Review
BibTex RIS Cite

Derleme: Sürdürülebilir Havacılık Yakıtları Üretimi ve Çevresel Etkileri

Year 2025, Volume: 10 Issue: 2, 182 - 190
https://doi.org/10.35229/jaes.1626339

Abstract

Yakıttan kaynaklanan sera gazı emisyonlarına ilişkin düzenlemelerle birlikte, havacılık sektörünün küresel karbon salınımına katkısı %2,5’ tur. En büyük katkıyı yapan ticari uçuşlardan kaynaklanan karbon salınımının azaltılmasına yönelik çalışmalar da artış göstermektedir. Sürdürülebilir havacılık yakıtı havacılık sektörünün karbon emisyonlarını azaltma hedeflerine önemli bir katkı sunmaktadır. Kullanımı onaylanan sürdürülebilir havacılık yakıtları için uçaklarda herhangi bir değişikliğe gerek duyulmaması önemli bir avantaj sağlamaktadır. Sürdürülebilir havacılık yakıtı üretiminde hammadde kaynağı olarak özellikle atıkların tercih edilmesi potansiyel çevresel etkilerin değerli enerji kaynaklarına dönüştürülmesiyle döngüsel ekonomiye teşvik ederek atıkların azaltılmasını da sağlamaktadır. Ticari uçuşlarda halihazırda sürdürülebilir havacılık yakıtı kullanımı sınırlı olsa da uzun uçuşlardaki dekarbonizasyon potansiyeli yüksektir. Bununla birlikte hammadde kaynaklarının sınırlayıcı etkisi de göz önünde bulundurulması gereken bir durumdur. Yaşam döngü analizi, bir ürünün yaşam döngüsü boyunca, hammadde elde etme, üretim ve kullanım aşamalarından atık yönetimine kadar, potansiyel çevresel etkileri ve kullanılan kaynakları değerlendirmek için bir araç olarak tanımlanır. Yaşam döngü analizinin sürdürülebilir havacılık yakıtlarına uygulanması fosil yakıtlara kıyasla sera gazı azaltım potansiyelinin somutlaştırılması bakımından önemli bir rol oynamaktadır. Bu inceleme makalesinde havacılığın karbon emisyonlarına etkisi, yenilenebilir enerji alternatifi olarak sürdürülebilir havacılık yakıtlarının (SAF) türleri, hammadde kaynakları, dönüşüm teknolojileri ve bu yakıt türlerinin yaşam döngü analizleriyle ilgili çalışmalardan bahsedilmiş aynı zamanda Türkiye’deki sürdürülebilir havacılık yakıtı talimatlarıyla birlikte SAF üretimini etkileyen diğer politikalara değinilmiştir.

References

  • Bardon, P. & Massol, O. (2025). Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050. Renewable & Sustainable Energy Reviews, 211, 115279. DOI:10.1016/j.rser.2024.115279
  • Budsberg, E., Crawford, J.T., Morgan, H., Chin, W.S., Bura, R. & Gustafson., R. (2016). Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnology for Biofuels, 9, 170. DOI: 10.1186/s13068-016-0582-2
  • Cabrera, E. & Melo De Sousa, J.M. (2022). Use of sustainable fuels in aviation-a review. Energies, 15, 2440. DOI: 10.3390/en15072440
  • Castillo-Landero, A., Dominguillo-Ramírez, D., Aburto, J., Sadhukhan, J. & Martinez Hernandez, E. (2023). Improving the economic, environmental, and safety performance of bio-jet fuel production through process intensification and integration using a modularity approach. ACS Sustainable Chemistry & Engineering. 11(2), 660-669. DOI: 10.1021/acssuschemeng.2c05491
  • Chong, C.T. & Ng, J. (2021). Chapter 6-sustainability of aviation biofuels, biojet fuel in aviation applications production. Usage & Impact of Biofuels, 287-335. DOI: 10.1016/B978-0-12- 822854-8.00005-6
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2015). Bitkisel atık yağların kontrolü yönetmeliği. https://webdosya.csb.gov.tr/db/cygm/editordosya /bitkiselatikyonetmeligi.pdf (Ziyaret tarihi: 1 Kasım 2024)
  • Efthymiou, M. & Ryley, T. (2022). Chapter 8- governance and policy developments for sustainable aviation fuels. Sustainable Alternatives for Aviation Fuels, 201-214. DOI: 10.1016/B978-0-323-85715-4.00010-0
  • Farooqui, S.A., Sinha, A.K. & Ray, A. (2022). Chapter 13- progress and trends in renewable jet fuels. Advanced Biofuel Technologies, 333-364. DOI: 10.1016/B978-0-323-88427-3.00011-8
  • Han, J., Elgowainy, A., Cai, H. & Wang, M.Q. (2013). Life-cycle analysis of bio-based aviation fuels. Bioresource Technology, 150, 447-456. DOI: 10.1016/j.biortech.2013.07.153
  • Handler, R., M., Canter, C., E., Kalnes, T., N., Lupton, F., S., Kholiqov, O., Shonnard., D. R. & Blowers, P. (2012). Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Research, 1, 83-92. DOI: 10.1016/j.algal.2012.02.003
  • IATA, (2024). International Air Transport Association. Fly net zero CO2 emissions by 2050. https://www.iata.org/en/iata- repository/pressroom/fact-sheets/fact-sheet- sustainable-aviation-fuels/ (Ziyaret Tarihi: 1 Kasım 2024)
  • Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M. & Andresen, J. M. (2020). Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy Fuels, 4, 3229. DOI: 10.1039/C9SE00788A
  • Lau, J. I.C., Wang, Y.S., Ang, T., Seo, J.C.F., Khadaroo, S.N.B.A., Chew, J.J., Lup, A.N.K. & Sunarso, J. (2024). Emerging technologies, policies and challenges toward implementing sustainable aviation fuel (SAF). Biomass & Bioenergy, 186, 107277. DOI: 10.1016/j.biombioe.2024.107277
  • Li, M., Zhao, W., Xu, Y., Zhao, Y., Yang, K. & Tao, W. (2019). Comprehensive life cycle evaluation of jet fuel from biomass gasification and fischer-tropsch synthesis based on environmental and economic performances. Industrial & Engineering Chemistry Research, 58(41), 19179-19188. DOI: 10.1021/acs.iecr.9b03468
  • Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E. & Nalianda, D. (2015). Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact onjet engine performance. Biomass & Bioenergy, 77, 26-44. DOI: 10.1016/j.biombioe.2015.03.005
  • Mannion, L.A., Bell, A., Murphy, T., Kelly, M., Ghaani, M.R. & Dooley, S. (2024). A physics constrained methodology for the life cycle assessment of sustainable aviation fuel production. Biomass & Bioenergy, 185, 107169. DOI: 10.1016/j.biombioe.2024.107169
  • Michaga, M.F.R., Michailos, S., Hughes, K.J., Ingham, D. & Pourkashanian, M. (2021). 10-Techno- economic and life cycle assessment review of sustainable aviation fuel produced via biomass gasification. Sustainable Biofuels, 269-303. DOI: 10.1016/B978-0-12-820297-5.00012-8
  • Monika, Banga, S. & Pathak, V.V. (2023). Biodiesel production from waste cooking oil:a comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10, 100209. DOI: 10.1016/j.nexus.2023.100209
  • Mousavi-Avval, S.H. & Shah, A. (2021). Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress. Applied Energy, 297, 117098. DOI: 10.1016/j.apenergy.2021.117098
  • Prussi, M., Lee U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M., D., Lonza, L. & Hileman, J. I. (2021). Corsıa: the first internationally adopted approach to calculate life-cycle ghg emissions for aviation fuels. Renewable & Sustainable Energy Reviews, 150, 111398. DOI: 10.1016/j.rser.2021.111398
  • Raab, M., Dietrich, R., Philippi, P., Gibbs, J., Oesingmann, K., Grimme, W. & Scheelhaase, J. (2024). Aviation fuels of the future − a techno- economic assessment of distribution, fueling and utilizing electricity-based LH2, LCH4 and kerosene (saf). Energy Conversion & Management: X, 23, 100611. DOI: 10.1016/j.ecmx.2024.100611
  • Ringsred, A., Dyk, S. & Saddler, J. (2021). Life-cycle analysis of drop-in biojet fuel produced from British Columbia forest residues and wood pellets via fast-pyrolysis. Applied Energy, 287, 116587. DOI: 10.1016/j.apenergy.2021.116587
  • Seber, G., Malina, R., Pearlson, M.N., Olcay, H., Hileman, J.I. & Barret, S.R.H. (2014). Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass & Bioenergy, 67, 108-118. DOI: 10.1016/j.biombioe.2014.04.024
  • Sieverding, L.H., Zhao, X., Wei, L. & Stone, J.J. (2016). Life-cycle assessment of oilseeds for biojet production using localized cold-press extraction. Journal of Environmental Quality, 45, 967-976. DOI: 10.2134/jeq2015.06.0313
  • SHGM. (2024). Sivil Havacılık Genel Müdürlüğü. Sürdürülebilir Havacılık Yakıtı Talimatı (SHT- SAF) Taslağı. https://web.shgm.gov.tr/documents/sivilhavacilik /files/mevzuat/sektorel/taslaklar/2024/SHT- SAF.pdf (Erişim tarihi: 1 Kasım 2024)
  • Sun, H., Luo, Z., Li, S., Xue, S., Zhou, Q. & Wei, T. (2021). Comparative life cycle assessment (lca) of biofuel production via corn stover: fermentation to ethanol, pyrolysis to bio-oil, and gasification to jet fuel. Biomass Conversion & Biorefinery, 13, 12809-12821. DOI: 10.1007/s13399-021-02054- z
  • Wang, B., Zhao, J.T. & Zhao, M. (2024). Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry. Carbon Capture Science & Technology, 13, 100263. DOI: 10.1016/j.ccst.2024.100263
  • Wang, X., Guo, L., Lv, J., Li, M., Huang, S., Wang, Y. & Ma, X. (2023). Process design, modeling and life cycle analysis of energy consumption and ghg emission for jet fuel production from bioethanol in China. Journal of Cleaner Production, 389, 136027. DOI: 10.1016/j.jclepro.2023.136027
  • Watson, M.J., Machado, P.G., Da Silva, A.V., Saltar, Y., Riberio, C.O., Nascimento, C.A.O. & Dowling, A.W. (2024). Sustainable aviation fuel technologies, costs, emissions, policies, and markets: a critical review. Journal of Cleaner Production, 449, 141472. DOI: 10.1016/j.jclepro.2024.141472
  • Xu, Y., Zhang, Y., Deng, X., Lee, S., Wang, K. & Li, L. (2025). Bibliometric analysis and literature review on sustainable aviation fuel (SAF): Economic and management perspective. Transport Policy, 162, 296-312. DOI: 10.1016/j.tranpol.2024.11.014
  • Yang, Q. & Chen, F. (2022). Chapter 9-life cycle assessment of biojet fuels. Sustainable Alternatives for Aviation Fuels, 215-236. DOI: 10.1016/B978-0-323-85715-4.00004-5.
  • Yousefzadeh, H., Borhan, E., Haznedaroglu, B., Z., Uzun, A. & Erkey, C. (2024). Hydrothermal liquefaction of Chlamydomonas nivalis and Nannochloropsis gaditana microalgae under different operating conditions over copper- exchanged zeolites. Biochemical Engineering Journal, 205, 109237. DOI: 10.1016/j.bej.2024.

Review: Sustainable Aviation Fuels Production and Environmental Impacts

Year 2025, Volume: 10 Issue: 2, 182 - 190
https://doi.org/10.35229/jaes.1626339

Abstract

The contribution of fuel-related greenhouse gas emissions to global carbon emissions from the aviation sector is 2.5%. The contribution of fuel-related greenhouse gas emissions to global carbon emissions from the aviation sector is 2.5%. The major emission contribution comes from commercial flights. Efforts to reduce carbon emissions are increased. Sustainable aviation fuel makes a significant contribution to the aviation sector's carbon emission reduction targets. Approved sustainable aviation fuels do not require any modifications to the aircraft, which is a significant advantage. Preferring waste as a feedstock source for sustainable aviation fuel production ensures that the potential environmental impacts of waste are converted into valuable energy resources and reduces waste by promoting a circular economy. While the use of sustainable aviation fuel is currently limited on commercial flights, the potential for decarbonization on extended flights is high. However, the limited availability of feedstocks must also be taken considered. Life cycle assessment is defined as a methodology for assessing the potential environmental impacts of a product's life cycle, including raw material procurement, utilization phases and waste management. Life cycle assessment of sustainable aviation fuels plays an important role in reducing GHG emissions compared to fossil fuels. This review paper aims to examine that aviation carbon emissions and sustainable aviation fuels as a renewable energy alternative, feedstock sources, conversion pathways and life cycle assessments of sustainable aviation fuels. In addition, sustainable aviation fuel regulations in Turkey and other policies affecting SAF production are mentioned.

References

  • Bardon, P. & Massol, O. (2025). Decarbonizing aviation with sustainable aviation fuels: Myths and realities of the roadmaps to net zero by 2050. Renewable & Sustainable Energy Reviews, 211, 115279. DOI:10.1016/j.rser.2024.115279
  • Budsberg, E., Crawford, J.T., Morgan, H., Chin, W.S., Bura, R. & Gustafson., R. (2016). Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment. Biotechnology for Biofuels, 9, 170. DOI: 10.1186/s13068-016-0582-2
  • Cabrera, E. & Melo De Sousa, J.M. (2022). Use of sustainable fuels in aviation-a review. Energies, 15, 2440. DOI: 10.3390/en15072440
  • Castillo-Landero, A., Dominguillo-Ramírez, D., Aburto, J., Sadhukhan, J. & Martinez Hernandez, E. (2023). Improving the economic, environmental, and safety performance of bio-jet fuel production through process intensification and integration using a modularity approach. ACS Sustainable Chemistry & Engineering. 11(2), 660-669. DOI: 10.1021/acssuschemeng.2c05491
  • Chong, C.T. & Ng, J. (2021). Chapter 6-sustainability of aviation biofuels, biojet fuel in aviation applications production. Usage & Impact of Biofuels, 287-335. DOI: 10.1016/B978-0-12- 822854-8.00005-6
  • T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı. (2015). Bitkisel atık yağların kontrolü yönetmeliği. https://webdosya.csb.gov.tr/db/cygm/editordosya /bitkiselatikyonetmeligi.pdf (Ziyaret tarihi: 1 Kasım 2024)
  • Efthymiou, M. & Ryley, T. (2022). Chapter 8- governance and policy developments for sustainable aviation fuels. Sustainable Alternatives for Aviation Fuels, 201-214. DOI: 10.1016/B978-0-323-85715-4.00010-0
  • Farooqui, S.A., Sinha, A.K. & Ray, A. (2022). Chapter 13- progress and trends in renewable jet fuels. Advanced Biofuel Technologies, 333-364. DOI: 10.1016/B978-0-323-88427-3.00011-8
  • Han, J., Elgowainy, A., Cai, H. & Wang, M.Q. (2013). Life-cycle analysis of bio-based aviation fuels. Bioresource Technology, 150, 447-456. DOI: 10.1016/j.biortech.2013.07.153
  • Handler, R., M., Canter, C., E., Kalnes, T., N., Lupton, F., S., Kholiqov, O., Shonnard., D. R. & Blowers, P. (2012). Evaluation of environmental impacts from microalgae cultivation in open-air raceway ponds: analysis of the prior literature and investigation of wide variance in predicted impacts. Algal Research, 1, 83-92. DOI: 10.1016/j.algal.2012.02.003
  • IATA, (2024). International Air Transport Association. Fly net zero CO2 emissions by 2050. https://www.iata.org/en/iata- repository/pressroom/fact-sheets/fact-sheet- sustainable-aviation-fuels/ (Ziyaret Tarihi: 1 Kasım 2024)
  • Kolosz, B. W., Luo, Y., Xu, B., Maroto-Valer, M. M. & Andresen, J. M. (2020). Life cycle environmental analysis of ‘drop in’ alternative aviation fuels: a review. Sustainable Energy Fuels, 4, 3229. DOI: 10.1039/C9SE00788A
  • Lau, J. I.C., Wang, Y.S., Ang, T., Seo, J.C.F., Khadaroo, S.N.B.A., Chew, J.J., Lup, A.N.K. & Sunarso, J. (2024). Emerging technologies, policies and challenges toward implementing sustainable aviation fuel (SAF). Biomass & Bioenergy, 186, 107277. DOI: 10.1016/j.biombioe.2024.107277
  • Li, M., Zhao, W., Xu, Y., Zhao, Y., Yang, K. & Tao, W. (2019). Comprehensive life cycle evaluation of jet fuel from biomass gasification and fischer-tropsch synthesis based on environmental and economic performances. Industrial & Engineering Chemistry Research, 58(41), 19179-19188. DOI: 10.1021/acs.iecr.9b03468
  • Lokesh, K., Sethi, V., Nikolaidis, T., Goodger, E. & Nalianda, D. (2015). Life cycle greenhouse gas analysis of biojet fuels with a technical investigation into their impact onjet engine performance. Biomass & Bioenergy, 77, 26-44. DOI: 10.1016/j.biombioe.2015.03.005
  • Mannion, L.A., Bell, A., Murphy, T., Kelly, M., Ghaani, M.R. & Dooley, S. (2024). A physics constrained methodology for the life cycle assessment of sustainable aviation fuel production. Biomass & Bioenergy, 185, 107169. DOI: 10.1016/j.biombioe.2024.107169
  • Michaga, M.F.R., Michailos, S., Hughes, K.J., Ingham, D. & Pourkashanian, M. (2021). 10-Techno- economic and life cycle assessment review of sustainable aviation fuel produced via biomass gasification. Sustainable Biofuels, 269-303. DOI: 10.1016/B978-0-12-820297-5.00012-8
  • Monika, Banga, S. & Pathak, V.V. (2023). Biodiesel production from waste cooking oil:a comprehensive review on the application of heterogenous catalysts. Energy Nexus, 10, 100209. DOI: 10.1016/j.nexus.2023.100209
  • Mousavi-Avval, S.H. & Shah, A. (2021). Life cycle energy and environmental impacts of hydroprocessed renewable jet fuel production from pennycress. Applied Energy, 297, 117098. DOI: 10.1016/j.apenergy.2021.117098
  • Prussi, M., Lee U., Wang, M., Malina, R., Valin, H., Taheripour, F., Velarde, C., Staples, M., D., Lonza, L. & Hileman, J. I. (2021). Corsıa: the first internationally adopted approach to calculate life-cycle ghg emissions for aviation fuels. Renewable & Sustainable Energy Reviews, 150, 111398. DOI: 10.1016/j.rser.2021.111398
  • Raab, M., Dietrich, R., Philippi, P., Gibbs, J., Oesingmann, K., Grimme, W. & Scheelhaase, J. (2024). Aviation fuels of the future − a techno- economic assessment of distribution, fueling and utilizing electricity-based LH2, LCH4 and kerosene (saf). Energy Conversion & Management: X, 23, 100611. DOI: 10.1016/j.ecmx.2024.100611
  • Ringsred, A., Dyk, S. & Saddler, J. (2021). Life-cycle analysis of drop-in biojet fuel produced from British Columbia forest residues and wood pellets via fast-pyrolysis. Applied Energy, 287, 116587. DOI: 10.1016/j.apenergy.2021.116587
  • Seber, G., Malina, R., Pearlson, M.N., Olcay, H., Hileman, J.I. & Barret, S.R.H. (2014). Environmental and economic assessment of producing hydroprocessed jet and diesel fuel from waste oils and tallow. Biomass & Bioenergy, 67, 108-118. DOI: 10.1016/j.biombioe.2014.04.024
  • Sieverding, L.H., Zhao, X., Wei, L. & Stone, J.J. (2016). Life-cycle assessment of oilseeds for biojet production using localized cold-press extraction. Journal of Environmental Quality, 45, 967-976. DOI: 10.2134/jeq2015.06.0313
  • SHGM. (2024). Sivil Havacılık Genel Müdürlüğü. Sürdürülebilir Havacılık Yakıtı Talimatı (SHT- SAF) Taslağı. https://web.shgm.gov.tr/documents/sivilhavacilik /files/mevzuat/sektorel/taslaklar/2024/SHT- SAF.pdf (Erişim tarihi: 1 Kasım 2024)
  • Sun, H., Luo, Z., Li, S., Xue, S., Zhou, Q. & Wei, T. (2021). Comparative life cycle assessment (lca) of biofuel production via corn stover: fermentation to ethanol, pyrolysis to bio-oil, and gasification to jet fuel. Biomass Conversion & Biorefinery, 13, 12809-12821. DOI: 10.1007/s13399-021-02054- z
  • Wang, B., Zhao, J.T. & Zhao, M. (2024). Sustainable aviation fuels: Key opportunities and challenges in lowering carbon emissions for aviation industry. Carbon Capture Science & Technology, 13, 100263. DOI: 10.1016/j.ccst.2024.100263
  • Wang, X., Guo, L., Lv, J., Li, M., Huang, S., Wang, Y. & Ma, X. (2023). Process design, modeling and life cycle analysis of energy consumption and ghg emission for jet fuel production from bioethanol in China. Journal of Cleaner Production, 389, 136027. DOI: 10.1016/j.jclepro.2023.136027
  • Watson, M.J., Machado, P.G., Da Silva, A.V., Saltar, Y., Riberio, C.O., Nascimento, C.A.O. & Dowling, A.W. (2024). Sustainable aviation fuel technologies, costs, emissions, policies, and markets: a critical review. Journal of Cleaner Production, 449, 141472. DOI: 10.1016/j.jclepro.2024.141472
  • Xu, Y., Zhang, Y., Deng, X., Lee, S., Wang, K. & Li, L. (2025). Bibliometric analysis and literature review on sustainable aviation fuel (SAF): Economic and management perspective. Transport Policy, 162, 296-312. DOI: 10.1016/j.tranpol.2024.11.014
  • Yang, Q. & Chen, F. (2022). Chapter 9-life cycle assessment of biojet fuels. Sustainable Alternatives for Aviation Fuels, 215-236. DOI: 10.1016/B978-0-323-85715-4.00004-5.
  • Yousefzadeh, H., Borhan, E., Haznedaroglu, B., Z., Uzun, A. & Erkey, C. (2024). Hydrothermal liquefaction of Chlamydomonas nivalis and Nannochloropsis gaditana microalgae under different operating conditions over copper- exchanged zeolites. Biochemical Engineering Journal, 205, 109237. DOI: 10.1016/j.bej.2024.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other)
Journal Section Articles
Authors

Gonca Yaşar 0000-0002-9623-5220

Burcu Onat 0000-0002-3036-2809

Early Pub Date March 16, 2025
Publication Date
Submission Date January 24, 2025
Acceptance Date February 18, 2025
Published in Issue Year 2025 Volume: 10 Issue: 2

Cite

APA Yaşar, G., & Onat, B. (2025). Derleme: Sürdürülebilir Havacılık Yakıtları Üretimi ve Çevresel Etkileri. Journal of Anatolian Environmental and Animal Sciences, 10(2), 182-190. https://doi.org/10.35229/jaes.1626339


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS