Novel Protein-Fiber Films from Agro-Waste: A Sustainable Approach for Antimicrobial Packaging
Year 2025,
Volume: 10 Issue: 2, 191 - 201
Muhammed Kasapoğlu
,
Esra Avcı
Abstract
This research focuses on antimicrobial edible films made from protein and crude fiber obtained from cold-pressed chili pepper seed oil by-products. Films with protein and fiber were assessed for structural, mechanical, barrier, and antimicrobial properties. Mechanical tests showed P-CF Film had better flexibility, while P Film achieved the highest elongation at break (33.76%) and tensile strength (0.46 MPa). Barrier properties revealed that films containing both protein and fiber had lower water vapor permeability and significantly higher oxygen permeability than films with only protein or fiber. Antimicrobial tests indicated that both P Film and P-CF Film were effective against Staphylococcus aureus and Escherichia coli, with P Film showing superior inhibition against Salmonella typhimurium. This study highlights the potential of using protein and crude fiber from chili pepper seed oil by-products to develop antimicrobial edible films, offering a sustainable alternative to conventional packaging.
References
- Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz,
R. (2013). Comparing physico-mechanical and
thermal properties of alginate nanocomposite
films reinforced with organic and/or inorganic
nanofillers. Food Hydrocolloids, 32(2), 416-424.
DOI: 10.1016/j.foodhyd.2013.02.006
- Akman, P. K., Bozkurt, F., Dogan, K., Tornuk, F. &
Tamturk, F. (2021). Fabrication and
characterization of probiotic Lactobacillus
plantarum loaded sodium alginate edible films.
Journal of Food Measurement and
Characterization, 15, 84-92.
- Alipour, A., Rahaiee, S., Litkohi, H.R., Jamali, S.N., &
Jafari, S.M. (2023). Development and
optimization of whey protein-Lepidium
perfoliatum gum packaging films: An approach
towards antimicrobial and biodegradable films.
Industrial Crops and Products, 196, 116447.
DOI: 10.1016/j.indcrop.2023.116447
- Avci, E., Akcicek, A., Tekin Cakmak, Z.H., Kasapoglu,
M. Z., Sagdic, O. & Karasu, S. (2024). Isolation
of Protein and Fiber from Hot Pepper Seed Oil
Byproduct To Enhance Rheology, Emulsionand
Oxidative Stability of Low-Fat Salad Dressing.
ACS omega, 9(9), 10243-10252. DOI:
10.1021/acsomega.3c07410
- Brito, T., Carrajola, J., Gonçalves, E., Martelli-Tosi, M.
& Ferreira, M. (2019). Fruit and vegetable
residues flours with different granulometry range
as raw material for pectin-enriched biodegradable
film preparation. Food Research International,
121, 412-421. DOI:
10.1016/j.foodres.2019.03.058
- Capar, T.D. (2023). Characterization of sodium alginate-
based biodegradable edible film incorporated with
Vitis vinifera leaf extract: Nano-scaled by
ultrasound-assisted technology. Food Packaging
and Shelf Life, 37, 101068.
- Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra,
F., Dalla Rosa, M. & Siracusa, V. (2019).
Characterization of Composite Edible Films
Based on Pectin/Alginate/Whey Protein
Concentrate. Materials, 12(15), 2454. DOI:
10.3390/ma12152454
- Dai, Q., Huang, X., Jia, R., Fang, Y. & Qin, Z. (2022).
Development of antibacterial film based on
alginate fiberand peanut red skin extract for food
packaging. Journal of Food Engineering, 330,
111106. DOI: 10.1016/j.jfoodeng.2022.111106
- Domínguez, R., Barba, F.J., Gómez, B., Putnik, P.,
Kovačević, D.B., Pateiro, M. & Lorenzo, J.M.
(2018). Active packaging films with natural
antioxidants to be used in meat industry: A
review. Food Research International, 113, 93-
101. DOI: 10.1016/j.foodres.2018.06.073
- Duan, J., Zhou, Q., Fu, M., Cao, M., Jiang, M., Zhang,
L. & Duan, X. (2023). Research on Properties of
Edible Films Prepared from Zein, Soy Protein
Isolate, Wheat Gluten Protein by Adding
Beeswax. Food and Bioprocess Technology,
16(11), 2443-2454. DOI: 10.1007/s11947-023-
03077-2
- Fernández, C., Ausar, S.F., Badini, R.G., Castagna, L.
F., Bianco, I.D. & Beltramo, D. M. (2003). An
FTIR spectroscopy study of the interaction
between αs-casein-bound phosphoryl groups and
chitosan. International Dairy Journal, 13(11),
897-901. DOI: 10.1016/S0958-6946(03)00115-8
- Fiorentini, F., Suarato, G., Grisoli, P., Zych, A.,
Bertorelli, R. & Athanassiou, A. (2021). Plant-
based biocomposite films as potential
antibacterial patches for skin wound healing.
European Polymer Journal, 150, 110414. DOI:
10.1016/j.eurpolymj.2021.110414
- Galus, S. & Kadzińska, J. (2015). Food applications of
emulsion-based edible films and coatings. Trends
in Food Science & Technology, 45(2), 273-283.
DOI: 10.1016/j.tifs.2015.07.011
- Ghanbarzadeh, B. & Oromiehi, A. (2008).
Biodegradable biocomposite films based on whey
protein and zein: Barrier, mechanical properties
and AFM analysis. International Journal of
Biological Macromolecules, 43(2), 209-215.
DOI: 10.1016/j.ijbiomac.2008.05.006
- Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F.,
Alizadeh, S., Salehabadi, A. & Jafari, S.M.
(2022). Plant protein-based food packaging films;
recent advances in fabrication,
characterizationand applications. Trends in Food
Science & Technology, 120, 154-173. DOI:
10.1016/j.tifs.2022.01.013
- Hematizad, I., Khanjari, A., Basti, A.A., Karabagias,
I.K., Noori, N., Ghadami, F., . . &
Teimourifard, R. (2021). In vitro antibacterial
activity of gelatin-nanochitosan films
incorporated with Zataria multiflora Boiss
essential oil and its influence on microbial,
chemicaland sensorial properties of chicken
breast meat during refrigerated storage. Food
Packaging and Shelf Life, 30, 100751. DOI:
10.22059/jvr.2022.337641.3231
- Homthawornchoo, W., Han, J., Kaewprachu, P.,
Romruen, O. & Rawdkuen, S. (2022). Green tea
extract enrichment: mechanical and
physicochemical properties improvement of rice
starch-pectin composite film. Polymers, 14(13),
2696. DOI: 10.3390/polym14132696
- Huang, Y., Xiang, X., Luo, X., Li, X., Yu, X. & Li, S.
(2021). Study on the emulsification and oxidative
stability of ovalbumin-pectin-pumpkin seed oil
emulsions using ovalbumin solution prepared by
ultrasound. Ultrasonics Sonochemistry, 78,
105717. DOI: 10.1016/j.ultsonch.2021.105717
- Jeon, Y.J., Lee, H. & Min, S.C. (2023). Effects of in-
package atmospheric dielectric barrier discharge
cold plasma treatment on the antimicrobial
efficacy of whey protein isolate-based edible
films that incorporate malic acid against
Salmonella in chicken breast processed meat.
Innovative Food Science & Emerging
Technologies, 85, 103339. DOI:
10.1016/j.ifset.2023.103339
- Jiang, S., Zou, L., Hou, Y., Qian, F., Tuo, Y., Wu, X. &
Mu, G. (2020). The influence of the addition of
transglutaminase at different phase on the film
and film forming characteristics of whey protein
concentrate-carboxymethyl chitosan composite
films. Food Packaging and Shelf Life, 25, 100546.
DOI: 10.1016/j.fpsl.2020.100546
- Kamari, A. & Phillip, E. (2018). Chitosan, gelatin and
methylcellulose films incorporated with tannic
acid for food packaging. International Journal of
Biological Macromolecules, 120, 1119-1126.
DOI: 10.1016/j.ijbiomac.2018.08.169
- Kandasamy, S., Yoo, J., Yun, J., Kang, H.B., Seol, K.H.,
Kim, H.W. & Ham, J.S. (2021). Application of
whey protein-based edible films and coatings in
food industries: An updated overview. Coatings,
11(9), 1056. DOI: 10.3390/coatings11091056
- Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B.,
Sağlam, H. & Karaaslan, A. (2021). Gum
arabic/maltodextrin microencapsulation confers
peroxidation stability and antimicrobial ability to
pepper seed oil. Food Chemistry, 337, 127748.
DOI: 10.1016/j.foodchem.2020.127748
- Karydis-Messinis, A., Kyriakaki, C., Triantafyllou, E.,
Tsirka, K., Gioti, C., Gkikas, D. &
Avgeropoulos, A. (2024). Development and
Physicochemical Characterization of Edible
Chitosan–Casein Hydrogel Membranes for
Potential Use in Food Packaging. Gels, 10(4),
254. DOI: 10.3390/gels10040254
- Karydis-Messinis, A., Moschovas, D., Markou, M.,
Gkantzou, E., Vasileiadis, A., Tsirka, K. &
Murphy, C. (2023). Development,
physicochemical characterization and in vitro
evaluation of chitosan-fish gelatin-glycerol
hydrogel membranes for wound treatment
applications. Carbohydrate Polymer
Technologies and Applications, 6, 100338. DOI:
10.20944/preprints202402.0173.v1
- Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M.,
Szpunar-Krok, E. & Hortyńska, P. (2021).
Polysaccharides as Edible Films and Coatings:
Characteristics and Influence on Fruit and
Vegetable Quality-A Review. Agronomy, 11(5),
813. DOI: 10.3390/agronomy11050813
- Kopuz, S., Akman, P.K., Tekin-Cakmak, Z.H. &
Karasu, S. (2024). Development and
characterization of antimicrobial films from gums
obtained from cold-pressed flaxseed oil by-
product. Polymer Bulletin, 81(2), 1767-1787.
DOI: 10.1007/s00289-023-04793-7
- Kumar, L., Ramakanth, D., Akhila, K. & Gaikwad,
K.K. (2022). Edible films and coatings for food
packaging applications: A review. Environmental
Chemistry Letters, 1-26. DOI: 10.1007/s10311-
021-01339-z
- Kumar, S., Konwar, J., Purkayastha, M.D., Kalita, S.,
Mukherjee, A. & Dutta, J. (2023). Current
progress in valorization of food processing waste
and by-products for pectin extraction.
International Journal of Biological
Macromolecules, 239, 124332. DOI:
10.1007/s10311-021-01339-z
- Ma, Y., Xin, L., Tan, H., Fan, M., Li, J., Jia, Y. & Hu,
X. (2017). Chitosan membrane dressings
toughened by glycerol to load antibacterial drugs
for wound healing. Materials Science and
Engineering: C, 81, 522-531. DOI:
10.1016/j.msec.2017.08.052
- Mahcene, Z., Khelil, A., Hasni, S., Akman, P.K.,
Bozkurt, F., Birech, K. & Tornuk, F. (2020).
Development and characterization of sodium
alginate based active edible films incorporated
with essential oils of some medicinal plants.
International Journal of Biological
Macromolecules, 145, 124-132. DOI:
10.1016/j.ijbiomac.2019.12.093
- Mercadal, P.A., Picchio, M.L. & González, A. (2024).
Food-protecting films based on soy protein isolate
and natural deep eutectic solvents: Antimicrobial
and antioxidant properties. Food Hydrocolloids,
147, 109414. DOI:
10.1016/j.foodhyd.2023.109414
- Mohamed, S.A., El-Sakhawy, M. & El-Sakhawy,
M.A.M. (2020). Polysaccharides, protein and
lipid-based natural edible films in food packaging:
A review. Carbohydrate polymers, 238, 116178.
DOI: 10.1016/j.carbpol.2020.116178
- Nguyen, T.T., Pham, B.T.T., Le, H.N., Bach, L.G. &
Thuc, C.H. (2022). Comparative characterization
and release study of edible films of chitosan and
natural extracts. Food Packaging and Shelf Life,
32, 100830. DOI: 10.2139/ssrn.3931690
- Noori, N., Khanjari, A., Rezaeigolestani, M.,
Karabagias, I.K. & Mokhtari, S. (2021).
Development of antibacterial biocomposites
based on poly (lactic acid) with spice essential oil
(Pimpinella anisum) for food applications.
Polymers, 13(21), 3791. DOI:
10.3390/polym13213791
- Omar-Aziz, M., Khodaiyan, F., Yarmand, M.S.,
Mousavi, M., Gharaghani, M., Kennedy, J.F.
& Hosseini, S.S. (2021). Combined effects of
octenylsuccination and beeswax on pullulan
films: Water-resistant and mechanical properties.
Carbohydrate Polymers, 255, 117471. DOI:
10.1016/j.carbpol.2020.117471
- Pajak, P., Fortune, T. & Przetaczek-Roznowska, I.
(2013). Protein and Polysaccharide Based Edible
Packagings: Profile and Applications. Zywnosc-
Nauka Technologia Jakosc, 20(2), 5-18. DOI:
10.15193/zntj/2013/87/005-018
- Qin, Y., Liu, Y., Yuan, L., Yong, H. & Liu, J. (2019).
Preparation and characterization of antioxidant,
antimicrobial and pH-sensitive films based on
chitosan, silver nanoparticles and purple corn
extract. Food Hydrocolloids, 96, 102-111. DOI:
10.1016/j.foodhyd.2019.05.017
- Qin, Y., Liu, Y., Zhang, X. & Liu, J. (2020).
Development of active and intelligent packaging
by incorporating betalains from red pitaya
(Hylocereus polyrhizus) peel into
starch/polyvinyl alcohol films. Food
Hydrocolloids, 100, 105410. DOI:
10.1016/j.foodhyd.2019.105410
- Rawat, R. & Saini, C.S. (2024). A novel biopolymeric
composite edible film based on sunnhemp protein
isolate and potato starch incorporated with clove
oil: Fabrication, characterizationand amino acid
composition. International Journal of Biological
Macromolecules, 268, 131940. DOI:
10.1016/j.ijbiomac.2024.131940
- Sadeghi-Varkani, A., Emam-Djomeh, Z. & Askari, G.
(2018). Physicochemical and microstructural
properties of a novel edible film synthesized from
Balangu seed mucilage. International Journal of
Biological Macromolecules, 108, 1110-1119.
DOI: 10.1016/j.ijbiomac.2017.11.029
- Sandoval-Castro, C.J., Valdez-Morales, M., Oomah,
B.D., Gutiérrez-Dorado, R., Medina-Godoy, S.
& Espinosa-Alonso, L.G. (2017). Bioactive
compounds and antioxidant activity in scalded
Jalapeño pepper industrial byproduct (Capsicum
annuum). Journal of Food Science and
Technology, 54, 1999-2010. DOI:
10.1007/s13197-017-2636-2
- Sani, I.K., Geshlaghi, S.P., Pirsa, S. & Asdagh, A.
(2021). Composite film based on potato
starch/apple peel pectin/ZrO2
nanoparticles/microencapsulated Zataria
multiflora essential oil; investigation of
physicochemical properties and use in quail meat
packaging. Food Hydrocolloids, 117, 106719.
DOI: 10.1016/j.foodhyd.2021.106719
- Seydim, A. & Sarikus, G. (2006). Antimicrobial activity
of whey protein based edible films incorporated
with oregano, rosemary and garlic essential oils.
Food Research International, 39(5), 639-644.
DOI: 10.1016/j.foodres.2006.01.013
- Sood, A. & Saini, C. (2022). Red pomelo peel pectin based
edible composite films: Effect of pectin
incorporation on mechanical, structural,
morphological and thermal properties of
composite films. Food Hydrocolloids, 123,
107135. DOI: 10.1016/j.foodhyd.2021.107135
- Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan,
W., Parmenter, C. & Fisk, I.D. (2017). Stability
of Lactobacillus rhamnosus GG incorporated in
edible films: Impact of anionic biopolymers and
whey protein concentrate. Food Hydrocolloids,
70, 345-355. DOI:
10.1016/j.foodhyd.2017.04.014
- Tornuk, F., Sagdic, O., Hancer, M. & Yetim, H. (2018).
Development of LLDPE based active
nanocomposite films with nanoclays impregnated
with volatile compounds. Food Research
International, 107, 337-345. DOI:
10.1016/j.foodres.2018.02.036
- Wang, H., Ding, F., Ma, L. & Zhang, Y. (2021). Edible
films from chitosan-gelatin: Physical properties
and food packaging application. Food Bioscience,
40, 100871. DOI: 10.1016/j.fbio.2020.100871
- Yan, J., He, S., Chen, L., Chen, H. & Wang, W. (2023).
Characterization, antioxidant and antibacterial
activities of gelatin-chitosan edible coated films
added with Cyclocarya paliurus flavonoids.
International Journal of Biological
Macromolecules, 253, 127664. DOI:
10.1016/j.ijbiomac.2023.127664
- Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C. & Li, J.
(2019). Bio-based films with improved water
resistance derived from soy protein isolate and
stearic acid via bioconjugation. Journal of cleaner
production, 214, 125-131. DOI:
10.1016/j.jclepro.2018.12.277
- Zhu, F. (2021). Polysaccharide based films and coatings
for food packaging: Effect of added polyphenols.
Food Chemistry, 359, 129871. DOI:
10.1016/j.foodchem.2021.129871
Novel Protein-Fiber Films from Agro-Waste: A Sustainable Approach for Antimicrobial Packaging
Year 2025,
Volume: 10 Issue: 2, 191 - 201
Muhammed Kasapoğlu
,
Esra Avcı
Abstract
This research focuses on antimicrobial edible films made from protein and crude fiber obtained from cold-pressed chili pepper seed oil by-products. Films with protein and fiber were assessed for structural, mechanical, barrier, and antimicrobial properties. Mechanical tests showed P-CF Film had better flexibility, while P Film achieved the highest elongation at break (33.76%) and tensile strength (0.46 MPa). Barrier properties revealed that films containing both protein and fiber had lower water vapor permeability and significantly higher oxygen permeability than films with only protein or fiber. Antimicrobial tests indicated that both P Film and P-CF Film were effective against Staphylococcus aureus and Escherichia coli, with P Film showing superior inhibition against Salmonella typhimurium. This study highlights the potential of using protein and crude fiber from chili pepper seed oil by-products to develop antimicrobial edible films, offering a sustainable alternative to conventional packaging.
References
- Abdollahi, M., Alboofetileh, M., Rezaei, M. & Behrooz,
R. (2013). Comparing physico-mechanical and
thermal properties of alginate nanocomposite
films reinforced with organic and/or inorganic
nanofillers. Food Hydrocolloids, 32(2), 416-424.
DOI: 10.1016/j.foodhyd.2013.02.006
- Akman, P. K., Bozkurt, F., Dogan, K., Tornuk, F. &
Tamturk, F. (2021). Fabrication and
characterization of probiotic Lactobacillus
plantarum loaded sodium alginate edible films.
Journal of Food Measurement and
Characterization, 15, 84-92.
- Alipour, A., Rahaiee, S., Litkohi, H.R., Jamali, S.N., &
Jafari, S.M. (2023). Development and
optimization of whey protein-Lepidium
perfoliatum gum packaging films: An approach
towards antimicrobial and biodegradable films.
Industrial Crops and Products, 196, 116447.
DOI: 10.1016/j.indcrop.2023.116447
- Avci, E., Akcicek, A., Tekin Cakmak, Z.H., Kasapoglu,
M. Z., Sagdic, O. & Karasu, S. (2024). Isolation
of Protein and Fiber from Hot Pepper Seed Oil
Byproduct To Enhance Rheology, Emulsionand
Oxidative Stability of Low-Fat Salad Dressing.
ACS omega, 9(9), 10243-10252. DOI:
10.1021/acsomega.3c07410
- Brito, T., Carrajola, J., Gonçalves, E., Martelli-Tosi, M.
& Ferreira, M. (2019). Fruit and vegetable
residues flours with different granulometry range
as raw material for pectin-enriched biodegradable
film preparation. Food Research International,
121, 412-421. DOI:
10.1016/j.foodres.2019.03.058
- Capar, T.D. (2023). Characterization of sodium alginate-
based biodegradable edible film incorporated with
Vitis vinifera leaf extract: Nano-scaled by
ultrasound-assisted technology. Food Packaging
and Shelf Life, 37, 101068.
- Chakravartula, S.S.N., Soccio, M., Lotti, N., Balestra,
F., Dalla Rosa, M. & Siracusa, V. (2019).
Characterization of Composite Edible Films
Based on Pectin/Alginate/Whey Protein
Concentrate. Materials, 12(15), 2454. DOI:
10.3390/ma12152454
- Dai, Q., Huang, X., Jia, R., Fang, Y. & Qin, Z. (2022).
Development of antibacterial film based on
alginate fiberand peanut red skin extract for food
packaging. Journal of Food Engineering, 330,
111106. DOI: 10.1016/j.jfoodeng.2022.111106
- Domínguez, R., Barba, F.J., Gómez, B., Putnik, P.,
Kovačević, D.B., Pateiro, M. & Lorenzo, J.M.
(2018). Active packaging films with natural
antioxidants to be used in meat industry: A
review. Food Research International, 113, 93-
101. DOI: 10.1016/j.foodres.2018.06.073
- Duan, J., Zhou, Q., Fu, M., Cao, M., Jiang, M., Zhang,
L. & Duan, X. (2023). Research on Properties of
Edible Films Prepared from Zein, Soy Protein
Isolate, Wheat Gluten Protein by Adding
Beeswax. Food and Bioprocess Technology,
16(11), 2443-2454. DOI: 10.1007/s11947-023-
03077-2
- Fernández, C., Ausar, S.F., Badini, R.G., Castagna, L.
F., Bianco, I.D. & Beltramo, D. M. (2003). An
FTIR spectroscopy study of the interaction
between αs-casein-bound phosphoryl groups and
chitosan. International Dairy Journal, 13(11),
897-901. DOI: 10.1016/S0958-6946(03)00115-8
- Fiorentini, F., Suarato, G., Grisoli, P., Zych, A.,
Bertorelli, R. & Athanassiou, A. (2021). Plant-
based biocomposite films as potential
antibacterial patches for skin wound healing.
European Polymer Journal, 150, 110414. DOI:
10.1016/j.eurpolymj.2021.110414
- Galus, S. & Kadzińska, J. (2015). Food applications of
emulsion-based edible films and coatings. Trends
in Food Science & Technology, 45(2), 273-283.
DOI: 10.1016/j.tifs.2015.07.011
- Ghanbarzadeh, B. & Oromiehi, A. (2008).
Biodegradable biocomposite films based on whey
protein and zein: Barrier, mechanical properties
and AFM analysis. International Journal of
Biological Macromolecules, 43(2), 209-215.
DOI: 10.1016/j.ijbiomac.2008.05.006
- Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F.,
Alizadeh, S., Salehabadi, A. & Jafari, S.M.
(2022). Plant protein-based food packaging films;
recent advances in fabrication,
characterizationand applications. Trends in Food
Science & Technology, 120, 154-173. DOI:
10.1016/j.tifs.2022.01.013
- Hematizad, I., Khanjari, A., Basti, A.A., Karabagias,
I.K., Noori, N., Ghadami, F., . . &
Teimourifard, R. (2021). In vitro antibacterial
activity of gelatin-nanochitosan films
incorporated with Zataria multiflora Boiss
essential oil and its influence on microbial,
chemicaland sensorial properties of chicken
breast meat during refrigerated storage. Food
Packaging and Shelf Life, 30, 100751. DOI:
10.22059/jvr.2022.337641.3231
- Homthawornchoo, W., Han, J., Kaewprachu, P.,
Romruen, O. & Rawdkuen, S. (2022). Green tea
extract enrichment: mechanical and
physicochemical properties improvement of rice
starch-pectin composite film. Polymers, 14(13),
2696. DOI: 10.3390/polym14132696
- Huang, Y., Xiang, X., Luo, X., Li, X., Yu, X. & Li, S.
(2021). Study on the emulsification and oxidative
stability of ovalbumin-pectin-pumpkin seed oil
emulsions using ovalbumin solution prepared by
ultrasound. Ultrasonics Sonochemistry, 78,
105717. DOI: 10.1016/j.ultsonch.2021.105717
- Jeon, Y.J., Lee, H. & Min, S.C. (2023). Effects of in-
package atmospheric dielectric barrier discharge
cold plasma treatment on the antimicrobial
efficacy of whey protein isolate-based edible
films that incorporate malic acid against
Salmonella in chicken breast processed meat.
Innovative Food Science & Emerging
Technologies, 85, 103339. DOI:
10.1016/j.ifset.2023.103339
- Jiang, S., Zou, L., Hou, Y., Qian, F., Tuo, Y., Wu, X. &
Mu, G. (2020). The influence of the addition of
transglutaminase at different phase on the film
and film forming characteristics of whey protein
concentrate-carboxymethyl chitosan composite
films. Food Packaging and Shelf Life, 25, 100546.
DOI: 10.1016/j.fpsl.2020.100546
- Kamari, A. & Phillip, E. (2018). Chitosan, gelatin and
methylcellulose films incorporated with tannic
acid for food packaging. International Journal of
Biological Macromolecules, 120, 1119-1126.
DOI: 10.1016/j.ijbiomac.2018.08.169
- Kandasamy, S., Yoo, J., Yun, J., Kang, H.B., Seol, K.H.,
Kim, H.W. & Ham, J.S. (2021). Application of
whey protein-based edible films and coatings in
food industries: An updated overview. Coatings,
11(9), 1056. DOI: 10.3390/coatings11091056
- Karaaslan, M., Şengün, F., Cansu, Ü., Başyiğit, B.,
Sağlam, H. & Karaaslan, A. (2021). Gum
arabic/maltodextrin microencapsulation confers
peroxidation stability and antimicrobial ability to
pepper seed oil. Food Chemistry, 337, 127748.
DOI: 10.1016/j.foodchem.2020.127748
- Karydis-Messinis, A., Kyriakaki, C., Triantafyllou, E.,
Tsirka, K., Gioti, C., Gkikas, D. &
Avgeropoulos, A. (2024). Development and
Physicochemical Characterization of Edible
Chitosan–Casein Hydrogel Membranes for
Potential Use in Food Packaging. Gels, 10(4),
254. DOI: 10.3390/gels10040254
- Karydis-Messinis, A., Moschovas, D., Markou, M.,
Gkantzou, E., Vasileiadis, A., Tsirka, K. &
Murphy, C. (2023). Development,
physicochemical characterization and in vitro
evaluation of chitosan-fish gelatin-glycerol
hydrogel membranes for wound treatment
applications. Carbohydrate Polymer
Technologies and Applications, 6, 100338. DOI:
10.20944/preprints202402.0173.v1
- Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M.,
Szpunar-Krok, E. & Hortyńska, P. (2021).
Polysaccharides as Edible Films and Coatings:
Characteristics and Influence on Fruit and
Vegetable Quality-A Review. Agronomy, 11(5),
813. DOI: 10.3390/agronomy11050813
- Kopuz, S., Akman, P.K., Tekin-Cakmak, Z.H. &
Karasu, S. (2024). Development and
characterization of antimicrobial films from gums
obtained from cold-pressed flaxseed oil by-
product. Polymer Bulletin, 81(2), 1767-1787.
DOI: 10.1007/s00289-023-04793-7
- Kumar, L., Ramakanth, D., Akhila, K. & Gaikwad,
K.K. (2022). Edible films and coatings for food
packaging applications: A review. Environmental
Chemistry Letters, 1-26. DOI: 10.1007/s10311-
021-01339-z
- Kumar, S., Konwar, J., Purkayastha, M.D., Kalita, S.,
Mukherjee, A. & Dutta, J. (2023). Current
progress in valorization of food processing waste
and by-products for pectin extraction.
International Journal of Biological
Macromolecules, 239, 124332. DOI:
10.1007/s10311-021-01339-z
- Ma, Y., Xin, L., Tan, H., Fan, M., Li, J., Jia, Y. & Hu,
X. (2017). Chitosan membrane dressings
toughened by glycerol to load antibacterial drugs
for wound healing. Materials Science and
Engineering: C, 81, 522-531. DOI:
10.1016/j.msec.2017.08.052
- Mahcene, Z., Khelil, A., Hasni, S., Akman, P.K.,
Bozkurt, F., Birech, K. & Tornuk, F. (2020).
Development and characterization of sodium
alginate based active edible films incorporated
with essential oils of some medicinal plants.
International Journal of Biological
Macromolecules, 145, 124-132. DOI:
10.1016/j.ijbiomac.2019.12.093
- Mercadal, P.A., Picchio, M.L. & González, A. (2024).
Food-protecting films based on soy protein isolate
and natural deep eutectic solvents: Antimicrobial
and antioxidant properties. Food Hydrocolloids,
147, 109414. DOI:
10.1016/j.foodhyd.2023.109414
- Mohamed, S.A., El-Sakhawy, M. & El-Sakhawy,
M.A.M. (2020). Polysaccharides, protein and
lipid-based natural edible films in food packaging:
A review. Carbohydrate polymers, 238, 116178.
DOI: 10.1016/j.carbpol.2020.116178
- Nguyen, T.T., Pham, B.T.T., Le, H.N., Bach, L.G. &
Thuc, C.H. (2022). Comparative characterization
and release study of edible films of chitosan and
natural extracts. Food Packaging and Shelf Life,
32, 100830. DOI: 10.2139/ssrn.3931690
- Noori, N., Khanjari, A., Rezaeigolestani, M.,
Karabagias, I.K. & Mokhtari, S. (2021).
Development of antibacterial biocomposites
based on poly (lactic acid) with spice essential oil
(Pimpinella anisum) for food applications.
Polymers, 13(21), 3791. DOI:
10.3390/polym13213791
- Omar-Aziz, M., Khodaiyan, F., Yarmand, M.S.,
Mousavi, M., Gharaghani, M., Kennedy, J.F.
& Hosseini, S.S. (2021). Combined effects of
octenylsuccination and beeswax on pullulan
films: Water-resistant and mechanical properties.
Carbohydrate Polymers, 255, 117471. DOI:
10.1016/j.carbpol.2020.117471
- Pajak, P., Fortune, T. & Przetaczek-Roznowska, I.
(2013). Protein and Polysaccharide Based Edible
Packagings: Profile and Applications. Zywnosc-
Nauka Technologia Jakosc, 20(2), 5-18. DOI:
10.15193/zntj/2013/87/005-018
- Qin, Y., Liu, Y., Yuan, L., Yong, H. & Liu, J. (2019).
Preparation and characterization of antioxidant,
antimicrobial and pH-sensitive films based on
chitosan, silver nanoparticles and purple corn
extract. Food Hydrocolloids, 96, 102-111. DOI:
10.1016/j.foodhyd.2019.05.017
- Qin, Y., Liu, Y., Zhang, X. & Liu, J. (2020).
Development of active and intelligent packaging
by incorporating betalains from red pitaya
(Hylocereus polyrhizus) peel into
starch/polyvinyl alcohol films. Food
Hydrocolloids, 100, 105410. DOI:
10.1016/j.foodhyd.2019.105410
- Rawat, R. & Saini, C.S. (2024). A novel biopolymeric
composite edible film based on sunnhemp protein
isolate and potato starch incorporated with clove
oil: Fabrication, characterizationand amino acid
composition. International Journal of Biological
Macromolecules, 268, 131940. DOI:
10.1016/j.ijbiomac.2024.131940
- Sadeghi-Varkani, A., Emam-Djomeh, Z. & Askari, G.
(2018). Physicochemical and microstructural
properties of a novel edible film synthesized from
Balangu seed mucilage. International Journal of
Biological Macromolecules, 108, 1110-1119.
DOI: 10.1016/j.ijbiomac.2017.11.029
- Sandoval-Castro, C.J., Valdez-Morales, M., Oomah,
B.D., Gutiérrez-Dorado, R., Medina-Godoy, S.
& Espinosa-Alonso, L.G. (2017). Bioactive
compounds and antioxidant activity in scalded
Jalapeño pepper industrial byproduct (Capsicum
annuum). Journal of Food Science and
Technology, 54, 1999-2010. DOI:
10.1007/s13197-017-2636-2
- Sani, I.K., Geshlaghi, S.P., Pirsa, S. & Asdagh, A.
(2021). Composite film based on potato
starch/apple peel pectin/ZrO2
nanoparticles/microencapsulated Zataria
multiflora essential oil; investigation of
physicochemical properties and use in quail meat
packaging. Food Hydrocolloids, 117, 106719.
DOI: 10.1016/j.foodhyd.2021.106719
- Seydim, A. & Sarikus, G. (2006). Antimicrobial activity
of whey protein based edible films incorporated
with oregano, rosemary and garlic essential oils.
Food Research International, 39(5), 639-644.
DOI: 10.1016/j.foodres.2006.01.013
- Sood, A. & Saini, C. (2022). Red pomelo peel pectin based
edible composite films: Effect of pectin
incorporation on mechanical, structural,
morphological and thermal properties of
composite films. Food Hydrocolloids, 123,
107135. DOI: 10.1016/j.foodhyd.2021.107135
- Soukoulis, C., Behboudi-Jobbehdar, S., Macnaughtan,
W., Parmenter, C. & Fisk, I.D. (2017). Stability
of Lactobacillus rhamnosus GG incorporated in
edible films: Impact of anionic biopolymers and
whey protein concentrate. Food Hydrocolloids,
70, 345-355. DOI:
10.1016/j.foodhyd.2017.04.014
- Tornuk, F., Sagdic, O., Hancer, M. & Yetim, H. (2018).
Development of LLDPE based active
nanocomposite films with nanoclays impregnated
with volatile compounds. Food Research
International, 107, 337-345. DOI:
10.1016/j.foodres.2018.02.036
- Wang, H., Ding, F., Ma, L. & Zhang, Y. (2021). Edible
films from chitosan-gelatin: Physical properties
and food packaging application. Food Bioscience,
40, 100871. DOI: 10.1016/j.fbio.2020.100871
- Yan, J., He, S., Chen, L., Chen, H. & Wang, W. (2023).
Characterization, antioxidant and antibacterial
activities of gelatin-chitosan edible coated films
added with Cyclocarya paliurus flavonoids.
International Journal of Biological
Macromolecules, 253, 127664. DOI:
10.1016/j.ijbiomac.2023.127664
- Ye, Q., Han, Y., Zhang, J., Zhang, W., Xia, C. & Li, J.
(2019). Bio-based films with improved water
resistance derived from soy protein isolate and
stearic acid via bioconjugation. Journal of cleaner
production, 214, 125-131. DOI:
10.1016/j.jclepro.2018.12.277
- Zhu, F. (2021). Polysaccharide based films and coatings
for food packaging: Effect of added polyphenols.
Food Chemistry, 359, 129871. DOI:
10.1016/j.foodchem.2021.129871