İSTANBUL'DA KENTSEL ARKA PLANDA ATMOSFERIK SIYAH KARBON KONSANTRASYON DEĞIŞIMININ DEĞERLENDIRILMESI
Yıl 2024,
Cilt: 9 Sayı: 4, 648 - 659
Zehra Çolak
,
Burcu Onat
,
Melike Servin Coşgun
,
Burcu Uzun Ayvaz
,
Coşkun Ayvaz
,
S. Levent Kuzu
,
Elif Yavuz
,
Hilal Çetin
,
Zeynep Fidan
,
Ülkü Alver Şahin
Öz
Siyah karbon (Black Carbon, BC), eksik bir yanma ürünüdür ve ince partikül madde bileşeni olup solunduğunda insan sağlığı için zararlıdır. Ayrıca BC iklim değişikliğinde kısa ömürlü iklim zorlayıcısı (short lived climate force) olarak tanımlanmakta ve CO2’den sonra önemli bir ısı tutma etkisine sahiptir. Dünyanın diğer kentlerinde atmosferik BC konsantrasyon değişimi oldukça yaygın çalışılmışken, Türkiye’de sadece İstanbul’da kısıtlı sayıda trafik alanlarında çalışma bulunmaktadır. Bu çalışmada, İstanbul’da ilk kez kent arkaplanda BC’nin değişimleri ve diğer parametrelerle ilişkisi mevsimsel olarak incelenmiştir. BC ölçümleri tek dalga boyunda (880 nm) tek kanallı AE51 aethalometre ile yapılmıştır. Mevsimsel ortalama BC konsantrasyon değişimleri yaz, sonbahar, kış ve ilkbahar dönemlerinde sırasıyla 1,97 ± 3,10 µg/m3, 1,77 ± 2,36 µg/m3, 3,33 ± 4,29 µg/m3, 3,22 ± 3,25 µg/m3 olarak ölçüldü. En yüksek konsantrasyon kışın gözlendi. BC ile partikül madde ve trafikle ilgili kirleticiler (NOX gibi) arasında pozitif yüksek korelasyonlar olduğu tespit edildi. BC’nin gün içi saatlik değişimleri incelendiğinde trafiğin yoğun olduğu sabah ve akşam saatlerinde İstanbul trafiğinin bölgesel emisyonlara katkısı olduğu görüldü. Rüzgâr hızı, PBLH gibi meteorolojik parametrelerin ve mevsimsel konsantrasyon üzerinde önemli bir etkisi olduğu ve trafik kaynağının kentsel arka plan bölgesinde her mevsim önemli bir BC kaynağı olduğu söylenebilir. Kentsel ortamlarda BC’nin mekânsal dağılımının anlaşılması için uzun süreli mevsimsel farklar ortaya konulmasını ve hem sabit hem mobil ölçümlerle izlenmesini tavsiye ediyoruz.
Etik Beyan
Anadolu Çevre ve Hayvancılık Dergisi (Journal of Anatolian Environmental and Animal Sciences)’ne makale olarak sunduğumuz “İstanbul'da Kentsel Arka Planda Atmosferık Sıyah Karbon Konsantrasyon Değışımının Değerlendırılmesı” başlıklı bu çalışma kullanılan verileri/örnekleri birlikte topladığımızı, başka kaynaklardan aldığımız bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimizi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımızı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimizi sorumlu yazar olarak tüm yazarlar adına beyan ederim.
Destekleyen Kurum
TÜBİTAK
Proje Numarası
122Y079 numaralı proje
Teşekkür
Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 122Y079 numaralı proje ve İstanbul Üniversitesi-Cerrahpaşa, BAP koordinatörlüğü FBA-2024-36086 numaralı proje tarafından desteklenmiş ve finanse edilmiştir. Bu destek için İUC_BAP ve TÜBİTAK’a teşekkür ederiz.
Kaynakça
- Abdillah, S.F.I. & Wang, Y.F. (2023). Ambient ultrafine
particle (PM0.1): Sources, characteristics,
measurements and exposure implications on
human health. Içinde Environmental Research (C.
218). DOI: 10.1016/j.envres.2022.115061
- Ahmed, T., Dutkiewicz, V.A., Shareef, A., Tuncel, G.,
Tuncel, S. & Husain, L. (2009). Measurement of
black carbon (BC) by an optical method and a
thermal-optical method: intercomparison for four
sites. Atmos. Environ., 43, 6305-6311.
- Barrett, T.E., Ponette-González, A.G., Rindy, J.E. &
Weathers, K.C. (2019). Wet deposition of black
carbon: A synthesis. Içinde Atmospheric
Environment (C. 213). DOI:
10.1016/j.atmosenv.2019.06.033
- Beres, N.D., Lapuerta, M., Cereceda-Balic, F. &
Moosmüller, H. (2020). Snow surface albedo
sensitivity to black carbon: Radiative transfer
modelling. Atmosphere, 11(10). DOI:
10.3390/atmos11101077
- Bond, T.C., Doherty, S. J., Fahey, D.W., Forster, P.M.,
Berntsen, T., Deangelo, B.J., Flanner, M.G.,
Ghan, S., Kärcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P.K., Sarofim, M.C.,
Schultz, M.G., Schulz, M., Venkataraman, C.,
Zhang, H., Zhang, S., … & Zender, C.S. (2013).
Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of
Geophysical Research Atmospheres, 118(11).
DOI: 10.1002/jgrd.50171
- Cape, J.N., Coyle, M. & Dumitrean, P. (2012). The
atmospheric lifetime of black carbon.
Atmospheric Environment, 59. DOI:
10.1016/j.atmosenv.2012.05.030
- Dumka, U. C., Kaskaoutis, D. G., Devara, P. C. S.,
Kumar, R., Kumar, S., Tiwari, S.,
Gerasopoulos, E. & Mihalopoulos, N. (2019).
Year-long variability of the fossil fuel and wood
burning black carbon components at a rural site in
southern Delhi outskirts. Atmospheric Research,
216. DOI:10.1016/j.atmosres.2018.09.016
- Ezber, Y. & Sen, O. L. (2022). WRF sensitivity
simulations of a dense advection fog event in
Istanbul. Theoretical and Applied Climatology,
148(1-2). DOI: 10.1007/s00704-022-03966-0
- Glojek, K., Močnik, G., Alas, H. D. C., Cuesta-
Mosquera, A., Drinovec, L., Gregorič, A.,
Ogrin, M., Weinhold, K., Ježek, I., Müller, T.,
Rigler, M., Remškar, M., Van Pinxteren, D.,
Herrmann, H., Ristorini, M., Merkel, M.,
Markelj, M. & Wiedensohler, A. (2022). The
impact of temperature inversions on black carbon
and particle mass concentrations in a mountainous
area. Atmospheric Chemistry and Physics, 22(8).
DOI: 10.5194/acp-22-5577-2022
- Gu, Y., Zhang, W., Yang, Y., Wang, C., Streets, D.G. &
Yim, S.H.L. (2020). Assessing outdoor air quality
and public health impact attributable to residential
black carbon emissions in rural China. Resources,
Conservation and Recycling, 159. DOI:
10.1016/j.resconrec.2020.104812
- Flores, R.M., Mertoğlu, E., Özdemir, H., Akkoyunlu,
B.O., Demir, G., Ünal, A. & Tayanç, M. (2020).
A high-time resolution study of PM2. 5, organic
carbon, and elemental carbon at an urban traffic
site in Istanbul. Atmospheric Environment, 223,
117241.
- Hansen, A.D.A., Rosen, H. & Novakov, T. (1984). The
aethalometer - An instrument for the real-time measurement of optical absorption by aerosol
particles. Science of the Total Environment, The,
36(C). DOI: 10.1016/0048-9697(84)90265-1
- Hu, D., Alfarra, M.R., Szpek, K., Langridge, J.M.,
Cotterell, M.I., Belcher, C., Rule, I., Liu, Z.,
Yu, C., Shao, Y., Voliotis, A., Du, M., Smith, B.,
Smallwood, G., Lobo, P., Liu, D., Haywood,
J.M., Coe, H. & Allan, J.D. (2021). Physical and
chemical properties of black carbon and organic
matter from different combustion and
photochemical sources using aerodynamic
aerosol classification. Atmospheric Chemistry and
Physics, 21(21). DOI: 10.5194/acp-21-16161-
2021
- IPCC (Intergovernmental Panel on Climate Change).
(2019). “Methodology Report on Short-lived
Climate Forcers”.
https://www.ipcc.ch/report/methodology-report-
on-short-lived-climate-forcers/
İstanbul Hava Kalitesi İzleme Ağı. (2024).
https://havakalitesi.ibb.gov.tr/. (Erişim
Tarihi:8.10.2024)
- Jereb, B., Gajšek, B., Šipek, G., Kovše, Š. & Obrecht,
M. (2021). Traffic density-related black carbon
distribution: Impact of wind in a basin town.
International Journal of Environmental Research
and Public Health, 18(12). DOI:
10.3390/ijerph18126490
- Kant, Y., Shaik, D.S., Mitra, D., Chandola, H.C., Babu,
S.S. & Chauhan, P. (2020). Black carbon aerosol
quantification over north-west Himalayas:
Seasonal heterogeneity, source apportionment
and radiative forcing. Environmental Pollution,
257, 113446.
- Kirchstetter, T.W. & Novakov, T. (2007). Controlled
generation of black carbon particles from a
diffusion flame and applications in evaluating
black carbon measurement methods. Atmospheric
Environment, 41(9). DOI:
10.1016/j.atmosenv.2006.10.067
- Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P.,
Cofala, J., Rafaj, P., Borken-Kleefeld, J. &
Schöpp, W. (2017). Global anthropogenic
emissions of particulate matter including black
carbon. Atmospheric Chemistry and Physics,
17(14). DOI: 10.5194/acp-17-8681-2017
- Koçak, E., Kılavuz, S.A., Öztürk, F., İmamoğlu, İ. &
Tuncel, G. (2021). Characterization and source
apportionment of carbonaceous aerosols in fine
particles at urban and suburban atmospheres of
Ankara, Turkey. Environmental Science and
Pollution Research, 28, 25701-25715.
- Kutzner, R.D., von Schneidemesser, E., Kuik, F.,
Quedenau, J., Weatherhead, E.C. & Schmale,
J. (2018). Long-term monitoring of black carbon
across Germany. Atmospheric Environment, 185,
41-52.
- Kuzu, S.L., Yavuz, E., Akyüz, E., Saral, A., Akkoyunlu,
B.O., Özdemir, H., Demir, G. & Ünal, A.
(2020). Black carbon and size-segregated
elemental carbon, organic carbon compositions in
a megacity: a case study for Istanbul. Air Quality,
Atmosphere and Health, 13(7). DOI:
10.1007/s11869-020-00839-1
- Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas,
G., Paraskevopoulou, D., Dumka, U.C.,
Tsagkaraki, M., Bougiatioti, A., Oikonomou,
K., Sciare, J., Gerasopoulos, E. &
Mihalopoulos, N. (2020a). Long-term
variability, source apportionment and spectral
properties of black carbon at an urban background
site in Athens, Greece. Atmospheric Environment,
222. DOI: 10.1016/j.atmosenv.2019.117137
- Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas,
G., Paraskevopoulou, D., Dumka, U.C.,
Tsagkaraki, M., Bougiatioti, A., Oikonomou,
K., Sciare, J., Gerasopoulos, E. &
Mihalopoulos, N. (2020b). Long-term
variability, source apportionment and spectral
properties of black carbon at an urban background
site in Athens, Greece. Atmospheric Environment,
222. DOI: 10.1016/j.atmosenv.2019.117137
- Liang, M. S., Keener, T. C., Birch, M. E., Baldauf, R.,
Neal, J., & Yang, Y. J. (2013). Low-wind and
other microclimatic factors in near-road black
carbon variability: A case study and assessment
implications. Atmospheric Environment, 80. DOI:
10.1016/j.atmosenv.2013.07.057
- Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk
parameterization of the snow field in a cloud
model. Journal of Climate & Applied
Meteorology, 22(6). DOI: 10.1175/1520-
0450(1983)022<1065:BPOTSF>2.0.CO;2
- Luoma, K., Niemi, J.V., Aurela, M., Lun Fung, P.,
Helin, A., Hussein, T., Kangas, L., Kousa, A.,
Rönkkö, T., Timonen, H., Virkkula, A. &
Petäjä, T. (2021). Spatiotemporal variation and
trends in equivalent black carbon in the Helsinki
metropolitan area in Finland. Atmospheric
Chemistry and Physics, 21(2). DOI: 10.5194/acp-
21-1173-2021
- Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y.,
Jiang, Y., Zhu, W., Ge, X., Collier, S. & Zheng,
J. (2020). Mixing state and light absorption
enhancement of black carbon aerosols in
summertime Nanjing, China. Atmospheric
Environment, 222. DOI:
10.1016/j.atmosenv.2019.117141
- Mao, M., Zhou, Y. & Zhang, X. (2023). Evaluation of
MERRA-2 Black Carbon Characteristics and
Potential Sources over China. Atmosphere, 14(9).
DOI: 10.3390/atmos14091378
- Motos, G., Schmale, J., Corbin, J.C., Modini, R.L.,
Karlen, N., Bertò, M., Baltensperger, U. &
Gysel-Beer, M. (2019). Cloud droplet activation
properties and scavenged fraction of black carbon
in liquid-phase clouds at the high-alpine research
station Jungfraujoch (3580ma.s.l.). Atmospheric
Chemistry and Physics, 19(6). DOI: 10.5194/acp-
19-3833-2019
- Myhre, G. & Samset, B. H. (2015). Standard climate
models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry
and Physics, 15(5). DOI: 10.5194/acp-15-2883-
2015
- Ngarambe, J., Joen, S. J., Han, C. H., & Yun, G. Y.
(2021). Exploring the relationship between
particulate matter, CO, SO2, NO2, O3 and urban
heat island in Seoul, Korea. Journal of Hazardous
Materials, 403. DOI:
10.1016/j.jhazmat.2020.123615
- Nguyen, H.T. & Roper, C. (2024). Black carbon
concentrations, sources, and health risks at six
cities in Mississippi, USA. Air Quality,
Atmosphere and Health, 17(1). DOI:
10.1007/s11869-023-01433-x
- Nilsson Sommar, J., Andersson, E.M., Andersson, N.,
Sallsten, G., Stockfelt, L., Ljungman, P.L.S.,
Segersson, D., Eneroth, K., Gidhagen, L.,
Molnar, P., Wennberg, P., Rosengren, A.,
Rizzuto, D., Leander, K., Lager, A.,
Magnusson, P.K.E., Johansson, C., Barregard,
L., Bellander, T., … & Forsberg, B. (2021).
Long-term exposure to particulate air pollution
and black carbon in relation to natural and cause-
specific mortality: A multicohort study in
Sweden. BMJ Open, 11(9). DOI:
10.1136/bmjopen-2020-046040
- Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G.,
Mertoglu, B., Mihalopoulos, N., Theodosi, C.,
Kanakidou, M., Im, U. & Unal, A. (2014).
Spatial and temporal analysis of black carbon
aerosols in Istanbul megacity. Science of the Total
Environment, 473-474. DOI:
10.1016/j.scitotenv.2013.11.102
- Öztürk, F. & Keleş, M. (2016). Wintertime chemical
compositions of coarse and fine fractions of
particulate matter in Bolu, Turkey. Environmental
Science and Pollution Research, 23, 14157-
14172.
- Pashneva, D., Minderytė, A., Davulienė, L., Dudoitis, V.
& Byčenkienė, S. (2024). Understanding the
Dynamics of Source-Apportioned Black Carbon
in an Urban Background Environment.
Atmosphere, 15(7), 832.
- R Core Team. (2023). R: A language and environment for
statistical computing (4.3.1). R Foundation for
Statistical Computing.
- Ramanathan, V. & Carmichael, G. (2008). Global and
regional climate changes due to black carbon.
Içinde Nature Geoscience 1(4). DOI:
10.1038/ngeo156
- Ran, L., Deng, Z., Xu, X., Yan, P., Lin, W., Wang, Y.,
Tian, P., Wang, P., Pan, W. & Lu, D. (2016).
Vertical profiles of black carbon measured by a
micro-aethalometer in summer in the North China
Plain. Atmospheric Chemistry and Physics,
16(16). DOI: 10.5194/acp-16-10441-2016
- Ritz, B., Hoffmann, B. & Peters, A. (2019). The effects
of fine dust, ozone, and nitrogen dioxide on
health. Içinde Deutsches Arzteblatt International
116(51-52). DOI: 10.3238/arztebl.2019.0881
- Skamarock W.C., et al. (2008). A description of the
advanced research WRF version 3, NCAR Tech.
Note, NCAR/TN-468+STR. Natl. Cent. for
Atmos. Res. Boulder, Colorado, June.
- Suresh Kumar Reddy, B., Raghavendra Kumar, K.,
Balakrishnaiah, G., Rama Gopal, K., Reddy,
R.R., Reddy, L.S.S., Nazeer Ahammed, Y.,
Narasimhulu, K., Krishna Moorthy, K. &
Suresh Babu, S. (2012). Potential source regions
contributing to seasonal variations of black carbon
aerosols over Anantapur in southeast India.
Aerosol and Air Quality Research, 12(3). DOI:
10.4209/aaqr.2011.10.0159
- Srithawirat, T., Garivait, S. & Brimblecombe, P.
(2021). Seasonal variation of black carbon in fine
particulate matter in semi-urban and agricultural
areas of Thailand. Aerosol Science and
Engineering, 5(4), 419-428.
- Şahin, Ü.A., Ayvaz, C., Hama, S., Onat, B., Uzun, B.,
Dogan, M., Bediroglu, G. & Harrison, R.M.
(2024). Assessment of ambient particulate matter
and trace gases in Istanbul: Insights from long-
term and multi-monitoring stations. Atmospheric
Pollution Research, 15(5). DOI:
10.1016/j.apr.2024.102089
- Şahin, Ü.A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B.,
Mangır, N., Doğan, M. & Harrison, R. M.
(2020). Temporal variations of atmospheric black
carbon and its relation to other pollutants and
meteorological factors at an urban traffic site in
Istanbul. Atmospheric Pollution Research, 11(7).
DOI: 10.1016/j.apr.2020.03.009
- Şahin, Ü. A., Harrison, R. M., Alam, M. S., Beddows,
D. C. S., Bousiotis, D., Shi, Z., Crilley, L. R.,
Bloss, W., Brean, J., Khanna, I., and Verma, R.
(2022) Measurement report: Interpretation of
wide-range particulate matter size distributions in
Delhi, Atmos. Chem. Phys., 22, 5415-5433. DOI:
10.5194/acp-22-5415-2022.
- Türkiye İstatistik Kurumu (TÜİK). (2023). İstanbul
Nüfus Verileri 2023. https://www.tuik.gov.tr/.
(Erişim Tarihi:8.10.2024)
- T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı.
(2008). Hava kalitesi değerlendirme ve yönetimi
yönetmeliği. https://www.mevzuat.gov.tr/
(Erişim tarihi: 29 Eylül 2024)
- Vernooij, R., Winiger, P., Wooster, M., Strydom, T.,
Poulain, L., Dusek, U., Grosvenor, M.,
Roberts, G. J., Schutgens, N. & Van Der Werf,
G.R. (2022). A quadcopter unmanned aerial
system (UAS)-based methodology for measuring
biomass burning emission factors. Atmospheric
Measurement Techniques, 15(14). DOI:
10.5194/amt-15-4271-2022
- Viana, M., Querol, X., Reche, C., Favez, O., Malherbe,
L., Ustache, A., ... & Guerreiro, C. (2012).
Particle number (PNC) and black carbon (BC) in
European urban air quality networks. ETC/ACM
Technical Paper, 6.
- Wang, F., Xu, J., Huang, Y. & Xiu, G. (2021).
Characterization of black carbon and its correlations with vocs in the northern region of
hangzhou bay in shanghai, china. Atmosphere,
12(7). DOI: 10.3390/atmos12070870
- Wang, M., Chen, Y., Fu, H., Qu, X., Li, B., Tao, S. &
Zhu, D. (2020). An investigation on hygroscopic
properties of 15 black carbon (BC)-containing
particles from different carbon sources: Roles of
organic and inorganic components. Atmospheric
Chemistry and Physics, 20(13). DOI:
10.5194/acp-20-7941-2020
- Watson, J.G., Chow, J.C., Chen, L.W.A., 2005.
Summary of organic and elemental carbon/black
carbon analysis methods and intercomparisons.
Aerosol Air Qual. Res. 5, 65-102.
- Williams, M. A., Kumar, T. V. L., & Rao, D. N. (2019).
Characterizing black carbon aerosols in relation to
atmospheric boundary layer height during wet
removal processes over a semi urban location.
Journal of Atmospheric and Solar-Terrestrial
Physics, 182. DOI: 10.1016/j.jastp.2018.11.018
- Yatkin, S., & Bayram, A. (2007). Elemental composition
and sources of particulate matter in the ambient
air of a Metropolitan City. Atmospheric Research,
85(1), 126-139.
- Zeng, C., Liu, C., Li, J., Zhu, B., Yin, Y. & Wang, Y.
(2019). Optical Properties and Radiative Forcing
of Aged BC due to Hygroscopic Growth: Effects
of the Aggregate Structure. Journal of
Geophysical Research: Atmospheres, 124(8).
DOI: 10.1029/2018JD029809
- Zhang, Z., Cheng, Y., Liang, L. & Liu, J. (2023). The
Measurement of Atmospheric Black Carbon: A
Review. Toxics, 11(12), 975. DOI:
10.3390/toxics11120975
- Zhou, B., Wang, Q., Zhou, Q., Zhang, Z., Wang, G.,
Fang, N., Li, M. & Cao, J. (2018). Seasonal
characteristics of black carbon aerosol and its
potential source regions in Baoji, China. Aerosol
and Air Quality Research, 18(2). DOI:
10.4209/aaqr.2017.02.0070
- Zhou, J., Tie, X., Yu, Y., Zhao, S., Li, G., Liu, S., Zhang,
T. & Dai, W. (2020). Impact of the emission
control of diesel vehicles on black carbon (BC)
concentrations over China. Atmosphere, 11(7).
DOI: 10.3390/atmos11070696.
ASSESSMENT OF ATMOSPHERİC BLACK CARBON CONCENTRATİON CHANGE İN URBAN BACKGROUND İN ISTANBUL
Yıl 2024,
Cilt: 9 Sayı: 4, 648 - 659
Zehra Çolak
,
Burcu Onat
,
Melike Servin Coşgun
,
Burcu Uzun Ayvaz
,
Coşkun Ayvaz
,
S. Levent Kuzu
,
Elif Yavuz
,
Hilal Çetin
,
Zeynep Fidan
,
Ülkü Alver Şahin
Öz
Black carbon (BC) is an incomplete combustion product and a component of fine particulate matter that is harmful to human health when inhaled. BC is also identified as a short lived climate forcing in climate change and has a significant heat-trapping effect after CO2. While atmospheric BC concentration changes have been widely studied in other cities of the world, there are only a limited number of studies in traffic areas in Istanbul, Turkey. In this study, for the first time in Istanbul, the seasonal variations of BC in the urban background and its relationship with other parameters were investigated seasonally. Seasonal mean BC concentration changes were measured as 1,97 ± 3,10 µg/m3, 1,77 ± 2,36 µg/m3, 3,33 ± 4,29 µg/m3, 3,22 ± 3,25 µg/m3 in summer, autumn, winter and spring, respectively. The highest concentration was observed in winter. There were high positive correlations between BC and particulate matter and traffic-related pollutants (such as NOX). When the hourly variations of BC during the day were analyzed, it was seen that Istanbul traffic contributed to regional emissions in the morning and evening hours when the traffic was heavy. It can be said that meteorological parameters such as wind speed, PBLH and seasonal concentrations have a significant effect on BC concentrations and that the traffic source is an important source of BC in the urban background region in all seasons. In order to understand the spatial distribution of BC in urban environments, we recommend that long-term seasonal differences should be demonstrated and monitored with both fixed and mobile measurements.
Proje Numarası
122Y079 numaralı proje
Kaynakça
- Abdillah, S.F.I. & Wang, Y.F. (2023). Ambient ultrafine
particle (PM0.1): Sources, characteristics,
measurements and exposure implications on
human health. Içinde Environmental Research (C.
218). DOI: 10.1016/j.envres.2022.115061
- Ahmed, T., Dutkiewicz, V.A., Shareef, A., Tuncel, G.,
Tuncel, S. & Husain, L. (2009). Measurement of
black carbon (BC) by an optical method and a
thermal-optical method: intercomparison for four
sites. Atmos. Environ., 43, 6305-6311.
- Barrett, T.E., Ponette-González, A.G., Rindy, J.E. &
Weathers, K.C. (2019). Wet deposition of black
carbon: A synthesis. Içinde Atmospheric
Environment (C. 213). DOI:
10.1016/j.atmosenv.2019.06.033
- Beres, N.D., Lapuerta, M., Cereceda-Balic, F. &
Moosmüller, H. (2020). Snow surface albedo
sensitivity to black carbon: Radiative transfer
modelling. Atmosphere, 11(10). DOI:
10.3390/atmos11101077
- Bond, T.C., Doherty, S. J., Fahey, D.W., Forster, P.M.,
Berntsen, T., Deangelo, B.J., Flanner, M.G.,
Ghan, S., Kärcher, B., Koch, D., Kinne, S.,
Kondo, Y., Quinn, P.K., Sarofim, M.C.,
Schultz, M.G., Schulz, M., Venkataraman, C.,
Zhang, H., Zhang, S., … & Zender, C.S. (2013).
Bounding the role of black carbon in the climate
system: A scientific assessment. Journal of
Geophysical Research Atmospheres, 118(11).
DOI: 10.1002/jgrd.50171
- Cape, J.N., Coyle, M. & Dumitrean, P. (2012). The
atmospheric lifetime of black carbon.
Atmospheric Environment, 59. DOI:
10.1016/j.atmosenv.2012.05.030
- Dumka, U. C., Kaskaoutis, D. G., Devara, P. C. S.,
Kumar, R., Kumar, S., Tiwari, S.,
Gerasopoulos, E. & Mihalopoulos, N. (2019).
Year-long variability of the fossil fuel and wood
burning black carbon components at a rural site in
southern Delhi outskirts. Atmospheric Research,
216. DOI:10.1016/j.atmosres.2018.09.016
- Ezber, Y. & Sen, O. L. (2022). WRF sensitivity
simulations of a dense advection fog event in
Istanbul. Theoretical and Applied Climatology,
148(1-2). DOI: 10.1007/s00704-022-03966-0
- Glojek, K., Močnik, G., Alas, H. D. C., Cuesta-
Mosquera, A., Drinovec, L., Gregorič, A.,
Ogrin, M., Weinhold, K., Ježek, I., Müller, T.,
Rigler, M., Remškar, M., Van Pinxteren, D.,
Herrmann, H., Ristorini, M., Merkel, M.,
Markelj, M. & Wiedensohler, A. (2022). The
impact of temperature inversions on black carbon
and particle mass concentrations in a mountainous
area. Atmospheric Chemistry and Physics, 22(8).
DOI: 10.5194/acp-22-5577-2022
- Gu, Y., Zhang, W., Yang, Y., Wang, C., Streets, D.G. &
Yim, S.H.L. (2020). Assessing outdoor air quality
and public health impact attributable to residential
black carbon emissions in rural China. Resources,
Conservation and Recycling, 159. DOI:
10.1016/j.resconrec.2020.104812
- Flores, R.M., Mertoğlu, E., Özdemir, H., Akkoyunlu,
B.O., Demir, G., Ünal, A. & Tayanç, M. (2020).
A high-time resolution study of PM2. 5, organic
carbon, and elemental carbon at an urban traffic
site in Istanbul. Atmospheric Environment, 223,
117241.
- Hansen, A.D.A., Rosen, H. & Novakov, T. (1984). The
aethalometer - An instrument for the real-time measurement of optical absorption by aerosol
particles. Science of the Total Environment, The,
36(C). DOI: 10.1016/0048-9697(84)90265-1
- Hu, D., Alfarra, M.R., Szpek, K., Langridge, J.M.,
Cotterell, M.I., Belcher, C., Rule, I., Liu, Z.,
Yu, C., Shao, Y., Voliotis, A., Du, M., Smith, B.,
Smallwood, G., Lobo, P., Liu, D., Haywood,
J.M., Coe, H. & Allan, J.D. (2021). Physical and
chemical properties of black carbon and organic
matter from different combustion and
photochemical sources using aerodynamic
aerosol classification. Atmospheric Chemistry and
Physics, 21(21). DOI: 10.5194/acp-21-16161-
2021
- IPCC (Intergovernmental Panel on Climate Change).
(2019). “Methodology Report on Short-lived
Climate Forcers”.
https://www.ipcc.ch/report/methodology-report-
on-short-lived-climate-forcers/
İstanbul Hava Kalitesi İzleme Ağı. (2024).
https://havakalitesi.ibb.gov.tr/. (Erişim
Tarihi:8.10.2024)
- Jereb, B., Gajšek, B., Šipek, G., Kovše, Š. & Obrecht,
M. (2021). Traffic density-related black carbon
distribution: Impact of wind in a basin town.
International Journal of Environmental Research
and Public Health, 18(12). DOI:
10.3390/ijerph18126490
- Kant, Y., Shaik, D.S., Mitra, D., Chandola, H.C., Babu,
S.S. & Chauhan, P. (2020). Black carbon aerosol
quantification over north-west Himalayas:
Seasonal heterogeneity, source apportionment
and radiative forcing. Environmental Pollution,
257, 113446.
- Kirchstetter, T.W. & Novakov, T. (2007). Controlled
generation of black carbon particles from a
diffusion flame and applications in evaluating
black carbon measurement methods. Atmospheric
Environment, 41(9). DOI:
10.1016/j.atmosenv.2006.10.067
- Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P.,
Cofala, J., Rafaj, P., Borken-Kleefeld, J. &
Schöpp, W. (2017). Global anthropogenic
emissions of particulate matter including black
carbon. Atmospheric Chemistry and Physics,
17(14). DOI: 10.5194/acp-17-8681-2017
- Koçak, E., Kılavuz, S.A., Öztürk, F., İmamoğlu, İ. &
Tuncel, G. (2021). Characterization and source
apportionment of carbonaceous aerosols in fine
particles at urban and suburban atmospheres of
Ankara, Turkey. Environmental Science and
Pollution Research, 28, 25701-25715.
- Kutzner, R.D., von Schneidemesser, E., Kuik, F.,
Quedenau, J., Weatherhead, E.C. & Schmale,
J. (2018). Long-term monitoring of black carbon
across Germany. Atmospheric Environment, 185,
41-52.
- Kuzu, S.L., Yavuz, E., Akyüz, E., Saral, A., Akkoyunlu,
B.O., Özdemir, H., Demir, G. & Ünal, A.
(2020). Black carbon and size-segregated
elemental carbon, organic carbon compositions in
a megacity: a case study for Istanbul. Air Quality,
Atmosphere and Health, 13(7). DOI:
10.1007/s11869-020-00839-1
- Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas,
G., Paraskevopoulou, D., Dumka, U.C.,
Tsagkaraki, M., Bougiatioti, A., Oikonomou,
K., Sciare, J., Gerasopoulos, E. &
Mihalopoulos, N. (2020a). Long-term
variability, source apportionment and spectral
properties of black carbon at an urban background
site in Athens, Greece. Atmospheric Environment,
222. DOI: 10.1016/j.atmosenv.2019.117137
- Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas,
G., Paraskevopoulou, D., Dumka, U.C.,
Tsagkaraki, M., Bougiatioti, A., Oikonomou,
K., Sciare, J., Gerasopoulos, E. &
Mihalopoulos, N. (2020b). Long-term
variability, source apportionment and spectral
properties of black carbon at an urban background
site in Athens, Greece. Atmospheric Environment,
222. DOI: 10.1016/j.atmosenv.2019.117137
- Liang, M. S., Keener, T. C., Birch, M. E., Baldauf, R.,
Neal, J., & Yang, Y. J. (2013). Low-wind and
other microclimatic factors in near-road black
carbon variability: A case study and assessment
implications. Atmospheric Environment, 80. DOI:
10.1016/j.atmosenv.2013.07.057
- Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk
parameterization of the snow field in a cloud
model. Journal of Climate & Applied
Meteorology, 22(6). DOI: 10.1175/1520-
0450(1983)022<1065:BPOTSF>2.0.CO;2
- Luoma, K., Niemi, J.V., Aurela, M., Lun Fung, P.,
Helin, A., Hussein, T., Kangas, L., Kousa, A.,
Rönkkö, T., Timonen, H., Virkkula, A. &
Petäjä, T. (2021). Spatiotemporal variation and
trends in equivalent black carbon in the Helsinki
metropolitan area in Finland. Atmospheric
Chemistry and Physics, 21(2). DOI: 10.5194/acp-
21-1173-2021
- Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y.,
Jiang, Y., Zhu, W., Ge, X., Collier, S. & Zheng,
J. (2020). Mixing state and light absorption
enhancement of black carbon aerosols in
summertime Nanjing, China. Atmospheric
Environment, 222. DOI:
10.1016/j.atmosenv.2019.117141
- Mao, M., Zhou, Y. & Zhang, X. (2023). Evaluation of
MERRA-2 Black Carbon Characteristics and
Potential Sources over China. Atmosphere, 14(9).
DOI: 10.3390/atmos14091378
- Motos, G., Schmale, J., Corbin, J.C., Modini, R.L.,
Karlen, N., Bertò, M., Baltensperger, U. &
Gysel-Beer, M. (2019). Cloud droplet activation
properties and scavenged fraction of black carbon
in liquid-phase clouds at the high-alpine research
station Jungfraujoch (3580ma.s.l.). Atmospheric
Chemistry and Physics, 19(6). DOI: 10.5194/acp-
19-3833-2019
- Myhre, G. & Samset, B. H. (2015). Standard climate
models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry
and Physics, 15(5). DOI: 10.5194/acp-15-2883-
2015
- Ngarambe, J., Joen, S. J., Han, C. H., & Yun, G. Y.
(2021). Exploring the relationship between
particulate matter, CO, SO2, NO2, O3 and urban
heat island in Seoul, Korea. Journal of Hazardous
Materials, 403. DOI:
10.1016/j.jhazmat.2020.123615
- Nguyen, H.T. & Roper, C. (2024). Black carbon
concentrations, sources, and health risks at six
cities in Mississippi, USA. Air Quality,
Atmosphere and Health, 17(1). DOI:
10.1007/s11869-023-01433-x
- Nilsson Sommar, J., Andersson, E.M., Andersson, N.,
Sallsten, G., Stockfelt, L., Ljungman, P.L.S.,
Segersson, D., Eneroth, K., Gidhagen, L.,
Molnar, P., Wennberg, P., Rosengren, A.,
Rizzuto, D., Leander, K., Lager, A.,
Magnusson, P.K.E., Johansson, C., Barregard,
L., Bellander, T., … & Forsberg, B. (2021).
Long-term exposure to particulate air pollution
and black carbon in relation to natural and cause-
specific mortality: A multicohort study in
Sweden. BMJ Open, 11(9). DOI:
10.1136/bmjopen-2020-046040
- Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G.,
Mertoglu, B., Mihalopoulos, N., Theodosi, C.,
Kanakidou, M., Im, U. & Unal, A. (2014).
Spatial and temporal analysis of black carbon
aerosols in Istanbul megacity. Science of the Total
Environment, 473-474. DOI:
10.1016/j.scitotenv.2013.11.102
- Öztürk, F. & Keleş, M. (2016). Wintertime chemical
compositions of coarse and fine fractions of
particulate matter in Bolu, Turkey. Environmental
Science and Pollution Research, 23, 14157-
14172.
- Pashneva, D., Minderytė, A., Davulienė, L., Dudoitis, V.
& Byčenkienė, S. (2024). Understanding the
Dynamics of Source-Apportioned Black Carbon
in an Urban Background Environment.
Atmosphere, 15(7), 832.
- R Core Team. (2023). R: A language and environment for
statistical computing (4.3.1). R Foundation for
Statistical Computing.
- Ramanathan, V. & Carmichael, G. (2008). Global and
regional climate changes due to black carbon.
Içinde Nature Geoscience 1(4). DOI:
10.1038/ngeo156
- Ran, L., Deng, Z., Xu, X., Yan, P., Lin, W., Wang, Y.,
Tian, P., Wang, P., Pan, W. & Lu, D. (2016).
Vertical profiles of black carbon measured by a
micro-aethalometer in summer in the North China
Plain. Atmospheric Chemistry and Physics,
16(16). DOI: 10.5194/acp-16-10441-2016
- Ritz, B., Hoffmann, B. & Peters, A. (2019). The effects
of fine dust, ozone, and nitrogen dioxide on
health. Içinde Deutsches Arzteblatt International
116(51-52). DOI: 10.3238/arztebl.2019.0881
- Skamarock W.C., et al. (2008). A description of the
advanced research WRF version 3, NCAR Tech.
Note, NCAR/TN-468+STR. Natl. Cent. for
Atmos. Res. Boulder, Colorado, June.
- Suresh Kumar Reddy, B., Raghavendra Kumar, K.,
Balakrishnaiah, G., Rama Gopal, K., Reddy,
R.R., Reddy, L.S.S., Nazeer Ahammed, Y.,
Narasimhulu, K., Krishna Moorthy, K. &
Suresh Babu, S. (2012). Potential source regions
contributing to seasonal variations of black carbon
aerosols over Anantapur in southeast India.
Aerosol and Air Quality Research, 12(3). DOI:
10.4209/aaqr.2011.10.0159
- Srithawirat, T., Garivait, S. & Brimblecombe, P.
(2021). Seasonal variation of black carbon in fine
particulate matter in semi-urban and agricultural
areas of Thailand. Aerosol Science and
Engineering, 5(4), 419-428.
- Şahin, Ü.A., Ayvaz, C., Hama, S., Onat, B., Uzun, B.,
Dogan, M., Bediroglu, G. & Harrison, R.M.
(2024). Assessment of ambient particulate matter
and trace gases in Istanbul: Insights from long-
term and multi-monitoring stations. Atmospheric
Pollution Research, 15(5). DOI:
10.1016/j.apr.2024.102089
- Şahin, Ü.A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B.,
Mangır, N., Doğan, M. & Harrison, R. M.
(2020). Temporal variations of atmospheric black
carbon and its relation to other pollutants and
meteorological factors at an urban traffic site in
Istanbul. Atmospheric Pollution Research, 11(7).
DOI: 10.1016/j.apr.2020.03.009
- Şahin, Ü. A., Harrison, R. M., Alam, M. S., Beddows,
D. C. S., Bousiotis, D., Shi, Z., Crilley, L. R.,
Bloss, W., Brean, J., Khanna, I., and Verma, R.
(2022) Measurement report: Interpretation of
wide-range particulate matter size distributions in
Delhi, Atmos. Chem. Phys., 22, 5415-5433. DOI:
10.5194/acp-22-5415-2022.
- Türkiye İstatistik Kurumu (TÜİK). (2023). İstanbul
Nüfus Verileri 2023. https://www.tuik.gov.tr/.
(Erişim Tarihi:8.10.2024)
- T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı.
(2008). Hava kalitesi değerlendirme ve yönetimi
yönetmeliği. https://www.mevzuat.gov.tr/
(Erişim tarihi: 29 Eylül 2024)
- Vernooij, R., Winiger, P., Wooster, M., Strydom, T.,
Poulain, L., Dusek, U., Grosvenor, M.,
Roberts, G. J., Schutgens, N. & Van Der Werf,
G.R. (2022). A quadcopter unmanned aerial
system (UAS)-based methodology for measuring
biomass burning emission factors. Atmospheric
Measurement Techniques, 15(14). DOI:
10.5194/amt-15-4271-2022
- Viana, M., Querol, X., Reche, C., Favez, O., Malherbe,
L., Ustache, A., ... & Guerreiro, C. (2012).
Particle number (PNC) and black carbon (BC) in
European urban air quality networks. ETC/ACM
Technical Paper, 6.
- Wang, F., Xu, J., Huang, Y. & Xiu, G. (2021).
Characterization of black carbon and its correlations with vocs in the northern region of
hangzhou bay in shanghai, china. Atmosphere,
12(7). DOI: 10.3390/atmos12070870
- Wang, M., Chen, Y., Fu, H., Qu, X., Li, B., Tao, S. &
Zhu, D. (2020). An investigation on hygroscopic
properties of 15 black carbon (BC)-containing
particles from different carbon sources: Roles of
organic and inorganic components. Atmospheric
Chemistry and Physics, 20(13). DOI:
10.5194/acp-20-7941-2020
- Watson, J.G., Chow, J.C., Chen, L.W.A., 2005.
Summary of organic and elemental carbon/black
carbon analysis methods and intercomparisons.
Aerosol Air Qual. Res. 5, 65-102.
- Williams, M. A., Kumar, T. V. L., & Rao, D. N. (2019).
Characterizing black carbon aerosols in relation to
atmospheric boundary layer height during wet
removal processes over a semi urban location.
Journal of Atmospheric and Solar-Terrestrial
Physics, 182. DOI: 10.1016/j.jastp.2018.11.018
- Yatkin, S., & Bayram, A. (2007). Elemental composition
and sources of particulate matter in the ambient
air of a Metropolitan City. Atmospheric Research,
85(1), 126-139.
- Zeng, C., Liu, C., Li, J., Zhu, B., Yin, Y. & Wang, Y.
(2019). Optical Properties and Radiative Forcing
of Aged BC due to Hygroscopic Growth: Effects
of the Aggregate Structure. Journal of
Geophysical Research: Atmospheres, 124(8).
DOI: 10.1029/2018JD029809
- Zhang, Z., Cheng, Y., Liang, L. & Liu, J. (2023). The
Measurement of Atmospheric Black Carbon: A
Review. Toxics, 11(12), 975. DOI:
10.3390/toxics11120975
- Zhou, B., Wang, Q., Zhou, Q., Zhang, Z., Wang, G.,
Fang, N., Li, M. & Cao, J. (2018). Seasonal
characteristics of black carbon aerosol and its
potential source regions in Baoji, China. Aerosol
and Air Quality Research, 18(2). DOI:
10.4209/aaqr.2017.02.0070
- Zhou, J., Tie, X., Yu, Y., Zhao, S., Li, G., Liu, S., Zhang,
T. & Dai, W. (2020). Impact of the emission
control of diesel vehicles on black carbon (BC)
concentrations over China. Atmosphere, 11(7).
DOI: 10.3390/atmos11070696.