Research Article
BibTex RIS Cite

Novel Protein-Fiber Films from Agro-Waste: A Sustainable Approach for Antimicrobial Packaging

Year 2025, Volume: 10 Issue: 2, 191 - 201
https://doi.org/10.35229/jaes.1600652

Abstract

This research focuses on antimicrobial edible films made from protein and crude fiber obtained from cold-pressed chili pepper seed oil by-products. Films with protein and fiber were assessed for structural, mechanical, barrier, and antimicrobial properties. Mechanical tests showed P-CF Film had better flexibility, while P Film achieved the highest elongation at break (33.76%) and tensile strength (0.46 MPa). Barrier properties revealed that films containing both protein and fiber had lower water vapor permeability and significantly higher oxygen permeability than films with only protein or fiber. Antimicrobial tests indicated that both P Film and P-CF Film were effective against Staphylococcus aureus and Escherichia coli, with P Film showing superior inhibition against Salmonella typhimurium. This study highlights the potential of using protein and crude fiber from chili pepper seed oil by-products to develop antimicrobial edible films, offering a sustainable alternative to conventional packaging.

References

  • Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32(2), 416-424. DOI: 10.1016/j.foodhyd.2013.02.006
  • Akman, P. K., Bozkurt, F., Dogan, K., Tornuk, F. & Tamturk, F. (2021). Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. Journal of Food Measurement and Characterization, 15, 84-92.
  • Alipour, A., Rahaiee, S., Litkohi, H.R., Jamali, S.N., & Jafari, S.M. (2023). Development and optimization of whey protein-Lepidium perfoliatum gum packaging films: An approach towards antimicrobial and biodegradable films. Industrial Crops and Products, 196, 116447. DOI: 10.1016/j.indcrop.2023.116447
  • Avci, E., Akcicek, A., Tekin Cakmak, Z.H., Kasapoglu, M. Z., Sagdic, O. & Karasu, S. (2024). Isolation of Protein and Fiber from Hot Pepper Seed Oil Byproduct To Enhance Rheology, Emulsionand Oxidative Stability of Low-Fat Salad Dressing. ACS omega, 9(9), 10243-10252. DOI: 10.1021/acsomega.3c07410
  • Brito, T., Carrajola, J., Gonçalves, E., Martelli-Tosi, M. & Ferreira, M. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412-421. DOI: 10.1016/j.foodres.2019.03.058
  • Capar, T.D. (2023). Characterization of sodium alginate- based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packaging and Shelf Life, 37, 101068.
  • Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M. & Siracusa, V. (2019). Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials, 12(15), 2454. DOI: 10.3390/ma12152454
  • Dai, Q., Huang, X., Jia, R., Fang, Y. & Qin, Z. (2022). Development of antibacterial film based on alginate fiberand peanut red skin extract for food packaging. Journal of Food Engineering, 330, 111106. DOI: 10.1016/j.jfoodeng.2022.111106
  • Domínguez, R., Barba, F.J., Gómez, B., Putnik, P., Kovačević, D.B., Pateiro, M. & Lorenzo, J.M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93- 101. DOI: 10.1016/j.foodres.2018.06.073
  • Duan, J., Zhou, Q., Fu, M., Cao, M., Jiang, M., Zhang, L. & Duan, X. (2023). Research on Properties of Edible Films Prepared from Zein, Soy Protein Isolate, Wheat Gluten Protein by Adding Beeswax. Food and Bioprocess Technology, 16(11), 2443-2454. DOI: 10.1007/s11947-023- 03077-2
  • Fernández, C., Ausar, S.F., Badini, R.G., Castagna, L. F., Bianco, I.D. & Beltramo, D. M. (2003). An FTIR spectroscopy study of the interaction between αs-casein-bound phosphoryl groups and chitosan. International Dairy Journal, 13(11), 897-901. DOI: 10.1016/S0958-6946(03)00115-8
  • Fiorentini, F., Suarato, G., Grisoli, P., Zych, A., Bertorelli, R. & Athanassiou, A. (2021). Plant- based biocomposite films as potential antibacterial patches for skin wound healing. European Polymer Journal, 150, 110414. DOI: 10.1016/j.eurpolymj.2021.110414
  • Galus, S. & Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273-283. DOI: 10.1016/j.tifs.2015.07.011
  • Ghanbarzadeh, B. & Oromiehi, A. (2008). Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43(2), 209-215. DOI: 10.1016/j.ijbiomac.2008.05.006
  • Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A. & Jafari, S.M. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterizationand applications. Trends in Food Science & Technology, 120, 154-173. DOI: 10.1016/j.tifs.2022.01.013
  • Hematizad, I., Khanjari, A., Basti, A.A., Karabagias, I.K., Noori, N., Ghadami, F., . . & Teimourifard, R. (2021). In vitro antibacterial activity of gelatin-nanochitosan films incorporated with Zataria multiflora Boiss essential oil and its influence on microbial, chemicaland sensorial properties of chicken breast meat during refrigerated storage. Food Packaging and Shelf Life, 30, 100751. DOI: 10.22059/jvr.2022.337641.3231
  • Homthawornchoo, W., Han, J., Kaewprachu, P., Romruen, O. & Rawdkuen, S. (2022). Green tea extract enrichment: mechanical and physicochemical properties improvement of rice starch-pectin composite film. Polymers, 14(13), 2696. DOI: 10.3390/polym14132696
  • Huang, Y., Xiang, X., Luo, X., Li, X., Yu, X. & Li, S. (2021). Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. Ultrasonics Sonochemistry, 78, 105717. DOI: 10.1016/j.ultsonch.2021.105717
  • Jeon, Y.J., Lee, H. & Min, S.C. (2023). Effects of in- package atmospheric dielectric barrier discharge cold plasma treatment on the antimicrobial efficacy of whey protein isolate-based edible films that incorporate malic acid against Salmonella in chicken breast processed meat. Innovative Food Science & Emerging Technologies, 85, 103339. DOI: 10.1016/j.ifset.2023.103339
  • Jiang, S., Zou, L., Hou, Y., Qian, F., Tuo, Y., Wu, X. & Mu, G. (2020). The influence of the addition of transglutaminase at different phase on the film and film forming characteristics of whey protein concentrate-carboxymethyl chitosan composite films. Food Packaging and Shelf Life, 25, 100546. DOI: 10.1016/j.fpsl.2020.100546
  • Kamari, A. & Phillip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. International Journal of Biological Macromolecules, 120, 1119-1126. DOI: 10.1016/j.ijbiomac.2018.08.169
  • Kandasamy, S., Yoo, J., Yun, J., Kang, H.B., Seol, K.H., Kim, H.W. & Ham, J.S. (2021). Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings, 11(9), 1056. DOI: 10.3390/coatings11091056
  • Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B., Sağlam, H. & Karaaslan, A. (2021). Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chemistry, 337, 127748. DOI: 10.1016/j.foodchem.2020.127748
  • Karydis-Messinis, A., Kyriakaki, C., Triantafyllou, E., Tsirka, K., Gioti, C., Gkikas, D. & Avgeropoulos, A. (2024). Development and Physicochemical Characterization of Edible Chitosan–Casein Hydrogel Membranes for Potential Use in Food Packaging. Gels, 10(4), 254. DOI: 10.3390/gels10040254
  • Karydis-Messinis, A., Moschovas, D., Markou, M., Gkantzou, E., Vasileiadis, A., Tsirka, K. & Murphy, C. (2023). Development, physicochemical characterization and in vitro evaluation of chitosan-fish gelatin-glycerol hydrogel membranes for wound treatment applications. Carbohydrate Polymer Technologies and Applications, 6, 100338. DOI: 10.20944/preprints202402.0173.v1
  • Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E. & Hortyńska, P. (2021). Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality-A Review. Agronomy, 11(5), 813. DOI: 10.3390/agronomy11050813
  • Kopuz, S., Akman, P.K., Tekin-Cakmak, Z.H. & Karasu, S. (2024). Development and characterization of antimicrobial films from gums obtained from cold-pressed flaxseed oil by- product. Polymer Bulletin, 81(2), 1767-1787. DOI: 10.1007/s00289-023-04793-7
  • Kumar, L., Ramakanth, D., Akhila, K. & Gaikwad, K.K. (2022). Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters, 1-26. DOI: 10.1007/s10311- 021-01339-z
  • Kumar, S., Konwar, J., Purkayastha, M.D., Kalita, S., Mukherjee, A. & Dutta, J. (2023). Current progress in valorization of food processing waste and by-products for pectin extraction. International Journal of Biological Macromolecules, 239, 124332. DOI: 10.1007/s10311-021-01339-z
  • Ma, Y., Xin, L., Tan, H., Fan, M., Li, J., Jia, Y. & Hu, X. (2017). Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Materials Science and Engineering: C, 81, 522-531. DOI: 10.1016/j.msec.2017.08.052
  • Mahcene, Z., Khelil, A., Hasni, S., Akman, P.K., Bozkurt, F., Birech, K. & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. DOI: 10.1016/j.ijbiomac.2019.12.093
  • Mercadal, P.A., Picchio, M.L. & González, A. (2024). Food-protecting films based on soy protein isolate and natural deep eutectic solvents: Antimicrobial and antioxidant properties. Food Hydrocolloids, 147, 109414. DOI: 10.1016/j.foodhyd.2023.109414
  • Mohamed, S.A., El-Sakhawy, M. & El-Sakhawy, M.A.M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers, 238, 116178. DOI: 10.1016/j.carbpol.2020.116178
  • Nguyen, T.T., Pham, B.T.T., Le, H.N., Bach, L.G. & Thuc, C.H. (2022). Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packaging and Shelf Life, 32, 100830. DOI: 10.2139/ssrn.3931690
  • Noori, N., Khanjari, A., Rezaeigolestani, M., Karabagias, I.K. & Mokhtari, S. (2021). Development of antibacterial biocomposites based on poly (lactic acid) with spice essential oil (Pimpinella anisum) for food applications. Polymers, 13(21), 3791. DOI: 10.3390/polym13213791
  • Omar-Aziz, M., Khodaiyan, F., Yarmand, M.S., Mousavi, M., Gharaghani, M., Kennedy, J.F. & Hosseini, S.S. (2021). Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydrate Polymers, 255, 117471. DOI: 10.1016/j.carbpol.2020.117471
  • Pajak, P., Fortune, T. & Przetaczek-Roznowska, I. (2013). Protein and Polysaccharide Based Edible Packagings: Profile and Applications. Zywnosc- Nauka Technologia Jakosc, 20(2), 5-18. DOI: 10.15193/zntj/2013/87/005-018
  • Qin, Y., Liu, Y., Yuan, L., Yong, H. & Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96, 102-111. DOI: 10.1016/j.foodhyd.2019.05.017
  • Qin, Y., Liu, Y., Zhang, X. & Liu, J. (2020). Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids, 100, 105410. DOI: 10.1016/j.foodhyd.2019.105410
  • Rawat, R. & Saini, C.S. (2024). A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterizationand amino acid composition. International Journal of Biological Macromolecules, 268, 131940. DOI: 10.1016/j.ijbiomac.2024.131940
  • Sadeghi-Varkani, A., Emam-Djomeh, Z. & Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110-1119. DOI: 10.1016/j.ijbiomac.2017.11.029
  • Sandoval-Castro, C.J., Valdez-Morales, M., Oomah, B.D., Gutiérrez-Dorado, R., Medina-Godoy, S. & Espinosa-Alonso, L.G. (2017). Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). Journal of Food Science and Technology, 54, 1999-2010. DOI: 10.1007/s13197-017-2636-2
  • Sani, I.K., Geshlaghi, S.P., Pirsa, S. & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719. DOI: 10.1016/j.foodhyd.2021.106719
  • Seydim, A. & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644. DOI: 10.1016/j.foodres.2006.01.013
  • Sood, A. & Saini, C. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107135. DOI: 10.1016/j.foodhyd.2021.107135
  • Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C. & Fisk, I.D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids, 70, 345-355. DOI: 10.1016/j.foodhyd.2017.04.014
  • Tornuk, F., Sagdic, O., Hancer, M. & Yetim, H. (2018). Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds. Food Research International, 107, 337-345. DOI: 10.1016/j.foodres.2018.02.036
  • Wang, H., Ding, F., Ma, L. & Zhang, Y. (2021). Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Bioscience, 40, 100871. DOI: 10.1016/j.fbio.2020.100871
  • Yan, J., He, S., Chen, L., Chen, H. & Wang, W. (2023). Characterization, antioxidant and antibacterial activities of gelatin-chitosan edible coated films added with Cyclocarya paliurus flavonoids. International Journal of Biological Macromolecules, 253, 127664. DOI: 10.1016/j.ijbiomac.2023.127664
  • Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C. & Li, J. (2019). Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. Journal of cleaner production, 214, 125-131. DOI: 10.1016/j.jclepro.2018.12.277
  • Zhu, F. (2021). Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. Food Chemistry, 359, 129871. DOI: 10.1016/j.foodchem.2021.129871

Novel Protein-Fiber Films from Agro-Waste: A Sustainable Approach for Antimicrobial Packaging

Year 2025, Volume: 10 Issue: 2, 191 - 201
https://doi.org/10.35229/jaes.1600652

Abstract

This research focuses on antimicrobial edible films made from protein and crude fiber obtained from cold-pressed chili pepper seed oil by-products. Films with protein and fiber were assessed for structural, mechanical, barrier, and antimicrobial properties. Mechanical tests showed P-CF Film had better flexibility, while P Film achieved the highest elongation at break (33.76%) and tensile strength (0.46 MPa). Barrier properties revealed that films containing both protein and fiber had lower water vapor permeability and significantly higher oxygen permeability than films with only protein or fiber. Antimicrobial tests indicated that both P Film and P-CF Film were effective against Staphylococcus aureus and Escherichia coli, with P Film showing superior inhibition against Salmonella typhimurium. This study highlights the potential of using protein and crude fiber from chili pepper seed oil by-products to develop antimicrobial edible films, offering a sustainable alternative to conventional packaging.

References

  • Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids, 32(2), 416-424. DOI: 10.1016/j.foodhyd.2013.02.006
  • Akman, P. K., Bozkurt, F., Dogan, K., Tornuk, F. & Tamturk, F. (2021). Fabrication and characterization of probiotic Lactobacillus plantarum loaded sodium alginate edible films. Journal of Food Measurement and Characterization, 15, 84-92.
  • Alipour, A., Rahaiee, S., Litkohi, H.R., Jamali, S.N., & Jafari, S.M. (2023). Development and optimization of whey protein-Lepidium perfoliatum gum packaging films: An approach towards antimicrobial and biodegradable films. Industrial Crops and Products, 196, 116447. DOI: 10.1016/j.indcrop.2023.116447
  • Avci, E., Akcicek, A., Tekin Cakmak, Z.H., Kasapoglu, M. Z., Sagdic, O. & Karasu, S. (2024). Isolation of Protein and Fiber from Hot Pepper Seed Oil Byproduct To Enhance Rheology, Emulsionand Oxidative Stability of Low-Fat Salad Dressing. ACS omega, 9(9), 10243-10252. DOI: 10.1021/acsomega.3c07410
  • Brito, T., Carrajola, J., Gonçalves, E., Martelli-Tosi, M. & Ferreira, M. (2019). Fruit and vegetable residues flours with different granulometry range as raw material for pectin-enriched biodegradable film preparation. Food Research International, 121, 412-421. DOI: 10.1016/j.foodres.2019.03.058
  • Capar, T.D. (2023). Characterization of sodium alginate- based biodegradable edible film incorporated with Vitis vinifera leaf extract: Nano-scaled by ultrasound-assisted technology. Food Packaging and Shelf Life, 37, 101068.
  • Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra, F., Dalla Rosa, M. & Siracusa, V. (2019). Characterization of Composite Edible Films Based on Pectin/Alginate/Whey Protein Concentrate. Materials, 12(15), 2454. DOI: 10.3390/ma12152454
  • Dai, Q., Huang, X., Jia, R., Fang, Y. & Qin, Z. (2022). Development of antibacterial film based on alginate fiberand peanut red skin extract for food packaging. Journal of Food Engineering, 330, 111106. DOI: 10.1016/j.jfoodeng.2022.111106
  • Domínguez, R., Barba, F.J., Gómez, B., Putnik, P., Kovačević, D.B., Pateiro, M. & Lorenzo, J.M. (2018). Active packaging films with natural antioxidants to be used in meat industry: A review. Food Research International, 113, 93- 101. DOI: 10.1016/j.foodres.2018.06.073
  • Duan, J., Zhou, Q., Fu, M., Cao, M., Jiang, M., Zhang, L. & Duan, X. (2023). Research on Properties of Edible Films Prepared from Zein, Soy Protein Isolate, Wheat Gluten Protein by Adding Beeswax. Food and Bioprocess Technology, 16(11), 2443-2454. DOI: 10.1007/s11947-023- 03077-2
  • Fernández, C., Ausar, S.F., Badini, R.G., Castagna, L. F., Bianco, I.D. & Beltramo, D. M. (2003). An FTIR spectroscopy study of the interaction between αs-casein-bound phosphoryl groups and chitosan. International Dairy Journal, 13(11), 897-901. DOI: 10.1016/S0958-6946(03)00115-8
  • Fiorentini, F., Suarato, G., Grisoli, P., Zych, A., Bertorelli, R. & Athanassiou, A. (2021). Plant- based biocomposite films as potential antibacterial patches for skin wound healing. European Polymer Journal, 150, 110414. DOI: 10.1016/j.eurpolymj.2021.110414
  • Galus, S. & Kadzińska, J. (2015). Food applications of emulsion-based edible films and coatings. Trends in Food Science & Technology, 45(2), 273-283. DOI: 10.1016/j.tifs.2015.07.011
  • Ghanbarzadeh, B. & Oromiehi, A. (2008). Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis. International Journal of Biological Macromolecules, 43(2), 209-215. DOI: 10.1016/j.ijbiomac.2008.05.006
  • Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A. & Jafari, S.M. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterizationand applications. Trends in Food Science & Technology, 120, 154-173. DOI: 10.1016/j.tifs.2022.01.013
  • Hematizad, I., Khanjari, A., Basti, A.A., Karabagias, I.K., Noori, N., Ghadami, F., . . & Teimourifard, R. (2021). In vitro antibacterial activity of gelatin-nanochitosan films incorporated with Zataria multiflora Boiss essential oil and its influence on microbial, chemicaland sensorial properties of chicken breast meat during refrigerated storage. Food Packaging and Shelf Life, 30, 100751. DOI: 10.22059/jvr.2022.337641.3231
  • Homthawornchoo, W., Han, J., Kaewprachu, P., Romruen, O. & Rawdkuen, S. (2022). Green tea extract enrichment: mechanical and physicochemical properties improvement of rice starch-pectin composite film. Polymers, 14(13), 2696. DOI: 10.3390/polym14132696
  • Huang, Y., Xiang, X., Luo, X., Li, X., Yu, X. & Li, S. (2021). Study on the emulsification and oxidative stability of ovalbumin-pectin-pumpkin seed oil emulsions using ovalbumin solution prepared by ultrasound. Ultrasonics Sonochemistry, 78, 105717. DOI: 10.1016/j.ultsonch.2021.105717
  • Jeon, Y.J., Lee, H. & Min, S.C. (2023). Effects of in- package atmospheric dielectric barrier discharge cold plasma treatment on the antimicrobial efficacy of whey protein isolate-based edible films that incorporate malic acid against Salmonella in chicken breast processed meat. Innovative Food Science & Emerging Technologies, 85, 103339. DOI: 10.1016/j.ifset.2023.103339
  • Jiang, S., Zou, L., Hou, Y., Qian, F., Tuo, Y., Wu, X. & Mu, G. (2020). The influence of the addition of transglutaminase at different phase on the film and film forming characteristics of whey protein concentrate-carboxymethyl chitosan composite films. Food Packaging and Shelf Life, 25, 100546. DOI: 10.1016/j.fpsl.2020.100546
  • Kamari, A. & Phillip, E. (2018). Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. International Journal of Biological Macromolecules, 120, 1119-1126. DOI: 10.1016/j.ijbiomac.2018.08.169
  • Kandasamy, S., Yoo, J., Yun, J., Kang, H.B., Seol, K.H., Kim, H.W. & Ham, J.S. (2021). Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings, 11(9), 1056. DOI: 10.3390/coatings11091056
  • Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B., Sağlam, H. & Karaaslan, A. (2021). Gum arabic/maltodextrin microencapsulation confers peroxidation stability and antimicrobial ability to pepper seed oil. Food Chemistry, 337, 127748. DOI: 10.1016/j.foodchem.2020.127748
  • Karydis-Messinis, A., Kyriakaki, C., Triantafyllou, E., Tsirka, K., Gioti, C., Gkikas, D. & Avgeropoulos, A. (2024). Development and Physicochemical Characterization of Edible Chitosan–Casein Hydrogel Membranes for Potential Use in Food Packaging. Gels, 10(4), 254. DOI: 10.3390/gels10040254
  • Karydis-Messinis, A., Moschovas, D., Markou, M., Gkantzou, E., Vasileiadis, A., Tsirka, K. & Murphy, C. (2023). Development, physicochemical characterization and in vitro evaluation of chitosan-fish gelatin-glycerol hydrogel membranes for wound treatment applications. Carbohydrate Polymer Technologies and Applications, 6, 100338. DOI: 10.20944/preprints202402.0173.v1
  • Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E. & Hortyńska, P. (2021). Polysaccharides as Edible Films and Coatings: Characteristics and Influence on Fruit and Vegetable Quality-A Review. Agronomy, 11(5), 813. DOI: 10.3390/agronomy11050813
  • Kopuz, S., Akman, P.K., Tekin-Cakmak, Z.H. & Karasu, S. (2024). Development and characterization of antimicrobial films from gums obtained from cold-pressed flaxseed oil by- product. Polymer Bulletin, 81(2), 1767-1787. DOI: 10.1007/s00289-023-04793-7
  • Kumar, L., Ramakanth, D., Akhila, K. & Gaikwad, K.K. (2022). Edible films and coatings for food packaging applications: A review. Environmental Chemistry Letters, 1-26. DOI: 10.1007/s10311- 021-01339-z
  • Kumar, S., Konwar, J., Purkayastha, M.D., Kalita, S., Mukherjee, A. & Dutta, J. (2023). Current progress in valorization of food processing waste and by-products for pectin extraction. International Journal of Biological Macromolecules, 239, 124332. DOI: 10.1007/s10311-021-01339-z
  • Ma, Y., Xin, L., Tan, H., Fan, M., Li, J., Jia, Y. & Hu, X. (2017). Chitosan membrane dressings toughened by glycerol to load antibacterial drugs for wound healing. Materials Science and Engineering: C, 81, 522-531. DOI: 10.1016/j.msec.2017.08.052
  • Mahcene, Z., Khelil, A., Hasni, S., Akman, P.K., Bozkurt, F., Birech, K. & Tornuk, F. (2020). Development and characterization of sodium alginate based active edible films incorporated with essential oils of some medicinal plants. International Journal of Biological Macromolecules, 145, 124-132. DOI: 10.1016/j.ijbiomac.2019.12.093
  • Mercadal, P.A., Picchio, M.L. & González, A. (2024). Food-protecting films based on soy protein isolate and natural deep eutectic solvents: Antimicrobial and antioxidant properties. Food Hydrocolloids, 147, 109414. DOI: 10.1016/j.foodhyd.2023.109414
  • Mohamed, S.A., El-Sakhawy, M. & El-Sakhawy, M.A.M. (2020). Polysaccharides, protein and lipid-based natural edible films in food packaging: A review. Carbohydrate polymers, 238, 116178. DOI: 10.1016/j.carbpol.2020.116178
  • Nguyen, T.T., Pham, B.T.T., Le, H.N., Bach, L.G. & Thuc, C.H. (2022). Comparative characterization and release study of edible films of chitosan and natural extracts. Food Packaging and Shelf Life, 32, 100830. DOI: 10.2139/ssrn.3931690
  • Noori, N., Khanjari, A., Rezaeigolestani, M., Karabagias, I.K. & Mokhtari, S. (2021). Development of antibacterial biocomposites based on poly (lactic acid) with spice essential oil (Pimpinella anisum) for food applications. Polymers, 13(21), 3791. DOI: 10.3390/polym13213791
  • Omar-Aziz, M., Khodaiyan, F., Yarmand, M.S., Mousavi, M., Gharaghani, M., Kennedy, J.F. & Hosseini, S.S. (2021). Combined effects of octenylsuccination and beeswax on pullulan films: Water-resistant and mechanical properties. Carbohydrate Polymers, 255, 117471. DOI: 10.1016/j.carbpol.2020.117471
  • Pajak, P., Fortune, T. & Przetaczek-Roznowska, I. (2013). Protein and Polysaccharide Based Edible Packagings: Profile and Applications. Zywnosc- Nauka Technologia Jakosc, 20(2), 5-18. DOI: 10.15193/zntj/2013/87/005-018
  • Qin, Y., Liu, Y., Yuan, L., Yong, H. & Liu, J. (2019). Preparation and characterization of antioxidant, antimicrobial and pH-sensitive films based on chitosan, silver nanoparticles and purple corn extract. Food Hydrocolloids, 96, 102-111. DOI: 10.1016/j.foodhyd.2019.05.017
  • Qin, Y., Liu, Y., Zhang, X. & Liu, J. (2020). Development of active and intelligent packaging by incorporating betalains from red pitaya (Hylocereus polyrhizus) peel into starch/polyvinyl alcohol films. Food Hydrocolloids, 100, 105410. DOI: 10.1016/j.foodhyd.2019.105410
  • Rawat, R. & Saini, C.S. (2024). A novel biopolymeric composite edible film based on sunnhemp protein isolate and potato starch incorporated with clove oil: Fabrication, characterizationand amino acid composition. International Journal of Biological Macromolecules, 268, 131940. DOI: 10.1016/j.ijbiomac.2024.131940
  • Sadeghi-Varkani, A., Emam-Djomeh, Z. & Askari, G. (2018). Physicochemical and microstructural properties of a novel edible film synthesized from Balangu seed mucilage. International Journal of Biological Macromolecules, 108, 1110-1119. DOI: 10.1016/j.ijbiomac.2017.11.029
  • Sandoval-Castro, C.J., Valdez-Morales, M., Oomah, B.D., Gutiérrez-Dorado, R., Medina-Godoy, S. & Espinosa-Alonso, L.G. (2017). Bioactive compounds and antioxidant activity in scalded Jalapeño pepper industrial byproduct (Capsicum annuum). Journal of Food Science and Technology, 54, 1999-2010. DOI: 10.1007/s13197-017-2636-2
  • Sani, I.K., Geshlaghi, S.P., Pirsa, S. & Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/microencapsulated Zataria multiflora essential oil; investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, 106719. DOI: 10.1016/j.foodhyd.2021.106719
  • Seydim, A. & Sarikus, G. (2006). Antimicrobial activity of whey protein based edible films incorporated with oregano, rosemary and garlic essential oils. Food Research International, 39(5), 639-644. DOI: 10.1016/j.foodres.2006.01.013
  • Sood, A. & Saini, C. (2022). Red pomelo peel pectin based edible composite films: Effect of pectin incorporation on mechanical, structural, morphological and thermal properties of composite films. Food Hydrocolloids, 123, 107135. DOI: 10.1016/j.foodhyd.2021.107135
  • Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan, W., Parmenter, C. & Fisk, I.D. (2017). Stability of Lactobacillus rhamnosus GG incorporated in edible films: Impact of anionic biopolymers and whey protein concentrate. Food Hydrocolloids, 70, 345-355. DOI: 10.1016/j.foodhyd.2017.04.014
  • Tornuk, F., Sagdic, O., Hancer, M. & Yetim, H. (2018). Development of LLDPE based active nanocomposite films with nanoclays impregnated with volatile compounds. Food Research International, 107, 337-345. DOI: 10.1016/j.foodres.2018.02.036
  • Wang, H., Ding, F., Ma, L. & Zhang, Y. (2021). Edible films from chitosan-gelatin: Physical properties and food packaging application. Food Bioscience, 40, 100871. DOI: 10.1016/j.fbio.2020.100871
  • Yan, J., He, S., Chen, L., Chen, H. & Wang, W. (2023). Characterization, antioxidant and antibacterial activities of gelatin-chitosan edible coated films added with Cyclocarya paliurus flavonoids. International Journal of Biological Macromolecules, 253, 127664. DOI: 10.1016/j.ijbiomac.2023.127664
  • Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C. & Li, J. (2019). Bio-based films with improved water resistance derived from soy protein isolate and stearic acid via bioconjugation. Journal of cleaner production, 214, 125-131. DOI: 10.1016/j.jclepro.2018.12.277
  • Zhu, F. (2021). Polysaccharide based films and coatings for food packaging: Effect of added polyphenols. Food Chemistry, 359, 129871. DOI: 10.1016/j.foodchem.2021.129871
There are 51 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering (Other)
Journal Section Articles
Authors

Muhammed Kasapoğlu 0000-0002-2397-6984

Esra Avcı 0000-0003-0317-2118

Early Pub Date March 18, 2025
Publication Date
Submission Date December 14, 2024
Acceptance Date March 14, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Kasapoğlu, M., & Avcı, E. (2025). Novel Protein-Fiber Films from Agro-Waste: A Sustainable Approach for Antimicrobial Packaging. Journal of Anatolian Environmental and Animal Sciences, 10(2), 191-201. https://doi.org/10.35229/jaes.1600652


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS