXCom-a program for calculating Xray attenuation coefficients. Radiat. Phys. Chem. 71, 653-654. DOI: 10.1016/j.radphyschem.2004.04.040
  • Görhan, G., Kahraman, E., Başpınar, M.S. & Demir, İ. (2016). Uçucu Kül Bölüm II: Kimyasal, Mineralojik ve Morfolojik Özellikler. Yapı Teknolojileri Elektronik Dergisi, 5(2), 33-42.
  • Hine, G.J. (1952). The effective atomic numbers of materials for various gamma processes. Phys. Rev., 85, 725.
  • Kaya, S., Çelı̇k, N. & Bayram, T. (2022). Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1029, 166401. DOI: 10.1016/j.nima.2022.166401
  • Kaya, S. (2023). Calculation of the effects of silver (Ag) dopant on radiation shielding efficiency of BiPbSrCaCuO superconductor ceramics using EGS4 code. Applied Sciences, 13(14), 8358. DOI: 10.3390/app13148358
  • Kavaz, E., Tekin, H.O., 2, Zakaly, H.M.H., Issa, S.A.M., Kara, U., Al-Buriahi, M.S., Salah, S., Matori, K.M. & Zaid, M.H.M. (2022). Structural and Gamma-Ray Attenuation Properties of Different Resin Composites for Radiation Shielding Applications. Brazilian Journal of Physics, 52(157), 1-9. DOI: 10.1007/s13538-022-01157-w
  • Kondo, K., Ochiai, K., Murata, I. &Konno, C. ( 2008). Verification of KERMA factor for beryllium at neutron energy of 14.2 MeV based on chargedparticle measurement. Fusion Engineering and Design, 83, 1674-1677. DOI: 10.1016/j.fusengdes.2008.06.008
  • Kumar, A., Gaikwad, D.K., Obaid, S.S., Tekin, H.O., Agar, O. & Sayyed, M.I. (2020). Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O−10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy, 119, 103047. DOI: 10.1016/j.pnucene.2019.103047
  • Nelson, W.R., Rogers, D.W.O. & Hirayama, H. (1985). The EGS4 code system. Obaid, S.S., Sayyed, M.I., Gaikwad, D.K. & Pawar, P.P. (2018). Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiation Physics and Chemistry, 148, 86-94. DOI: 10.1016/j.radphyschem.2018.02.026
  • Olukotun, S.F., Gbenu, S.T., Ibitoye, F.I., Oladejo, O.F., Shittu, H.O., Fasasi, M.K. & Balogun, F.A. (2018). Investigation of gamma radiation shielding capability of two clay materials. Nucl. Eng. Technol., 50, 957-962. DOI: 10.1016/j.net.2018.05.003
  • Poon, C.S., Kou, S.C., Lam, L. & Lin, Z.S. (1999). An Innovative Method in Producing High Early Strength PFA Concrete. Modern Concrete Materials; Binders, Additives and Admixtures, 131-138, ISBN: 0727728229, Thomas Telford Pres.
  • Tekin, H.O., Singh, V.P. & Manici, T. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot., 121, 122-125. DOI: 10.1016/j.apradiso.2016.12.040
  • Tekin, H.O., Altunsoy, E.E., Kavaz, E., Sayyed, M.I., Agar, O. & Kamislioglu, M. (2019). Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys., 12, 1457-1464. DOI: 10.1016/j.rinp.2019.01.060
  • Tekin, H.O., Bilal, G., Zakaly, H. M. H., Kilic, G., Issa, S. A. M., Ahmed, E. M., Rammah, Y. S. & Ene, A. (2021). Newly Developed Vanadium-Based Glasses and Their Potential for Nuclear Radiation Shielding Aims: A Monte Carlo Study on Gamma Ray Attenuation Parameters. Materials, 14(3897), 2-19. DOI: 10.3390/ma14143897
  • Thomas, D.J. (2012). ICRU report 85: Fundamental quantities and units for ionizing radiation. Turner, J.E. (2008). Atoms, radiation, and radiation protection. John Wiley & Sons.
  • Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, I., Cevik, U., El-Khayatt, A.M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy, 38, 2204-2212. DOI: 10.1016/j.anucene.2011.06.011

Calculation of The Effects of Fly Ash in Concrete Samples Used as Construction Materials on Radiation Shielding Efficiency Using EGS4 Code

Year 2024, Volume: 9 Issue: 1, 53 - 59
https://doi.org/10.35229/jaes.1399774

Abstract

The aim of this study is to determine the effects of reducing cement and replacing it with fly ash in concrete samples used as construction materials on the radiation shielding efficiency. The radiation shielding effect of concrete samples was determined using the EGS4 code. By contrasting the outcomes with XCOM data, theoretical discussion was conducted. At gamma ray energies between 59.5 and 1332 keV, the mass attenuation coefficients (μ/ρ) of concrete samples mixed with fly ash were theoretically investigated using WinXCOM and EGS4. Then, several shielding parameters, including mean free path (MFP), half value layer (HVL), radiation protection efficiency (RPE), effective atomic number (Zeff), and gamma-ray kerma coefficients (kγ), were found using the mass attenuation coefficients. It has been noted that the parameters governing radiation shielding performance of concrete samples used as building materials are altered when cement is reduced and fly ash is substituted.

References

  • Abdel-Rahman, W. & Podgorsak, E.B. (2010). Energy transfer and energy absorption in photon interactions with matter revisited: A step-by-step illustrated approach. Radiation Physics and Chemistry,79(5), 552-566. DOI: 10.1016/j.radphyschem.2010.01.007
  • Attix, F.H. (2008). Introduction to Radiological Physics and Radiation Domisetry. John Wiley & Sons, U.S.A.
  • Baltas, H. (2020). Evaluation of gamma attenuation parameters and kerma coefficients of YBaCuO and BiPbSrCaCuO superconductors using EGS4 code. Radiation Physics and Chemistry, 166, 108517. DOI: 10.1016/j.radphyschem.2019.108517
  • Berger, M.J. & Hubbell, J.H. (1999). XCOM: Photon cross-sections on a personnel computer (version 1.2). NBSIR85-3597, National Bureau of Standarts, Gaithersburg, MD, USA, for version, 3.
  • Celik, N. & Cevik, U. (2010). Monte Carlo determination of water concentration effect on gamma-ray detection efficiency in soil samples. Appl. Radiat. Isot. 68, 1150-1153. DOI: 10.1016/j.apradiso.2010.01.031
  • Eke, C. (2023). Gamma-Ray Attenuation Characteristic of Various Chemical Fertilizers. Instruments and Experimental Techniques, 66(1), 111-118. DOI: 10.1134/S0020441223010098
  • El-Khayatt, A.M. &Vega-Carrillo, H.R. (2015). Photon and neutron kerma coefficients for polymer gel dosimeters. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 792, 6-10. DOI: 10.1016/j.nima.2015.04.033
  • El-Khayatt, A.M. (2017). Semi-empirical determination of gamma-ray kerma coefficients for materials of shielding and dosimetry from mass attenuation coefficients. Prog. Nucl. Energy, 98, 277-284. DOI: 10.1016/j.pnucene.2017.04.006
  • Gaikwad, D.K., Sayyed, M.I., Botewad, S.N., Obaid, S.S., Khattari, Z.Y., Gawai, U.P., Afaneh, F., Shirshat, M.D. & Pawar, P.P. (2019). Physical, structural, optical investigation and shielding featuresof tungsten bismuth tellurite based glasses. J. Non. Cryst. Solids, 503, 158-168. DOI: 10.1016/j.jnoncrysol.2018.09.038
  • Gasparro, J., Hult, M., Johnston, P.N. & Tagziria, H. (2008). Monte Carlo modelling of germanium crystals that are tilted and have rounded front edges. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 594, 196-201. DOI: 10.1016/j.nima.2008.06.022
  • Gerward, L., Guilbert, N., Jensen, K.B. & Levring, H. (2001). X-ray absorption in matter. Reengineering XCOM. Radiat. Phys. Chem. 60, 23-24. DOI: 10.1016/S0969-806X(00)00324-8
  • Gerward, L., Guilbert, N., Jensen, K.B. & Leving, H. (2004). WinXCom-a program for calculating Xray attenuation coefficients. Radiat. Phys. Chem. 71, 653-654. DOI: 10.1016/j.radphyschem.2004.04.040
  • Görhan, G., Kahraman, E., Başpınar, M.S. & Demir, İ. (2016). Uçucu Kül Bölüm II: Kimyasal, Mineralojik ve Morfolojik Özellikler. Yapı Teknolojileri Elektronik Dergisi, 5(2), 33-42.
  • Hine, G.J. (1952). The effective atomic numbers of materials for various gamma processes. Phys. Rev., 85, 725.
  • Kaya, S., Çelı̇k, N. & Bayram, T. (2022). Effect of front, lateral and back dead layer thicknesses of a HPGe detector on full energy peak efficiency. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1029, 166401. DOI: 10.1016/j.nima.2022.166401
  • Kaya, S. (2023). Calculation of the effects of silver (Ag) dopant on radiation shielding efficiency of BiPbSrCaCuO superconductor ceramics using EGS4 code. Applied Sciences, 13(14), 8358. DOI: 10.3390/app13148358
  • Kavaz, E., Tekin, H.O., 2, Zakaly, H.M.H., Issa, S.A.M., Kara, U., Al-Buriahi, M.S., Salah, S., Matori, K.M. & Zaid, M.H.M. (2022). Structural and Gamma-Ray Attenuation Properties of Different Resin Composites for Radiation Shielding Applications. Brazilian Journal of Physics, 52(157), 1-9. DOI: 10.1007/s13538-022-01157-w
  • Kondo, K., Ochiai, K., Murata, I. &Konno, C. ( 2008). Verification of KERMA factor for beryllium at neutron energy of 14.2 MeV based on chargedparticle measurement. Fusion Engineering and Design, 83, 1674-1677. DOI: 10.1016/j.fusengdes.2008.06.008
  • Kumar, A., Gaikwad, D.K., Obaid, S.S., Tekin, H.O., Agar, O. & Sayyed, M.I. (2020). Experimental studies and Monte Carlo simulations on gamma ray shielding competence of (30+ x) PbO10WO3 10Na2O−10MgO–(40-x) B2O3 glasses. Prog. Nucl. Energy, 119, 103047. DOI: 10.1016/j.pnucene.2019.103047
  • Nelson, W.R., Rogers, D.W.O. & Hirayama, H. (1985). The EGS4 code system. Obaid, S.S., Sayyed, M.I., Gaikwad, D.K. & Pawar, P.P. (2018). Attenuation coefficients and exposure buildup factor of some rocks for gamma ray shielding applications. Radiation Physics and Chemistry, 148, 86-94. DOI: 10.1016/j.radphyschem.2018.02.026
  • Olukotun, S.F., Gbenu, S.T., Ibitoye, F.I., Oladejo, O.F., Shittu, H.O., Fasasi, M.K. & Balogun, F.A. (2018). Investigation of gamma radiation shielding capability of two clay materials. Nucl. Eng. Technol., 50, 957-962. DOI: 10.1016/j.net.2018.05.003
  • Poon, C.S., Kou, S.C., Lam, L. & Lin, Z.S. (1999). An Innovative Method in Producing High Early Strength PFA Concrete. Modern Concrete Materials; Binders, Additives and Admixtures, 131-138, ISBN: 0727728229, Thomas Telford Pres.
  • Tekin, H.O., Singh, V.P. & Manici, T. (2017). Effects of micro-sized and nano-sized WO3 on mass attenauation coefficients of concrete by using MCNPX code. Appl. Radiat. Isot., 121, 122-125. DOI: 10.1016/j.apradiso.2016.12.040
  • Tekin, H.O., Altunsoy, E.E., Kavaz, E., Sayyed, M.I., Agar, O. & Kamislioglu, M. (2019). Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys., 12, 1457-1464. DOI: 10.1016/j.rinp.2019.01.060
  • Tekin, H.O., Bilal, G., Zakaly, H. M. H., Kilic, G., Issa, S. A. M., Ahmed, E. M., Rammah, Y. S. & Ene, A. (2021). Newly Developed Vanadium-Based Glasses and Their Potential for Nuclear Radiation Shielding Aims: A Monte Carlo Study on Gamma Ray Attenuation Parameters. Materials, 14(3897), 2-19. DOI: 10.3390/ma14143897
  • Thomas, D.J. (2012). ICRU report 85: Fundamental quantities and units for ionizing radiation. Turner, J.E. (2008). Atoms, radiation, and radiation protection. John Wiley & Sons.
  • Yılmaz, E., Baltas, H., Kırıs, E., Ustabas, I., Cevik, U., El-Khayatt, A.M. (2011). Gamma ray and neutron shielding properties of some concrete materials. Ann. Nucl. Energy, 38, 2204-2212. DOI: 10.1016/j.anucene.2011.06.011
There are 27 citations in total.

Details

Primary Language English
Subjects Environmental Assessment and Monitoring
Journal Section Articles
Authors

Esra Yılmaz Bayrak 0000-0001-5145-0130

Early Pub Date March 19, 2024
Publication Date
Submission Date December 5, 2023
Acceptance Date January 26, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Yılmaz Bayrak, E. (2024). Calculation of The Effects of Fly Ash in Concrete Samples Used as Construction Materials on Radiation Shielding Efficiency Using EGS4 Code. Journal of Anatolian Environmental and Animal Sciences, 9(1), 53-59. https://doi.org/10.35229/jaes.1399774


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg