Research Article
BibTex RIS Cite

The Effect of Milling of Some Industrial Boards with CNC Machine according to Different Cutting Depths on Wood Dust Emission

Year 2025, Volume: 10 Issue: 5, 597 - 605, 30.09.2025
https://doi.org/10.35229/jaes.1730988

Abstract

Nowadays, industrial boards, whose use is constantly increasing, have gained an important place in furniture and interior furnishings. In this study, it was aimed to determine the effect of wood dust emission in milling medium density fiberboard (MDF), oriented strand board (OSB) and particle board (PB) industrial boards with CNC machine according to different plunge depths. The amounts of wood dust generated by the CNC machine according to different cutting depths (2-3-4 mm) were investigated. Wood dust emissions were analyzed by determining PM2.5 and PM10. This study shows that the plunge depth has a significant effect on PM. According to the average values of PM2.5 and PM10, the highest wood dust emission was measured as 68.90 µg/m³ and 92.83 µg/m³ in OSB at 2 mm plunge depth, respectively. The lowest wood dust emission was measured at 40.43 µg/m³ and 60.48 µg/m³ according to the average values of PM2.5 and PM10, respectively, at a depth of 3 mm for particleboard. With this study, exposure to wood dust, which is harmful to human health, will be reduced and the most appropriate depths of penetration can be suggested for MDF, OSB and particleboard, considering other cutting parameters.

References

  • Alapieti, T., Mikkola, R., Pasanen, P., & Salonen, H. (2020). The influence of wooden interior materials on indoor environment: a review. European Journal of Wood and Wood Products, 78, 617-634. DOI: 10.1007/s00107-020-01532-x
  • Al‐Shammari, M. (2021). An exploratory study of experiential learning in teaching a supply chain management course in an emerging market economy. Journal of International Education in Business, 15(2), 184-201. DOİ: 10.1108/jieb-09- 2020-0074
  • Çakıroğlu, E.O, Demirarslan, K.O., & Taşdemir, T., (2025). CNC makinesinde uygulanan 3 boyutlu işlemede bazı ağaç türlerine göre odun tozu emisyonunun karakterizasyonu. European Journal of Wood and Wood Products, 83, 59. DOI: 10.1007/s00107-025-02222-2
  • Fujimoto, K, Takano, T., & Okumura, S. (2011). Difference inmass concentration of airborne dust during circular sawing offive wood-based materials. Journal of Wood Science, 57(2), 149- 154. DOİ: 10.1007/s10086-010-1145-y
  • Holla, K., Ristvej, J., Moricova, V., & Novak, L.(2016). “Results of a survey among SEVESO establishments in the Slovak Republic. Journal of Chemical Health & Safety, 23(2), 9-17. DOİ: 10.1007/s00107-021-01764-5
  • Kamrath, B. (2023). Effectiveness of nutrient management for reducing phosphorus losses from agricultural areas., Journal of Natural Resources and Agricultural Ecosystems, 1(2), 77-88. DOİ: 10.13031/jnrae.15572
  • Kminiak, R., Kučerka, M., Kristak, L., Reh, R., Antov, P., Očkajová, A., & Pędzik, M. (2021). Granulometric characterization of wood dust emission from CNC machining of natural wood and medium density fiberboard. Forests, 12(8), 1039. DOI: 10.3390/f12081039
  • Kos, A., Beljo-Lučić, R., Šega, K., & Rapp, A.O. (2004). “Influence of woodworking machine cutting parameters on the surrounding air dustiness. European Journal of Wood and Wood Products, 62(3), 169-176. DOİ: 10.1007/s00107-004-0473-2
  • Krimpenis, A.A., Fountas, N.A., Mantziouras, T., & Vaxevanidis, N.M. (2016). Optimizing CNC wood milling operations with the use of genetic algorithms on CAM software. Wood Material Science & Engineering, 11(2), 102-115. DOİ: 10.1080/17480272.2014.961959
  • Kucerka, M., Ockajova, A., Kminiak, R., Rogozinski, T.O.M.A.S.Z., Sydor, M., Pedzik, M., & Todaro, L. (2023). Design and comparison of a suitable dust separation technique during the machining process in a CNC machining center. Annals of Warsaw University of Life SciencesSGGW. Forestry and Wood Technology, 122. DOİ: 10.5604/01.3001.0053.8673
  • Matrat, M., Radoï, L., Févotte, J., Guida, F., Cénée, S., Cyr, D. & Stücker, I. (2019). Occupational exposure to wood dust and risk of lung cancer: the ICARE study. Occupational and Environmental Medicine, 76(12), 901-907. DOİ: 10.1136/oemed-2019-105802
  • Nasir, V., & Cool, J. (2020). A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Material Science & Engineering, 15(1), 1-16 DOİ: 10.1080/17480272.2018.1465465
  • Omidianidost, A., Ghasemkhani, M., Azari, M. R., & Golbabaei, F. (2015). Assessment of occupational exposure to dust and crystalline silica in foundries. Tanaffos, 14(3), 208.
  • Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the kruskalwallis test. Applied Mechanics and Materials, 611, 115-120. DOİ: 10.4028/www.scientific.net/amm.611.115
  • Rautio, S., Hynynen, P., Welling, I., Hemmilä, P., Usenius, A., & Närhi, P. (2007). Modelling of airborne dust emissions in CNC MDF milling. DOİ: 10.1007/s00107-007-0179-3
  • Rogoziński, T., Wilkowski, J., Górski, J., Szymanowski, K., Podziewski, P., & Czarniak, P. (2017). Fine particles content in dust created in CNC milling of selected wood composites. Wood and Fiber Science, 49(4), 461-469.
  • Singer, H., Ilçe, A. C., Şenel, Y. E., & Burdurlu, E. (2024). Artificial Neural Network–based Prediction Model to Minimize Dust Emission in the Machining Process. Safety and Health at Work, 15(3), 317-326. DOI: 10.1016/j.shaw.2024.06.006
  • Tong, R., Cheng, M., Zhang, L., Liu, M., Yang, X., Li, X., & Yin, W. (2018). “The construction dustinduced occupational health risk using MonteCarlo simulation. Journal of Cleaner Production, 184, 598-608. DOİ: 10.1016/j.jclepro.2018.02.286
  • Ugulino, B., & Hernández, R.E. (2017). Effect of cutting parameters on dust emission and surface roughness during helical planing red oak wood. Wood and Fiber Science, 49(3), 323-331.
  • URL-1. Alphacam (2023). 1/Hexagon program for woodworking cad-cam-software. Access add. https://hexagon.com/products/productgroups/computer-aided-manufacturing-cad-camsoftware/alphacam
  • URL-2. PCE Instruments. (t.y.). PCE-MPC 10 Particle Measuring Instrument Technical Catalogue. Access add. https://www.pceinstruments.com/turkish/api/getartfile?_fnr=1095 665&_dsp=inline
  • Vallières, E., Pintos, J., Parent, M. E., & Siemiatycki, J. (2015). Occupational exposure to wood dust and risk of lung cancer in two population-based case– control studies in Montreal. Canada. Environmental Health, 14, 1-9. DOI: 10.1186/1476-069X-14-1.

Endüstriyel Bazı Levhaların Cnc Makinası İle Farklı Kesme Derinliklerine Göre Frezelenmesi İşleminin Ahşap Toz Emisyonununa Etkisi

Year 2025, Volume: 10 Issue: 5, 597 - 605, 30.09.2025
https://doi.org/10.35229/jaes.1730988

Abstract

Günümüzde kullanımı sürekli artan endüstriyel levhalar mobilya ve iç mekan donatılarında önemli bir yer edinmiştir. Bu çalışmada orta yoğunlukta lif levha (MDF), yönlendirilmiş yonga levha (OSB) ve yongalevha (PB) endüstriyel levhaların CNC makinası ile farklı kesme derinliklerine göre frezelenmesinde ahşap toz emisyonuna etkisinin belirlenmesi amaçlanmıştır. CNC makinasının farklı kesme derinliklerine göre (2-3-4 mm) oluşturduğu ahşap toz miktarları incelenmiştir. Ahşap tozu emisyonlarının PM2.5, PM10 belirlenerek analizleri yapılmıştır. Bu çalışma, kesme derinliğinin PM üzerinde önemli bir etkiye sahip olduğunu göstermektedir. PM2.5 ve PM10 ortalama değerlerine göre en yüksek ahşap toz emisyonu OSB’de 2 mm kesme derinliğinde sırasıyla 68.90 µg/m³ ve 92.83 µg/m³ olarak ölçülmüştür. En düşük ahşap toz emisyonu ise yongalevhada 3 mm kesme derinliğinde sırasıyla PM2.5 ve PM10 ortalama değerlerine göre 40.43 µg/m³ ve 60.48 µg/m³ değerlerinde ölçülmüştür. Bu çalışmayla birlikte insan sağlığı açısından zararlı olan ahşap tozlarına maruz kalma durumlarını azaltılarak MDF, OSB ve yongalevha için diğer kesme parametreleri de düşünülerek en uygun kesme derinlikleri önerilebilecektir.

References

  • Alapieti, T., Mikkola, R., Pasanen, P., & Salonen, H. (2020). The influence of wooden interior materials on indoor environment: a review. European Journal of Wood and Wood Products, 78, 617-634. DOI: 10.1007/s00107-020-01532-x
  • Al‐Shammari, M. (2021). An exploratory study of experiential learning in teaching a supply chain management course in an emerging market economy. Journal of International Education in Business, 15(2), 184-201. DOİ: 10.1108/jieb-09- 2020-0074
  • Çakıroğlu, E.O, Demirarslan, K.O., & Taşdemir, T., (2025). CNC makinesinde uygulanan 3 boyutlu işlemede bazı ağaç türlerine göre odun tozu emisyonunun karakterizasyonu. European Journal of Wood and Wood Products, 83, 59. DOI: 10.1007/s00107-025-02222-2
  • Fujimoto, K, Takano, T., & Okumura, S. (2011). Difference inmass concentration of airborne dust during circular sawing offive wood-based materials. Journal of Wood Science, 57(2), 149- 154. DOİ: 10.1007/s10086-010-1145-y
  • Holla, K., Ristvej, J., Moricova, V., & Novak, L.(2016). “Results of a survey among SEVESO establishments in the Slovak Republic. Journal of Chemical Health & Safety, 23(2), 9-17. DOİ: 10.1007/s00107-021-01764-5
  • Kamrath, B. (2023). Effectiveness of nutrient management for reducing phosphorus losses from agricultural areas., Journal of Natural Resources and Agricultural Ecosystems, 1(2), 77-88. DOİ: 10.13031/jnrae.15572
  • Kminiak, R., Kučerka, M., Kristak, L., Reh, R., Antov, P., Očkajová, A., & Pędzik, M. (2021). Granulometric characterization of wood dust emission from CNC machining of natural wood and medium density fiberboard. Forests, 12(8), 1039. DOI: 10.3390/f12081039
  • Kos, A., Beljo-Lučić, R., Šega, K., & Rapp, A.O. (2004). “Influence of woodworking machine cutting parameters on the surrounding air dustiness. European Journal of Wood and Wood Products, 62(3), 169-176. DOİ: 10.1007/s00107-004-0473-2
  • Krimpenis, A.A., Fountas, N.A., Mantziouras, T., & Vaxevanidis, N.M. (2016). Optimizing CNC wood milling operations with the use of genetic algorithms on CAM software. Wood Material Science & Engineering, 11(2), 102-115. DOİ: 10.1080/17480272.2014.961959
  • Kucerka, M., Ockajova, A., Kminiak, R., Rogozinski, T.O.M.A.S.Z., Sydor, M., Pedzik, M., & Todaro, L. (2023). Design and comparison of a suitable dust separation technique during the machining process in a CNC machining center. Annals of Warsaw University of Life SciencesSGGW. Forestry and Wood Technology, 122. DOİ: 10.5604/01.3001.0053.8673
  • Matrat, M., Radoï, L., Févotte, J., Guida, F., Cénée, S., Cyr, D. & Stücker, I. (2019). Occupational exposure to wood dust and risk of lung cancer: the ICARE study. Occupational and Environmental Medicine, 76(12), 901-907. DOİ: 10.1136/oemed-2019-105802
  • Nasir, V., & Cool, J. (2020). A review on wood machining: characterization, optimization, and monitoring of the sawing process. Wood Material Science & Engineering, 15(1), 1-16 DOİ: 10.1080/17480272.2018.1465465
  • Omidianidost, A., Ghasemkhani, M., Azari, M. R., & Golbabaei, F. (2015). Assessment of occupational exposure to dust and crystalline silica in foundries. Tanaffos, 14(3), 208.
  • Ostertagová, E., Ostertag, O., & Kováč, J. (2014). Methodology and application of the kruskalwallis test. Applied Mechanics and Materials, 611, 115-120. DOİ: 10.4028/www.scientific.net/amm.611.115
  • Rautio, S., Hynynen, P., Welling, I., Hemmilä, P., Usenius, A., & Närhi, P. (2007). Modelling of airborne dust emissions in CNC MDF milling. DOİ: 10.1007/s00107-007-0179-3
  • Rogoziński, T., Wilkowski, J., Górski, J., Szymanowski, K., Podziewski, P., & Czarniak, P. (2017). Fine particles content in dust created in CNC milling of selected wood composites. Wood and Fiber Science, 49(4), 461-469.
  • Singer, H., Ilçe, A. C., Şenel, Y. E., & Burdurlu, E. (2024). Artificial Neural Network–based Prediction Model to Minimize Dust Emission in the Machining Process. Safety and Health at Work, 15(3), 317-326. DOI: 10.1016/j.shaw.2024.06.006
  • Tong, R., Cheng, M., Zhang, L., Liu, M., Yang, X., Li, X., & Yin, W. (2018). “The construction dustinduced occupational health risk using MonteCarlo simulation. Journal of Cleaner Production, 184, 598-608. DOİ: 10.1016/j.jclepro.2018.02.286
  • Ugulino, B., & Hernández, R.E. (2017). Effect of cutting parameters on dust emission and surface roughness during helical planing red oak wood. Wood and Fiber Science, 49(3), 323-331.
  • URL-1. Alphacam (2023). 1/Hexagon program for woodworking cad-cam-software. Access add. https://hexagon.com/products/productgroups/computer-aided-manufacturing-cad-camsoftware/alphacam
  • URL-2. PCE Instruments. (t.y.). PCE-MPC 10 Particle Measuring Instrument Technical Catalogue. Access add. https://www.pceinstruments.com/turkish/api/getartfile?_fnr=1095 665&_dsp=inline
  • Vallières, E., Pintos, J., Parent, M. E., & Siemiatycki, J. (2015). Occupational exposure to wood dust and risk of lung cancer in two population-based case– control studies in Montreal. Canada. Environmental Health, 14, 1-9. DOI: 10.1186/1476-069X-14-1.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Forest Industry Engineering (Other)
Journal Section Articles
Authors

Evren Osman Çakıroğlu 0000-0001-5303-8967

Early Pub Date September 15, 2025
Publication Date September 30, 2025
Submission Date July 1, 2025
Acceptance Date August 5, 2025
Published in Issue Year 2025 Volume: 10 Issue: 5

Cite

APA Çakıroğlu, E. O. (2025). Endüstriyel Bazı Levhaların Cnc Makinası İle Farklı Kesme Derinliklerine Göre Frezelenmesi İşleminin Ahşap Toz Emisyonununa Etkisi. Journal of Anatolian Environmental and Animal Sciences, 10(5), 597-605. https://doi.org/10.35229/jaes.1730988


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS