Research Article
BibTex RIS Cite

Atık Katalitik Konvertörlerden Geri Kazanılmış Nano Boyutlu Seramik Tozlarının Epoksi Matriksli Kompozitlerde Katkı Malzemesi Olarak Değerlendirilmesi

Year 2024, Volume: 9 Issue: 1, 87 - 93
https://doi.org/10.35229/jaes.1430375

Abstract

Fosil yakıtlı araçların yanma sonrası egzoz gazlarında bulunan zararlı bileşenleri asgari düzeye indirgeyen katalitik konvertör sistemleri, platin, paladyum ve rodyum gibi değerli metallerin yanı sıra seramik gibi ekonomik değeri düşük malzemelerden oluşmaktadır. Kullanım ömürlerinin sonunda geri dönüşümleri hem içeriğindeki değerli metallerin ekonomiye tekrar kazandırılması hem de atık depolama gibi atık bertaraf sorunlarını ortadan kaldırmaktadır. Katalitik konvertörlerin içeriğindeki değerli metallerin tekrar geri kazanımları sırasında seramik gibi ekonomik değeri olmayan malzemeler atık olarak göz ardı edilmektedir. Araştırmalar, seramiklerin katkı malzemesi olarak kompozitlerde kullanımlarının termal iletkenlik özelliklerinde anlamlı iyileşmelere neden olduğunu ortaya koymuştur.
Bu çalışma ile; kullanım ömürleri tamamlanmış katalitik konvertörlerden elde edilen seramiklerin, kompozitlerde katkı malzemesi olarak değerlendirilmesini amaçlanmıştır. Değerli metalleri için geri dönüşüme tabi tutulan konvertörlerin artık seramik malzemeleri öğütülerek nano boyuta indirgenmiştir. Nano boyuttaki seramik tozları ağırlıkça %5, %10 ve %15 oranlarında epoksiye katkılanarak kompozit numuneleri elde edilmiştir. Bu numunelerin fiziksel, kimyasal ve mekanik özellikleri incelenerek birbirleriyle karşılaştırılmıştır.

References

  • Bahaloo-Horeh, N. & Mousavi, S.M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186. DOI: 10.1016/j.jhazmat.2020.123186
  • Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y. & Chen, B. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41-85. DOI: 10.1016/j.progpolymsci.2016.03.001
  • Diac, C., Maxim, F.I., Tirca, R., Ciocanea, A., Filip, V., Vasile, E. & Stamatin, S.N. (2020). Electrochemical Recycling of Platinum Group Metals from Spent Catalytic Converters. Metals, 10(6), 822. DOI: 10.3390/met10060822
  • Firmansyah, M.L., Kubota, F. & Goto, M. (2019). Selective recovery of platinum group metals from spent automotive catalysts by leaching and solvent extraction. Journal of Chemical Engineering of Japan, 52(11), 835-842.
  • Islam, K.M.N., Hildenbrand, J. & Hossain, M.M. (2018). Life cycle impacts of three-way ceramic honeycomb catalytic converter in terms of disability adjusted life year. Journal of Cleaner Production, 182, 600-615. DOI: 10.1016/j.jclepro.2018.02.059
  • Kalavrouziotis, I.K. & Koukoulakis, P.H. (2009). The Environmental impact of the platinum group elements (pt, pd, rh) emitted by the automobile catalyst converters. Water Air Soil Pollut 196, 393-402. DOI: 10.1007/s11270-008-9786-9
  • Karim, S. & Ting, Y.P. (2020). Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. Journal of Cleaner Production, 255, 120199. DOI: 10.1016/j.jclepro.2020.120199
  • Kumaran, N.K., Balaji, A., Manonmani, S. & Kumar, R. (2016). Catalytic converter for automotive exhaust emission; Review, International Journal of Engineering Research in Mechanical and Civil Engineering, 1(8), 1-6.
  • Kume, S., Yamada, I., Watari, K., Harada, I. & Mitsuishi, K. (2009). High-Thermal- Conductivity AlN Filler for Polymer/Ceramics Composites. Journal of the American Ceramic Society, 92(1), 153-156. DOI: 10.1111/j.1551- 2916.2008.02650.x
  • Malhotra, J., Bhandwal, M., Tyagi, R.K., Kalia, A., Pandey, S. & Rahul A. (2015). Ecofriendly catalytic converter to reduce biochemical effect of exhaust gases. Der Pharma Chem., 7(12), 56-61
  • Rzelewska, M. & Regel-Rosocka, M. (2018). Wastes generated by automotive industry spent automotive catalysts. Physical Sciences Reviews, 3(8), 20180021. DOI: 10.1515/psr-2018-0021
  • Saternus, M. & Fornalczyk, A. (2013). Possible ways of refining precious group metals (PGM) obtained from recycling of the used auto catalytic converters. Metalurgija, 52(2), 267-270.
  • Sebastian, M.T. & Jantunen, H. (2010). Polymer- Ceramic Composites of 0-3 Connectivity for Circuits in Electronics: A Review. International Journal of Applied Ceramic Technology, 7(4), 415-434. DOI: 10.1111/j.1744- 7402.2009.02482.x
  • Shukla, M.K., Chauhan, B.V.S., Bhaskar, T., Dhar, A. & Vedratnam, A. (2023). Recycling of Platinum Group Metals and Alternative Catalysts for Catalytic Converters. In R. K. Upadhyay, S. K. Sharma, V. Kumar, & H. Valera (Eds.), Transportation Systems Technology and Integrated Management (pp. 363-398).
  • Singapore: Springer Nature Singapore. Wang, L., He, J., Xia, A., Cheng, M., Yang, Q., Du, C. & Zhou, Q. (2017). Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective. Chemosphere, 181, 690-698. DOI: 10.1016/j.chemosphere.2017.04.141
  • Yang, K. & Gu, M. (2010). Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine- functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing, 41(2), 215-221. DOI: 10.1016/j.compositesa.2009.10.019
  • Yoon, H., Matteini, P. & Hwang, B. (2022). Review on three-dimensional ceramic filler networking composites for thermal conductive applications. Journal of Non-Crystalline Solids, 576, 121272. DOI: 10.1016/j.jnoncrysol.2021.121272
  • Zandinejad, A.A., Atai, M. & Pahlevan, A. (2006). The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dental Materials, 22(4), 382-387. DOI: 10.1016/j.dental.2005.04.027
  • Zhang, Y., Heo, Y.J., Son, Y.R., In, I., An, K.H., Kim, B.J. & Park, S.J. (2019). Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon, 142, 445-460. DOI: 10.1016/j.carbon.2018.10.077

Evaluation of Nano-sized Ceramic Powders Recovered from Waste Catalytic Converters as Filler in Epoxy Matrix Composites

Year 2024, Volume: 9 Issue: 1, 87 - 93
https://doi.org/10.35229/jaes.1430375

Abstract

Catalytic converter systems, which minimize the harmful components in the exhaust gases of fossil fuel vehicles after combustion, consist of precious metals such as platinum, palladium, and rhodium as well as materials with low economic value such as ceramics. Their recycling at the end of their useful life eliminates both the recycling of the precious metals in their content to the economy and waste disposal problems such as waste storage. During the recycling of precious metals in catalytic converters, materials with no economic value such as ceramics are ignored as waste. Studies have shown that the use of ceramics as additives in composites leads to significant improvements in thermal conductivity properties.
This study aims to utilize ceramics obtained from end-of-life catalytic converters as additives in composites. The residual ceramic materials of the converters, which were recycled for their precious metals, were ground and reduced to nano size. Nano-sized ceramic powders were doped into epoxy at 5%, 10% and 15% by weight and composite samples were obtained. The physical, chemical and mechanical properties of these samples were analyzed and compared with each other.

References

  • Bahaloo-Horeh, N. & Mousavi, S.M. (2020). Comprehensive characterization and environmental risk assessment of end-of-life automotive catalytic converters to arrange a sustainable roadmap for future recycling practices. Journal of Hazardous Materials, 400, 123186. DOI: 10.1016/j.jhazmat.2020.123186
  • Chen, H., Ginzburg, V.V., Yang, J., Yang, Y., Liu, W., Huang, Y. & Chen, B. (2016). Thermal conductivity of polymer-based composites: Fundamentals and applications. Progress in Polymer Science, 59, 41-85. DOI: 10.1016/j.progpolymsci.2016.03.001
  • Diac, C., Maxim, F.I., Tirca, R., Ciocanea, A., Filip, V., Vasile, E. & Stamatin, S.N. (2020). Electrochemical Recycling of Platinum Group Metals from Spent Catalytic Converters. Metals, 10(6), 822. DOI: 10.3390/met10060822
  • Firmansyah, M.L., Kubota, F. & Goto, M. (2019). Selective recovery of platinum group metals from spent automotive catalysts by leaching and solvent extraction. Journal of Chemical Engineering of Japan, 52(11), 835-842.
  • Islam, K.M.N., Hildenbrand, J. & Hossain, M.M. (2018). Life cycle impacts of three-way ceramic honeycomb catalytic converter in terms of disability adjusted life year. Journal of Cleaner Production, 182, 600-615. DOI: 10.1016/j.jclepro.2018.02.059
  • Kalavrouziotis, I.K. & Koukoulakis, P.H. (2009). The Environmental impact of the platinum group elements (pt, pd, rh) emitted by the automobile catalyst converters. Water Air Soil Pollut 196, 393-402. DOI: 10.1007/s11270-008-9786-9
  • Karim, S. & Ting, Y.P. (2020). Ultrasound-assisted nitric acid pretreatment for enhanced biorecovery of platinum group metals from spent automotive catalyst. Journal of Cleaner Production, 255, 120199. DOI: 10.1016/j.jclepro.2020.120199
  • Kumaran, N.K., Balaji, A., Manonmani, S. & Kumar, R. (2016). Catalytic converter for automotive exhaust emission; Review, International Journal of Engineering Research in Mechanical and Civil Engineering, 1(8), 1-6.
  • Kume, S., Yamada, I., Watari, K., Harada, I. & Mitsuishi, K. (2009). High-Thermal- Conductivity AlN Filler for Polymer/Ceramics Composites. Journal of the American Ceramic Society, 92(1), 153-156. DOI: 10.1111/j.1551- 2916.2008.02650.x
  • Malhotra, J., Bhandwal, M., Tyagi, R.K., Kalia, A., Pandey, S. & Rahul A. (2015). Ecofriendly catalytic converter to reduce biochemical effect of exhaust gases. Der Pharma Chem., 7(12), 56-61
  • Rzelewska, M. & Regel-Rosocka, M. (2018). Wastes generated by automotive industry spent automotive catalysts. Physical Sciences Reviews, 3(8), 20180021. DOI: 10.1515/psr-2018-0021
  • Saternus, M. & Fornalczyk, A. (2013). Possible ways of refining precious group metals (PGM) obtained from recycling of the used auto catalytic converters. Metalurgija, 52(2), 267-270.
  • Sebastian, M.T. & Jantunen, H. (2010). Polymer- Ceramic Composites of 0-3 Connectivity for Circuits in Electronics: A Review. International Journal of Applied Ceramic Technology, 7(4), 415-434. DOI: 10.1111/j.1744- 7402.2009.02482.x
  • Shukla, M.K., Chauhan, B.V.S., Bhaskar, T., Dhar, A. & Vedratnam, A. (2023). Recycling of Platinum Group Metals and Alternative Catalysts for Catalytic Converters. In R. K. Upadhyay, S. K. Sharma, V. Kumar, & H. Valera (Eds.), Transportation Systems Technology and Integrated Management (pp. 363-398).
  • Singapore: Springer Nature Singapore. Wang, L., He, J., Xia, A., Cheng, M., Yang, Q., Du, C. & Zhou, Q. (2017). Toxic effects of environmental rare earth elements on delayed outward potassium channels and their mechanisms from a microscopic perspective. Chemosphere, 181, 690-698. DOI: 10.1016/j.chemosphere.2017.04.141
  • Yang, K. & Gu, M. (2010). Enhanced thermal conductivity of epoxy nanocomposites filled with hybrid filler system of triethylenetetramine- functionalized multi-walled carbon nanotube/silane-modified nano-sized silicon carbide. Composites Part A: Applied Science and Manufacturing, 41(2), 215-221. DOI: 10.1016/j.compositesa.2009.10.019
  • Yoon, H., Matteini, P. & Hwang, B. (2022). Review on three-dimensional ceramic filler networking composites for thermal conductive applications. Journal of Non-Crystalline Solids, 576, 121272. DOI: 10.1016/j.jnoncrysol.2021.121272
  • Zandinejad, A.A., Atai, M. & Pahlevan, A. (2006). The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dental Materials, 22(4), 382-387. DOI: 10.1016/j.dental.2005.04.027
  • Zhang, Y., Heo, Y.J., Son, Y.R., In, I., An, K.H., Kim, B.J. & Park, S.J. (2019). Recent advanced thermal interfacial materials: A review of conducting mechanisms and parameters of carbon materials. Carbon, 142, 445-460. DOI: 10.1016/j.carbon.2018.10.077
There are 19 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Articles
Authors

Sinan Köse 0000-0002-6224-3388

Early Pub Date March 19, 2024
Publication Date
Submission Date February 1, 2024
Acceptance Date March 11, 2024
Published in Issue Year 2024 Volume: 9 Issue: 1

Cite

APA Köse, S. (2024). Atık Katalitik Konvertörlerden Geri Kazanılmış Nano Boyutlu Seramik Tozlarının Epoksi Matriksli Kompozitlerde Katkı Malzemesi Olarak Değerlendirilmesi. Journal of Anatolian Environmental and Animal Sciences, 9(1), 87-93. https://doi.org/10.35229/jaes.1430375


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                  13369           EBSCOHost Logo        Scilit logo                  
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AABcabi-logo-black.svg