Araştırma Makalesi
BibTex RIS Kaynak Göster

İSTANBUL'DA KENTSEL ARKA PLANDA ATMOSFERIK SIYAH KARBON KONSANTRASYON DEĞIŞIMININ DEĞERLENDIRILMESI

Yıl 2024, Cilt: 9 Sayı: 4, 648 - 659
https://doi.org/10.35229/jaes.1561066

Öz

Siyah karbon (Black Carbon, BC), eksik bir yanma ürünüdür ve ince partikül madde bileşeni olup solunduğunda insan sağlığı için zararlıdır. Ayrıca BC iklim değişikliğinde kısa ömürlü iklim zorlayıcısı (short lived climate force) olarak tanımlanmakta ve CO2’den sonra önemli bir ısı tutma etkisine sahiptir. Dünyanın diğer kentlerinde atmosferik BC konsantrasyon değişimi oldukça yaygın çalışılmışken, Türkiye’de sadece İstanbul’da kısıtlı sayıda trafik alanlarında çalışma bulunmaktadır. Bu çalışmada, İstanbul’da ilk kez kent arkaplanda BC’nin değişimleri ve diğer parametrelerle ilişkisi mevsimsel olarak incelenmiştir. BC ölçümleri tek dalga boyunda (880 nm) tek kanallı AE51 aethalometre ile yapılmıştır. Mevsimsel ortalama BC konsantrasyon değişimleri yaz, sonbahar, kış ve ilkbahar dönemlerinde sırasıyla 1,97 ± 3,10 µg/m3, 1,77 ± 2,36 µg/m3, 3,33 ± 4,29 µg/m3, 3,22 ± 3,25 µg/m3 olarak ölçüldü. En yüksek konsantrasyon kışın gözlendi. BC ile partikül madde ve trafikle ilgili kirleticiler (NOX gibi) arasında pozitif yüksek korelasyonlar olduğu tespit edildi. BC’nin gün içi saatlik değişimleri incelendiğinde trafiğin yoğun olduğu sabah ve akşam saatlerinde İstanbul trafiğinin bölgesel emisyonlara katkısı olduğu görüldü. Rüzgâr hızı, PBLH gibi meteorolojik parametrelerin ve mevsimsel konsantrasyon üzerinde önemli bir etkisi olduğu ve trafik kaynağının kentsel arka plan bölgesinde her mevsim önemli bir BC kaynağı olduğu söylenebilir. Kentsel ortamlarda BC’nin mekânsal dağılımının anlaşılması için uzun süreli mevsimsel farklar ortaya konulmasını ve hem sabit hem mobil ölçümlerle izlenmesini tavsiye ediyoruz.

Etik Beyan

Anadolu Çevre ve Hayvancılık Dergisi (Journal of Anatolian Environmental and Animal Sciences)’ne makale olarak sunduğumuz “İstanbul'da Kentsel Arka Planda Atmosferık Sıyah Karbon Konsantrasyon Değışımının Değerlendırılmesı” başlıklı bu çalışma kullanılan verileri/örnekleri birlikte topladığımızı, başka kaynaklardan aldığımız bilgileri metinde ve kaynakçada eksiksiz olarak gösterdiğimizi, çalışma sürecinde bilimsel araştırma ve etik kurallara uygun olarak davrandığımızı ve aksinin ortaya çıkması durumunda her türlü yasal sonucu kabul ettiğimizi sorumlu yazar olarak tüm yazarlar adına beyan ederim.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

122Y079 numaralı proje

Teşekkür

Bu çalışma, Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK) 122Y079 numaralı proje ve İstanbul Üniversitesi-Cerrahpaşa, BAP koordinatörlüğü FBA-2024-36086 numaralı proje tarafından desteklenmiş ve finanse edilmiştir. Bu destek için İUC_BAP ve TÜBİTAK’a teşekkür ederiz.

Kaynakça

  • Abdillah, S.F.I. & Wang, Y.F. (2023). Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health. Içinde Environmental Research (C. 218). DOI: 10.1016/j.envres.2022.115061
  • Ahmed, T., Dutkiewicz, V.A., Shareef, A., Tuncel, G., Tuncel, S. & Husain, L. (2009). Measurement of black carbon (BC) by an optical method and a thermal-optical method: intercomparison for four sites. Atmos. Environ., 43, 6305-6311.
  • Barrett, T.E., Ponette-González, A.G., Rindy, J.E. & Weathers, K.C. (2019). Wet deposition of black carbon: A synthesis. Içinde Atmospheric Environment (C. 213). DOI: 10.1016/j.atmosenv.2019.06.033
  • Beres, N.D., Lapuerta, M., Cereceda-Balic, F. & Moosmüller, H. (2020). Snow surface albedo sensitivity to black carbon: Radiative transfer modelling. Atmosphere, 11(10). DOI: 10.3390/atmos11101077
  • Bond, T.C., Doherty, S. J., Fahey, D.W., Forster, P.M., Berntsen, T., Deangelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., … & Zender, C.S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11). DOI: 10.1002/jgrd.50171
  • Cape, J.N., Coyle, M. & Dumitrean, P. (2012). The atmospheric lifetime of black carbon. Atmospheric Environment, 59. DOI: 10.1016/j.atmosenv.2012.05.030
  • Dumka, U. C., Kaskaoutis, D. G., Devara, P. C. S., Kumar, R., Kumar, S., Tiwari, S., Gerasopoulos, E. & Mihalopoulos, N. (2019). Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmospheric Research, 216. DOI:10.1016/j.atmosres.2018.09.016
  • Ezber, Y. & Sen, O. L. (2022). WRF sensitivity simulations of a dense advection fog event in Istanbul. Theoretical and Applied Climatology, 148(1-2). DOI: 10.1007/s00704-022-03966-0
  • Glojek, K., Močnik, G., Alas, H. D. C., Cuesta- Mosquera, A., Drinovec, L., Gregorič, A., Ogrin, M., Weinhold, K., Ježek, I., Müller, T., Rigler, M., Remškar, M., Van Pinxteren, D., Herrmann, H., Ristorini, M., Merkel, M., Markelj, M. & Wiedensohler, A. (2022). The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area. Atmospheric Chemistry and Physics, 22(8). DOI: 10.5194/acp-22-5577-2022
  • Gu, Y., Zhang, W., Yang, Y., Wang, C., Streets, D.G. & Yim, S.H.L. (2020). Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China. Resources, Conservation and Recycling, 159. DOI: 10.1016/j.resconrec.2020.104812
  • Flores, R.M., Mertoğlu, E., Özdemir, H., Akkoyunlu, B.O., Demir, G., Ünal, A. & Tayanç, M. (2020). A high-time resolution study of PM2. 5, organic carbon, and elemental carbon at an urban traffic site in Istanbul. Atmospheric Environment, 223, 117241.
  • Hansen, A.D.A., Rosen, H. & Novakov, T. (1984). The aethalometer - An instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, The, 36(C). DOI: 10.1016/0048-9697(84)90265-1
  • Hu, D., Alfarra, M.R., Szpek, K., Langridge, J.M., Cotterell, M.I., Belcher, C., Rule, I., Liu, Z., Yu, C., Shao, Y., Voliotis, A., Du, M., Smith, B., Smallwood, G., Lobo, P., Liu, D., Haywood, J.M., Coe, H. & Allan, J.D. (2021). Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. Atmospheric Chemistry and Physics, 21(21). DOI: 10.5194/acp-21-16161- 2021
  • IPCC (Intergovernmental Panel on Climate Change). (2019). “Methodology Report on Short-lived Climate Forcers”. https://www.ipcc.ch/report/methodology-report- on-short-lived-climate-forcers/ İstanbul Hava Kalitesi İzleme Ağı. (2024). https://havakalitesi.ibb.gov.tr/. (Erişim Tarihi:8.10.2024)
  • Jereb, B., Gajšek, B., Šipek, G., Kovše, Š. & Obrecht, M. (2021). Traffic density-related black carbon distribution: Impact of wind in a basin town. International Journal of Environmental Research and Public Health, 18(12). DOI: 10.3390/ijerph18126490
  • Kant, Y., Shaik, D.S., Mitra, D., Chandola, H.C., Babu, S.S. & Chauhan, P. (2020). Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environmental Pollution, 257, 113446.
  • Kirchstetter, T.W. & Novakov, T. (2007). Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmospheric Environment, 41(9). DOI: 10.1016/j.atmosenv.2006.10.067
  • Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J. & Schöpp, W. (2017). Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 17(14). DOI: 10.5194/acp-17-8681-2017
  • Koçak, E., Kılavuz, S.A., Öztürk, F., İmamoğlu, İ. & Tuncel, G. (2021). Characterization and source apportionment of carbonaceous aerosols in fine particles at urban and suburban atmospheres of Ankara, Turkey. Environmental Science and Pollution Research, 28, 25701-25715.
  • Kutzner, R.D., von Schneidemesser, E., Kuik, F., Quedenau, J., Weatherhead, E.C. & Schmale, J. (2018). Long-term monitoring of black carbon across Germany. Atmospheric Environment, 185, 41-52.
  • Kuzu, S.L., Yavuz, E., Akyüz, E., Saral, A., Akkoyunlu, B.O., Özdemir, H., Demir, G. & Ünal, A. (2020). Black carbon and size-segregated elemental carbon, organic carbon compositions in a megacity: a case study for Istanbul. Air Quality, Atmosphere and Health, 13(7). DOI: 10.1007/s11869-020-00839-1
  • Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas, G., Paraskevopoulou, D., Dumka, U.C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E. & Mihalopoulos, N. (2020a). Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117137
  • Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas, G., Paraskevopoulou, D., Dumka, U.C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E. & Mihalopoulos, N. (2020b). Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117137
  • Liang, M. S., Keener, T. C., Birch, M. E., Baldauf, R., Neal, J., & Yang, Y. J. (2013). Low-wind and other microclimatic factors in near-road black carbon variability: A case study and assessment implications. Atmospheric Environment, 80. DOI: 10.1016/j.atmosenv.2013.07.057
  • Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate & Applied Meteorology, 22(6). DOI: 10.1175/1520- 0450(1983)022<1065:BPOTSF>2.0.CO;2
  • Luoma, K., Niemi, J.V., Aurela, M., Lun Fung, P., Helin, A., Hussein, T., Kangas, L., Kousa, A., Rönkkö, T., Timonen, H., Virkkula, A. & Petäjä, T. (2021). Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmospheric Chemistry and Physics, 21(2). DOI: 10.5194/acp- 21-1173-2021
  • Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y., Jiang, Y., Zhu, W., Ge, X., Collier, S. & Zheng, J. (2020). Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117141
  • Mao, M., Zhou, Y. & Zhang, X. (2023). Evaluation of MERRA-2 Black Carbon Characteristics and Potential Sources over China. Atmosphere, 14(9). DOI: 10.3390/atmos14091378
  • Motos, G., Schmale, J., Corbin, J.C., Modini, R.L., Karlen, N., Bertò, M., Baltensperger, U. & Gysel-Beer, M. (2019). Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580ma.s.l.). Atmospheric Chemistry and Physics, 19(6). DOI: 10.5194/acp- 19-3833-2019
  • Myhre, G. & Samset, B. H. (2015). Standard climate models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry and Physics, 15(5). DOI: 10.5194/acp-15-2883- 2015
  • Ngarambe, J., Joen, S. J., Han, C. H., & Yun, G. Y. (2021). Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea. Journal of Hazardous Materials, 403. DOI: 10.1016/j.jhazmat.2020.123615
  • Nguyen, H.T. & Roper, C. (2024). Black carbon concentrations, sources, and health risks at six cities in Mississippi, USA. Air Quality, Atmosphere and Health, 17(1). DOI: 10.1007/s11869-023-01433-x
  • Nilsson Sommar, J., Andersson, E.M., Andersson, N., Sallsten, G., Stockfelt, L., Ljungman, P.L.S., Segersson, D., Eneroth, K., Gidhagen, L., Molnar, P., Wennberg, P., Rosengren, A., Rizzuto, D., Leander, K., Lager, A., Magnusson, P.K.E., Johansson, C., Barregard, L., Bellander, T., … & Forsberg, B. (2021). Long-term exposure to particulate air pollution and black carbon in relation to natural and cause- specific mortality: A multicohort study in Sweden. BMJ Open, 11(9). DOI: 10.1136/bmjopen-2020-046040
  • Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., Theodosi, C., Kanakidou, M., Im, U. & Unal, A. (2014). Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Science of the Total Environment, 473-474. DOI: 10.1016/j.scitotenv.2013.11.102
  • Öztürk, F. & Keleş, M. (2016). Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey. Environmental Science and Pollution Research, 23, 14157- 14172.
  • Pashneva, D., Minderytė, A., Davulienė, L., Dudoitis, V. & Byčenkienė, S. (2024). Understanding the Dynamics of Source-Apportioned Black Carbon in an Urban Background Environment. Atmosphere, 15(7), 832.
  • R Core Team. (2023). R: A language and environment for statistical computing (4.3.1). R Foundation for Statistical Computing.
  • Ramanathan, V. & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Içinde Nature Geoscience 1(4). DOI: 10.1038/ngeo156
  • Ran, L., Deng, Z., Xu, X., Yan, P., Lin, W., Wang, Y., Tian, P., Wang, P., Pan, W. & Lu, D. (2016). Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmospheric Chemistry and Physics, 16(16). DOI: 10.5194/acp-16-10441-2016
  • Ritz, B., Hoffmann, B. & Peters, A. (2019). The effects of fine dust, ozone, and nitrogen dioxide on health. Içinde Deutsches Arzteblatt International 116(51-52). DOI: 10.3238/arztebl.2019.0881
  • Skamarock W.C., et al. (2008). A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-468+STR. Natl. Cent. for Atmos. Res. Boulder, Colorado, June.
  • Suresh Kumar Reddy, B., Raghavendra Kumar, K., Balakrishnaiah, G., Rama Gopal, K., Reddy, R.R., Reddy, L.S.S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K. & Suresh Babu, S. (2012). Potential source regions contributing to seasonal variations of black carbon aerosols over Anantapur in southeast India. Aerosol and Air Quality Research, 12(3). DOI: 10.4209/aaqr.2011.10.0159
  • Srithawirat, T., Garivait, S. & Brimblecombe, P. (2021). Seasonal variation of black carbon in fine particulate matter in semi-urban and agricultural areas of Thailand. Aerosol Science and Engineering, 5(4), 419-428.
  • Şahin, Ü.A., Ayvaz, C., Hama, S., Onat, B., Uzun, B., Dogan, M., Bediroglu, G. & Harrison, R.M. (2024). Assessment of ambient particulate matter and trace gases in Istanbul: Insights from long- term and multi-monitoring stations. Atmospheric Pollution Research, 15(5). DOI: 10.1016/j.apr.2024.102089
  • Şahin, Ü.A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M. & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7). DOI: 10.1016/j.apr.2020.03.009
  • Şahin, Ü. A., Harrison, R. M., Alam, M. S., Beddows, D. C. S., Bousiotis, D., Shi, Z., Crilley, L. R., Bloss, W., Brean, J., Khanna, I., and Verma, R. (2022) Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi, Atmos. Chem. Phys., 22, 5415-5433. DOI: 10.5194/acp-22-5415-2022.
  • Türkiye İstatistik Kurumu (TÜİK). (2023). İstanbul Nüfus Verileri 2023. https://www.tuik.gov.tr/. (Erişim Tarihi:8.10.2024)
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2008). Hava kalitesi değerlendirme ve yönetimi yönetmeliği. https://www.mevzuat.gov.tr/ (Erişim tarihi: 29 Eylül 2024)
  • Vernooij, R., Winiger, P., Wooster, M., Strydom, T., Poulain, L., Dusek, U., Grosvenor, M., Roberts, G. J., Schutgens, N. & Van Der Werf, G.R. (2022). A quadcopter unmanned aerial system (UAS)-based methodology for measuring biomass burning emission factors. Atmospheric Measurement Techniques, 15(14). DOI: 10.5194/amt-15-4271-2022
  • Viana, M., Querol, X., Reche, C., Favez, O., Malherbe, L., Ustache, A., ... & Guerreiro, C. (2012). Particle number (PNC) and black carbon (BC) in European urban air quality networks. ETC/ACM Technical Paper, 6.
  • Wang, F., Xu, J., Huang, Y. & Xiu, G. (2021). Characterization of black carbon and its correlations with vocs in the northern region of hangzhou bay in shanghai, china. Atmosphere, 12(7). DOI: 10.3390/atmos12070870
  • Wang, M., Chen, Y., Fu, H., Qu, X., Li, B., Tao, S. & Zhu, D. (2020). An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: Roles of organic and inorganic components. Atmospheric Chemistry and Physics, 20(13). DOI: 10.5194/acp-20-7941-2020
  • Watson, J.G., Chow, J.C., Chen, L.W.A., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65-102.
  • Williams, M. A., Kumar, T. V. L., & Rao, D. N. (2019). Characterizing black carbon aerosols in relation to atmospheric boundary layer height during wet removal processes over a semi urban location. Journal of Atmospheric and Solar-Terrestrial Physics, 182. DOI: 10.1016/j.jastp.2018.11.018
  • Yatkin, S., & Bayram, A. (2007). Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmospheric Research, 85(1), 126-139.
  • Zeng, C., Liu, C., Li, J., Zhu, B., Yin, Y. & Wang, Y. (2019). Optical Properties and Radiative Forcing of Aged BC due to Hygroscopic Growth: Effects of the Aggregate Structure. Journal of Geophysical Research: Atmospheres, 124(8). DOI: 10.1029/2018JD029809
  • Zhang, Z., Cheng, Y., Liang, L. & Liu, J. (2023). The Measurement of Atmospheric Black Carbon: A Review. Toxics, 11(12), 975. DOI: 10.3390/toxics11120975
  • Zhou, B., Wang, Q., Zhou, Q., Zhang, Z., Wang, G., Fang, N., Li, M. & Cao, J. (2018). Seasonal characteristics of black carbon aerosol and its potential source regions in Baoji, China. Aerosol and Air Quality Research, 18(2). DOI: 10.4209/aaqr.2017.02.0070
  • Zhou, J., Tie, X., Yu, Y., Zhao, S., Li, G., Liu, S., Zhang, T. & Dai, W. (2020). Impact of the emission control of diesel vehicles on black carbon (BC) concentrations over China. Atmosphere, 11(7). DOI: 10.3390/atmos11070696.

ASSESSMENT OF ATMOSPHERİC BLACK CARBON CONCENTRATİON CHANGE İN URBAN BACKGROUND İN ISTANBUL

Yıl 2024, Cilt: 9 Sayı: 4, 648 - 659
https://doi.org/10.35229/jaes.1561066

Öz

Black carbon (BC) is an incomplete combustion product and a component of fine particulate matter that is harmful to human health when inhaled. BC is also identified as a short lived climate forcing in climate change and has a significant heat-trapping effect after CO2. While atmospheric BC concentration changes have been widely studied in other cities of the world, there are only a limited number of studies in traffic areas in Istanbul, Turkey. In this study, for the first time in Istanbul, the seasonal variations of BC in the urban background and its relationship with other parameters were investigated seasonally. Seasonal mean BC concentration changes were measured as 1,97 ± 3,10 µg/m3, 1,77 ± 2,36 µg/m3, 3,33 ± 4,29 µg/m3, 3,22 ± 3,25 µg/m3 in summer, autumn, winter and spring, respectively. The highest concentration was observed in winter. There were high positive correlations between BC and particulate matter and traffic-related pollutants (such as NOX). When the hourly variations of BC during the day were analyzed, it was seen that Istanbul traffic contributed to regional emissions in the morning and evening hours when the traffic was heavy. It can be said that meteorological parameters such as wind speed, PBLH and seasonal concentrations have a significant effect on BC concentrations and that the traffic source is an important source of BC in the urban background region in all seasons. In order to understand the spatial distribution of BC in urban environments, we recommend that long-term seasonal differences should be demonstrated and monitored with both fixed and mobile measurements.

Proje Numarası

122Y079 numaralı proje

Kaynakça

  • Abdillah, S.F.I. & Wang, Y.F. (2023). Ambient ultrafine particle (PM0.1): Sources, characteristics, measurements and exposure implications on human health. Içinde Environmental Research (C. 218). DOI: 10.1016/j.envres.2022.115061
  • Ahmed, T., Dutkiewicz, V.A., Shareef, A., Tuncel, G., Tuncel, S. & Husain, L. (2009). Measurement of black carbon (BC) by an optical method and a thermal-optical method: intercomparison for four sites. Atmos. Environ., 43, 6305-6311.
  • Barrett, T.E., Ponette-González, A.G., Rindy, J.E. & Weathers, K.C. (2019). Wet deposition of black carbon: A synthesis. Içinde Atmospheric Environment (C. 213). DOI: 10.1016/j.atmosenv.2019.06.033
  • Beres, N.D., Lapuerta, M., Cereceda-Balic, F. & Moosmüller, H. (2020). Snow surface albedo sensitivity to black carbon: Radiative transfer modelling. Atmosphere, 11(10). DOI: 10.3390/atmos11101077
  • Bond, T.C., Doherty, S. J., Fahey, D.W., Forster, P.M., Berntsen, T., Deangelo, B.J., Flanner, M.G., Ghan, S., Kärcher, B., Koch, D., Kinne, S., Kondo, Y., Quinn, P.K., Sarofim, M.C., Schultz, M.G., Schulz, M., Venkataraman, C., Zhang, H., Zhang, S., … & Zender, C.S. (2013). Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research Atmospheres, 118(11). DOI: 10.1002/jgrd.50171
  • Cape, J.N., Coyle, M. & Dumitrean, P. (2012). The atmospheric lifetime of black carbon. Atmospheric Environment, 59. DOI: 10.1016/j.atmosenv.2012.05.030
  • Dumka, U. C., Kaskaoutis, D. G., Devara, P. C. S., Kumar, R., Kumar, S., Tiwari, S., Gerasopoulos, E. & Mihalopoulos, N. (2019). Year-long variability of the fossil fuel and wood burning black carbon components at a rural site in southern Delhi outskirts. Atmospheric Research, 216. DOI:10.1016/j.atmosres.2018.09.016
  • Ezber, Y. & Sen, O. L. (2022). WRF sensitivity simulations of a dense advection fog event in Istanbul. Theoretical and Applied Climatology, 148(1-2). DOI: 10.1007/s00704-022-03966-0
  • Glojek, K., Močnik, G., Alas, H. D. C., Cuesta- Mosquera, A., Drinovec, L., Gregorič, A., Ogrin, M., Weinhold, K., Ježek, I., Müller, T., Rigler, M., Remškar, M., Van Pinxteren, D., Herrmann, H., Ristorini, M., Merkel, M., Markelj, M. & Wiedensohler, A. (2022). The impact of temperature inversions on black carbon and particle mass concentrations in a mountainous area. Atmospheric Chemistry and Physics, 22(8). DOI: 10.5194/acp-22-5577-2022
  • Gu, Y., Zhang, W., Yang, Y., Wang, C., Streets, D.G. & Yim, S.H.L. (2020). Assessing outdoor air quality and public health impact attributable to residential black carbon emissions in rural China. Resources, Conservation and Recycling, 159. DOI: 10.1016/j.resconrec.2020.104812
  • Flores, R.M., Mertoğlu, E., Özdemir, H., Akkoyunlu, B.O., Demir, G., Ünal, A. & Tayanç, M. (2020). A high-time resolution study of PM2. 5, organic carbon, and elemental carbon at an urban traffic site in Istanbul. Atmospheric Environment, 223, 117241.
  • Hansen, A.D.A., Rosen, H. & Novakov, T. (1984). The aethalometer - An instrument for the real-time measurement of optical absorption by aerosol particles. Science of the Total Environment, The, 36(C). DOI: 10.1016/0048-9697(84)90265-1
  • Hu, D., Alfarra, M.R., Szpek, K., Langridge, J.M., Cotterell, M.I., Belcher, C., Rule, I., Liu, Z., Yu, C., Shao, Y., Voliotis, A., Du, M., Smith, B., Smallwood, G., Lobo, P., Liu, D., Haywood, J.M., Coe, H. & Allan, J.D. (2021). Physical and chemical properties of black carbon and organic matter from different combustion and photochemical sources using aerodynamic aerosol classification. Atmospheric Chemistry and Physics, 21(21). DOI: 10.5194/acp-21-16161- 2021
  • IPCC (Intergovernmental Panel on Climate Change). (2019). “Methodology Report on Short-lived Climate Forcers”. https://www.ipcc.ch/report/methodology-report- on-short-lived-climate-forcers/ İstanbul Hava Kalitesi İzleme Ağı. (2024). https://havakalitesi.ibb.gov.tr/. (Erişim Tarihi:8.10.2024)
  • Jereb, B., Gajšek, B., Šipek, G., Kovše, Š. & Obrecht, M. (2021). Traffic density-related black carbon distribution: Impact of wind in a basin town. International Journal of Environmental Research and Public Health, 18(12). DOI: 10.3390/ijerph18126490
  • Kant, Y., Shaik, D.S., Mitra, D., Chandola, H.C., Babu, S.S. & Chauhan, P. (2020). Black carbon aerosol quantification over north-west Himalayas: Seasonal heterogeneity, source apportionment and radiative forcing. Environmental Pollution, 257, 113446.
  • Kirchstetter, T.W. & Novakov, T. (2007). Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmospheric Environment, 41(9). DOI: 10.1016/j.atmosenv.2006.10.067
  • Klimont, Z., Kupiainen, K., Heyes, C., Purohit, P., Cofala, J., Rafaj, P., Borken-Kleefeld, J. & Schöpp, W. (2017). Global anthropogenic emissions of particulate matter including black carbon. Atmospheric Chemistry and Physics, 17(14). DOI: 10.5194/acp-17-8681-2017
  • Koçak, E., Kılavuz, S.A., Öztürk, F., İmamoğlu, İ. & Tuncel, G. (2021). Characterization and source apportionment of carbonaceous aerosols in fine particles at urban and suburban atmospheres of Ankara, Turkey. Environmental Science and Pollution Research, 28, 25701-25715.
  • Kutzner, R.D., von Schneidemesser, E., Kuik, F., Quedenau, J., Weatherhead, E.C. & Schmale, J. (2018). Long-term monitoring of black carbon across Germany. Atmospheric Environment, 185, 41-52.
  • Kuzu, S.L., Yavuz, E., Akyüz, E., Saral, A., Akkoyunlu, B.O., Özdemir, H., Demir, G. & Ünal, A. (2020). Black carbon and size-segregated elemental carbon, organic carbon compositions in a megacity: a case study for Istanbul. Air Quality, Atmosphere and Health, 13(7). DOI: 10.1007/s11869-020-00839-1
  • Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas, G., Paraskevopoulou, D., Dumka, U.C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E. & Mihalopoulos, N. (2020a). Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117137
  • Liakakou, E., Stavroulas, I., Kaskaoutis, D.G., Grivas, G., Paraskevopoulou, D., Dumka, U.C., Tsagkaraki, M., Bougiatioti, A., Oikonomou, K., Sciare, J., Gerasopoulos, E. & Mihalopoulos, N. (2020b). Long-term variability, source apportionment and spectral properties of black carbon at an urban background site in Athens, Greece. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117137
  • Liang, M. S., Keener, T. C., Birch, M. E., Baldauf, R., Neal, J., & Yang, Y. J. (2013). Low-wind and other microclimatic factors in near-road black carbon variability: A case study and assessment implications. Atmospheric Environment, 80. DOI: 10.1016/j.atmosenv.2013.07.057
  • Lin, Y. L., Farley, R. D., & Orville, H. D. (1983). Bulk parameterization of the snow field in a cloud model. Journal of Climate & Applied Meteorology, 22(6). DOI: 10.1175/1520- 0450(1983)022<1065:BPOTSF>2.0.CO;2
  • Luoma, K., Niemi, J.V., Aurela, M., Lun Fung, P., Helin, A., Hussein, T., Kangas, L., Kousa, A., Rönkkö, T., Timonen, H., Virkkula, A. & Petäjä, T. (2021). Spatiotemporal variation and trends in equivalent black carbon in the Helsinki metropolitan area in Finland. Atmospheric Chemistry and Physics, 21(2). DOI: 10.5194/acp- 21-1173-2021
  • Ma, Y., Huang, C., Jabbour, H., Zheng, Z., Wang, Y., Jiang, Y., Zhu, W., Ge, X., Collier, S. & Zheng, J. (2020). Mixing state and light absorption enhancement of black carbon aerosols in summertime Nanjing, China. Atmospheric Environment, 222. DOI: 10.1016/j.atmosenv.2019.117141
  • Mao, M., Zhou, Y. & Zhang, X. (2023). Evaluation of MERRA-2 Black Carbon Characteristics and Potential Sources over China. Atmosphere, 14(9). DOI: 10.3390/atmos14091378
  • Motos, G., Schmale, J., Corbin, J.C., Modini, R.L., Karlen, N., Bertò, M., Baltensperger, U. & Gysel-Beer, M. (2019). Cloud droplet activation properties and scavenged fraction of black carbon in liquid-phase clouds at the high-alpine research station Jungfraujoch (3580ma.s.l.). Atmospheric Chemistry and Physics, 19(6). DOI: 10.5194/acp- 19-3833-2019
  • Myhre, G. & Samset, B. H. (2015). Standard climate models radiation codes underestimate black carbon radiative forcing. Atmospheric Chemistry and Physics, 15(5). DOI: 10.5194/acp-15-2883- 2015
  • Ngarambe, J., Joen, S. J., Han, C. H., & Yun, G. Y. (2021). Exploring the relationship between particulate matter, CO, SO2, NO2, O3 and urban heat island in Seoul, Korea. Journal of Hazardous Materials, 403. DOI: 10.1016/j.jhazmat.2020.123615
  • Nguyen, H.T. & Roper, C. (2024). Black carbon concentrations, sources, and health risks at six cities in Mississippi, USA. Air Quality, Atmosphere and Health, 17(1). DOI: 10.1007/s11869-023-01433-x
  • Nilsson Sommar, J., Andersson, E.M., Andersson, N., Sallsten, G., Stockfelt, L., Ljungman, P.L.S., Segersson, D., Eneroth, K., Gidhagen, L., Molnar, P., Wennberg, P., Rosengren, A., Rizzuto, D., Leander, K., Lager, A., Magnusson, P.K.E., Johansson, C., Barregard, L., Bellander, T., … & Forsberg, B. (2021). Long-term exposure to particulate air pollution and black carbon in relation to natural and cause- specific mortality: A multicohort study in Sweden. BMJ Open, 11(9). DOI: 10.1136/bmjopen-2020-046040
  • Ozdemir, H., Pozzoli, L., Kindap, T., Demir, G., Mertoglu, B., Mihalopoulos, N., Theodosi, C., Kanakidou, M., Im, U. & Unal, A. (2014). Spatial and temporal analysis of black carbon aerosols in Istanbul megacity. Science of the Total Environment, 473-474. DOI: 10.1016/j.scitotenv.2013.11.102
  • Öztürk, F. & Keleş, M. (2016). Wintertime chemical compositions of coarse and fine fractions of particulate matter in Bolu, Turkey. Environmental Science and Pollution Research, 23, 14157- 14172.
  • Pashneva, D., Minderytė, A., Davulienė, L., Dudoitis, V. & Byčenkienė, S. (2024). Understanding the Dynamics of Source-Apportioned Black Carbon in an Urban Background Environment. Atmosphere, 15(7), 832.
  • R Core Team. (2023). R: A language and environment for statistical computing (4.3.1). R Foundation for Statistical Computing.
  • Ramanathan, V. & Carmichael, G. (2008). Global and regional climate changes due to black carbon. Içinde Nature Geoscience 1(4). DOI: 10.1038/ngeo156
  • Ran, L., Deng, Z., Xu, X., Yan, P., Lin, W., Wang, Y., Tian, P., Wang, P., Pan, W. & Lu, D. (2016). Vertical profiles of black carbon measured by a micro-aethalometer in summer in the North China Plain. Atmospheric Chemistry and Physics, 16(16). DOI: 10.5194/acp-16-10441-2016
  • Ritz, B., Hoffmann, B. & Peters, A. (2019). The effects of fine dust, ozone, and nitrogen dioxide on health. Içinde Deutsches Arzteblatt International 116(51-52). DOI: 10.3238/arztebl.2019.0881
  • Skamarock W.C., et al. (2008). A description of the advanced research WRF version 3, NCAR Tech. Note, NCAR/TN-468+STR. Natl. Cent. for Atmos. Res. Boulder, Colorado, June.
  • Suresh Kumar Reddy, B., Raghavendra Kumar, K., Balakrishnaiah, G., Rama Gopal, K., Reddy, R.R., Reddy, L.S.S., Nazeer Ahammed, Y., Narasimhulu, K., Krishna Moorthy, K. & Suresh Babu, S. (2012). Potential source regions contributing to seasonal variations of black carbon aerosols over Anantapur in southeast India. Aerosol and Air Quality Research, 12(3). DOI: 10.4209/aaqr.2011.10.0159
  • Srithawirat, T., Garivait, S. & Brimblecombe, P. (2021). Seasonal variation of black carbon in fine particulate matter in semi-urban and agricultural areas of Thailand. Aerosol Science and Engineering, 5(4), 419-428.
  • Şahin, Ü.A., Ayvaz, C., Hama, S., Onat, B., Uzun, B., Dogan, M., Bediroglu, G. & Harrison, R.M. (2024). Assessment of ambient particulate matter and trace gases in Istanbul: Insights from long- term and multi-monitoring stations. Atmospheric Pollution Research, 15(5). DOI: 10.1016/j.apr.2024.102089
  • Şahin, Ü.A., Onat, B., Akın, Ö., Ayvaz, C., Uzun, B., Mangır, N., Doğan, M. & Harrison, R. M. (2020). Temporal variations of atmospheric black carbon and its relation to other pollutants and meteorological factors at an urban traffic site in Istanbul. Atmospheric Pollution Research, 11(7). DOI: 10.1016/j.apr.2020.03.009
  • Şahin, Ü. A., Harrison, R. M., Alam, M. S., Beddows, D. C. S., Bousiotis, D., Shi, Z., Crilley, L. R., Bloss, W., Brean, J., Khanna, I., and Verma, R. (2022) Measurement report: Interpretation of wide-range particulate matter size distributions in Delhi, Atmos. Chem. Phys., 22, 5415-5433. DOI: 10.5194/acp-22-5415-2022.
  • Türkiye İstatistik Kurumu (TÜİK). (2023). İstanbul Nüfus Verileri 2023. https://www.tuik.gov.tr/. (Erişim Tarihi:8.10.2024)
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2008). Hava kalitesi değerlendirme ve yönetimi yönetmeliği. https://www.mevzuat.gov.tr/ (Erişim tarihi: 29 Eylül 2024)
  • Vernooij, R., Winiger, P., Wooster, M., Strydom, T., Poulain, L., Dusek, U., Grosvenor, M., Roberts, G. J., Schutgens, N. & Van Der Werf, G.R. (2022). A quadcopter unmanned aerial system (UAS)-based methodology for measuring biomass burning emission factors. Atmospheric Measurement Techniques, 15(14). DOI: 10.5194/amt-15-4271-2022
  • Viana, M., Querol, X., Reche, C., Favez, O., Malherbe, L., Ustache, A., ... & Guerreiro, C. (2012). Particle number (PNC) and black carbon (BC) in European urban air quality networks. ETC/ACM Technical Paper, 6.
  • Wang, F., Xu, J., Huang, Y. & Xiu, G. (2021). Characterization of black carbon and its correlations with vocs in the northern region of hangzhou bay in shanghai, china. Atmosphere, 12(7). DOI: 10.3390/atmos12070870
  • Wang, M., Chen, Y., Fu, H., Qu, X., Li, B., Tao, S. & Zhu, D. (2020). An investigation on hygroscopic properties of 15 black carbon (BC)-containing particles from different carbon sources: Roles of organic and inorganic components. Atmospheric Chemistry and Physics, 20(13). DOI: 10.5194/acp-20-7941-2020
  • Watson, J.G., Chow, J.C., Chen, L.W.A., 2005. Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. Aerosol Air Qual. Res. 5, 65-102.
  • Williams, M. A., Kumar, T. V. L., & Rao, D. N. (2019). Characterizing black carbon aerosols in relation to atmospheric boundary layer height during wet removal processes over a semi urban location. Journal of Atmospheric and Solar-Terrestrial Physics, 182. DOI: 10.1016/j.jastp.2018.11.018
  • Yatkin, S., & Bayram, A. (2007). Elemental composition and sources of particulate matter in the ambient air of a Metropolitan City. Atmospheric Research, 85(1), 126-139.
  • Zeng, C., Liu, C., Li, J., Zhu, B., Yin, Y. & Wang, Y. (2019). Optical Properties and Radiative Forcing of Aged BC due to Hygroscopic Growth: Effects of the Aggregate Structure. Journal of Geophysical Research: Atmospheres, 124(8). DOI: 10.1029/2018JD029809
  • Zhang, Z., Cheng, Y., Liang, L. & Liu, J. (2023). The Measurement of Atmospheric Black Carbon: A Review. Toxics, 11(12), 975. DOI: 10.3390/toxics11120975
  • Zhou, B., Wang, Q., Zhou, Q., Zhang, Z., Wang, G., Fang, N., Li, M. & Cao, J. (2018). Seasonal characteristics of black carbon aerosol and its potential source regions in Baoji, China. Aerosol and Air Quality Research, 18(2). DOI: 10.4209/aaqr.2017.02.0070
  • Zhou, J., Tie, X., Yu, Y., Zhao, S., Li, G., Liu, S., Zhang, T. & Dai, W. (2020). Impact of the emission control of diesel vehicles on black carbon (BC) concentrations over China. Atmosphere, 11(7). DOI: 10.3390/atmos11070696.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Kirlilik ve Kontaminasyon (Diğer)
Bölüm Makaleler
Yazarlar

Zehra Çolak 0000-0002-2726-4255

Burcu Onat 0000-0002-3036-2809

Melike Servin Coşgun 0009-0007-0333-4582

Burcu Uzun Ayvaz 0000-0002-0228-5674

Coşkun Ayvaz 0000-0003-0052-0842

S. Levent Kuzu 0000-0002-2251-3400

Elif Yavuz 0000-0001-8690-8092

Hilal Çetin 0009-0007-6331-1956

Zeynep Fidan 0009-0003-4081-9563

Ülkü Alver Şahin 0000-0002-1075-707X

Proje Numarası 122Y079 numaralı proje
Erken Görünüm Tarihi 17 Aralık 2024
Yayımlanma Tarihi
Gönderilme Tarihi 4 Ekim 2024
Kabul Tarihi 4 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 9 Sayı: 4

Kaynak Göster

APA Çolak, Z., Onat, B., Coşgun, M. S., Uzun Ayvaz, B., vd. (2024). İSTANBUL’DA KENTSEL ARKA PLANDA ATMOSFERIK SIYAH KARBON KONSANTRASYON DEĞIŞIMININ DEĞERLENDIRILMESI. Journal of Anatolian Environmental and Animal Sciences, 9(4), 648-659. https://doi.org/10.35229/jaes.1561066


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS