Research Article
BibTex RIS Cite

Karadeniz'den Elde Edilen Barbun Balığından (Mullus barbatus) İzole Edilen Kültürlenebilir Gastrointestinal Bakterilerinin Geniş Ağır Metal Toleransı ve Yüksek Filogenetik Çeşitliliği

Year 2025, Volume: 10 Issue: 5, 729 - 739, 30.09.2025
https://doi.org/10.35229/jaes.1739996

Abstract

Bu çalışma, Karadeniz’de yaşayan barbun balığı (Mullus barbatus) örneklerinden izole edilen kültürlenebilir bağırsak bakterilerinin filogenetik çeşitliliğini ve ağır metal direnç profillerini belirlemeyi amaçlamıştır. Kültüre dayalı yöntemler kullanılarak toplamda on iki bakteri izole edilmiş ve 16S rRNA gen dizi analiziyle tanımlamaları yapılmıştır. İzole edilen bakteriler, Actinomycetota, Bacillota ve Pseudomonadota olmak üzere üç baskın bakteriyel şubeye ait bulunmuştur. İzolatlardan biri olan Z1T07, en yakın tip suşu ile karşılaştırıldığında %98,65’ten daha düşük bir dizi benzerliğine sahip olup, Luteococcus cinsine ait yeni bir tür olabileceğini düşündürmüştür. İzole edilen bakterilerin ağır metal dirençleri kadmiyum, krom, bakır, cıva, nikel ve çinko metalleri karşısında test edilmiştir. Elde edilen sonuçlara göre, suşların büyük çoğunluğu test edilen en yüksek krom ve nikel konsantrasyonlarına karşı tolerans göstermiştir. Buna karşılık, cıva ve kadmiyum varlığında hafif düzeyde inhibisyon etkileri gözlemlenmiştir. İncelenen bakteriler arasında en geniş ağır metal direnç profiline Acinetobacter sp. Z2T15 suşu sahip bulunmuştur. Bu çalışmanın sonuçları, M. barbatus gibi denizel, yerleşik bir balık türünün mikrobiyotasının önemli bir ekolojik gösterge işlevi gördüğünü ortaya koymuştur. Ayrıca, M. barbatus’un Karadeniz’de ağır metal kirliliğinin izlenmesi için etkili bir biyoindikatör organizma olarak kullanılabileceği önerilmektedir. Gelecekte yapılacak genomik çalışmaların, bu ağır metal tolerans mekanizmalarının ayrıntılı bir şekilde açıklığa kavuşturulmasını sağlayarak, bu bakterilerin biyoteknolojik potansiyelinin tam olarak belirlenmesine öncülük etmesi gerektiği vurgulanmaktadır.

Supporting Institution

Türkiye Bilimsel ve Teknolojik Araştırma Kurumu (TÜBİTAK)

Project Number

1919B012320509

References

  • Adamovsky, O., Buerger, A.N., Wormington, A.M., Ector, N., Griffitt, R.J., Bisesi, J.H., & Martyniuk, C.J. (2018). The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 37(11), 2758-2775.
  • Bachouche, S., Houma, F., Gomiero, A., & Rabah, B. (2017). Distribution and environmental risk assessment of heavy metal in surface sediments and red mullet (Mullus barbatus) from Algiers and BouIsmail Bay (Algeria). Environmental Modeling & Assessment, 22, 473-490.
  • Belov, A.A., Cheptsov, V.S., & Vorobyova, E.A. (2018). Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. AIMS Microbiology, 4(4), 685-710.
  • Beveridge, M.C.M., Sikdar, P.K., Frerichs, G.N., & Millar, S. (1991). The ingestion of bacteria in suspension by the common carp Cyprinus carpio L. Journal of Fish Biology, 39(6), 825-831.
  • Bhat, R.A., Alam, A., Jha, D.N., Kumar, V., Kumar, J., Thakur, V.R., & Das, B.K. (2024). Fate and effects of heavy metals in fishes: Antioxidant defense system, miRNA/gene expression response, and histopathological reproductive manifestations. Biological Trace Element Research, DOI: 10.1007/s12011-024-04478-w
  • Bhattacharya, A., & Gupta, A. (2013). Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 20, 6628-6637.
  • Bist, P., & Choudhary, S. (2022). Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: A review. Biological Trace Element Research, 200(12), 5328-5350.
  • Boran, M., & Altınok, I. (2010). A review of heavy metals in water, sediment and living organisms in the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10(4), 565-572.
  • Buchholz-Cleven, B.E., Rattunde, B., & Straub, K.L. (1997). Screening for genetic diversity of isolates of anaerobic Fe (II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20(2), 301-309.
  • Burgos-Aceves, M.A., Banaee, M., Vazzana, I., Betancourt-Lozano, M., González-Mille, D.J., Aliko, V., Faggio, C., & Ilizaliturri-Hernández, C.A. (2024). Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. Science of The Total Environment, 948, 174809.
  • Castro-González, M. I., & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), 263-271.
  • Chakraborty, J., & Das, S. (2014). Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environmental Science and Pollution Research, 21, 14188-14201.
  • Chalita, M., Kim, Y.O., Park, S., Oh, H.S., Cho, J.H., Moon, J., ..., & Chun, J. (2024). EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6), 006421.
  • Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., Chen, X., Yu, H., Wu, Y., Xu, K., Zheng, X., Hu, R., He, Z., & Yan, Q. (2021). Resistance and resilience of fish gut microbiota to silver nanoparticles. mSystems, 6(5), e00834-21. Chun, J., & Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 45(2), 240-245.
  • Cobbina, S.J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109-120.
  • Das, K.M., & Tripathi, S.D. (1991). Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 92, 21-32.
  • de Sousa, L.P. (2020). Mobile genetic elements in Pseudomonas stutzeri. Current Microbiology, 77(2), 179-184. Esposito, V., Andaloro, F., Bianca, D., Natalotto, A., Romeo, T., Scotti, G., & Castriota, L. (2014). Diet and prey selectivity of the red mullet, Mullus barbatus (Pisces: Mullidae), from the southern Tyrrhenian Sea: The role of the surf zone as a feeding ground. Marine Biology Research, 10(2), 167-178.
  • Feng, P., Ye, Z., Kakade, A., Virk, A. K., Li, X., & Liu, P. (2018). A review on gut remediation of selected environmental contaminants: Possible roles of probiotics and gut microbiota. Nutrients, 11(1), 22.
  • Fischer, W., Schneider, M., & Bauchot, M. L. (1987). Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. Zone de pêche 37. Volume II: Vertébrés. Rome, Italy: FAO.
  • Gosai, H.B., Sachaniya, B.K., Panseriya, H.Z., & Dave, B.P. (2018). Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecological Indicators, 93, 65-75.
  • Huang, Q., Sham, R.C., Deng, Y., Mao, Y., Wang, C., Zhang, T., & Leung, K.M. (2020). Diversity of gut microbiomes in marine fishes is shaped by host‐related factors. Molecular Ecology, 29(24), 5019-5034.
  • Işık, H., & Akkan, T. (2021). The global problem of the antibiotic and heavy metal resistance in aquatic resources, an examination of Gelevera Creek (Giresun), Turkey. Journal of Anatolian Environmental and Animal Sciences, 6(3), 382-389. DOI: 10.35229/jaes.960110
  • Jeon, J.H., Jang, K.M., Lee, J.H., Kang, L.W., & Lee, S.H. (2023). Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Science of the Total Environment, 857, 159497.
  • Jukes, T.H., & Cantor, C.R. (1969). Evolution of protein molecules. In: Munro, H. N. (ed.) Mammalian protein metabolism, Academic Press, New York, pp. 21-132.
  • Kim, M., Oh, H.S., Park, S.C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2), 346-351.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547- 1549.
  • Lauritano, C., Rizzo, C., Lo Giudice, A., & Saggiomo, M. (2020). Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms, 8(12), 1957.
  • Lombarte, A., & Aguirre, H. (1997). Quantitative differences in the chemoreceptor systems in the barbels of two species of Mullidae (Mullus surmuletus and M. barbatus) with different bottom habitats. Marine Ecology Progress Series, 150, 57-64.
  • McCarthy, C. (1997). Chromas (Version 1.45). Brisbane, Queensland: Griffith University.
  • Medina‐Félix, D., Garibay‐Valdez, E., Vargas‐Albores, F., & Martínez‐Porchas, M. (2023). Fish disease and intestinal microbiota: A close and indivisible relationship. Reviews in Aquaculture, 15(2), 820- 839.
  • Møller, A.K., Barkay, T., Hansen, M.A., Norman, A., Hansen, L.H., Sørensen, S.J., Boyd, E.S., & Kroer, N. (2014). Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiology Ecology, 87(1), 52-63.
  • Lee, L.H., Ab Mutalib, N.S., Law, J.W.F., Wong, S.H., & Letchumanan, V. (2018). Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Frontiers in Microbiology, 9, 2513.
  • Marijani, E. (2022). Prevalence and antimicrobial resistance of bacteria isolated from marine and freshwater fish in Tanzania. International Journal of Microbiology, 2022(1), 4652326.
  • Jalal, K.C.A., Akbar John, B., Nurul Lyana, M.S., Faizul, H.N., Noor Isma Yanti, M., Irwandi, J., & Bulbul, M. (2017). Comparative study on spoilage and pathogenic bacteria in selected commercial marine and freshwater fishes. International Food Research Journal, 24, S298- S304.
  • Mondal, S., Roy, T., & Ray, A.K. (2010). Characterization and identification of enzyme‐ producing bacteria isolated from the digestive tract of bata, Labeo bata. Journal of the World Aquaculture Society, 41(3), 369-377.
  • Mousa, W.K., Abu-Izneid, T., & Salah-Tantawy, A. (2024). High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change. Frontiers in Plant Science, 15, 1294173.
  • Nil, S., & Abi-Ayad, S.M.E.A. (2024). Biodegradation of used engine oil by lead-resistant bacteria Acinetobacter sp. HAR20 newly isolated from harbour seawater (Oran, Algeria). Environmental Technology, 45(27), 5912-5927.
  • Noel, H.R., Petrey, J.R., & Palmer, L.D. (2022). Mobile genetic elements in Acinetobacter antibiotic‐ resistance acquisition and dissemination. Annals of the New York Academy of Sciences, 1518(1), 166-182.
  • Oros, A. (2025). Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. Journal of Xenobiotics, 15(2), 59.
  • Patel, S., & Gupta, R.S. (2020). A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 70(1), 406-438.
  • Pitacco, V., Orlando-Bonaca, M., & Avio, C.G. (2022). Plastic impact on marine benthic organisms and food webs. In Plastic pollution and marine conservation (pp. 95-151). Academic Press.
  • Poretsky, R., Rodriguez-R, L.M., Luo, C., Tsementzi, D., & Konstantinidis, K.T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLOS ONE, 9(4), e93827.
  • Raffa, A. (2021). Mullus barbatus L., 1758 e Mullus surmuletus L., 1758 come bioindicatori di contaminazione in ambiente marino: analisi di biomarcatori di esposizione e di effetto (Doctoral dissertation, Università degli Studi di Torino, Italy).
  • Rahman, Z., & Singh, V.P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 419.
  • Riley, T.V., & Taylor, M.L. (1989). A note on susceptibility of Branhamella catarrhalis to heavy metals. Journal of Applied Bacteriology, 67(2), 185-189.
  • Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., & Mele, M.C. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11(10), 2393.
  • Romero, J., Ringø, E., & Merrifield, D.L. (2014). The gut microbiota of fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics (pp. 75- 100). Wiley-Blackwell.
  • Santos, R.A., Oliva-Teles, A., Pousão-Ferreira, P., Jerusik, R., Saavedra, M.J., Enes, P., & Serra, C.R. (2021). Isolation and characterization of fish-gut Bacillus spp. as source of natural antimicrobial compounds to fight aquaculture bacterial diseases. Marine Biotechnology, 23, 276-293.
  • Saticioglu, I. B., Altun, S., & Duman, M. (2020). Phenotypic, phylogenetic characterization and antimicrobial susceptibility determination of Chryseobacterium piscicola isolates recovered from diseased rainbow trout. Journal of Anatolian Environmental and Animal Sciences, 5(4), 624- 629. DOI: 10.35229/jaes.808537
  • Saygin, S. (2025). Differentiation of Mullus barbatus and Mullus surmuletus (Perciformes, Mullidae) from Turkish waters of the Mediterranean Sea using otolith shape analyses. Turkish Journal of Zoology, 49(1), 25-35.
  • Sehnal, L., Brammer-Robbins, E., Wormington, A.M., Blaha, L., Bisesi, J., Larkin, I., Martyniuk, C.J., Simonin, M., & Adamovsky, O. (2021). Microbiome composition and function in aquatic vertebrates: Small organisms making big impacts on aquatic animal health. Frontiers in Microbiology, 12, 567408.
  • Sevim, P., Ozer, S., & Rad, F. (2015). First isolation of Mycobacterium spp. in Mullus spp. in Turkey. Iranian Journal of Veterinary Research, 16(2), 144-149.
  • Shah, S.B. (2021). Heavy metals in the marine environment-An overview. In Heavy metals in Scleractinian corals (pp. 1–26). Springer.
  • Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A.J., Roy, S., & Ringø, E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331-379.
  • Song, C., Wen, H., Liu, G., Ma, X., Lv, G., Wu, N., Chen, J., Xue, M., Li, H., & Xu, P. (2022). Gut microbes reveal Pseudomonas mediates ingestion preference via protein utilization and cellular homeostasis under feed domestication in freshwater drum, Aplodinotus grunniens. Frontiers in Microbiology, 13, 861705.
  • Spilsbury, F., Foysal, M.J., Tay, A., & Gagnon, M.M. (2022). Gut microbiome as a potential biomarker in fish: Dietary exposure to petroleum hydrocarbons and metals, metabolic functions and cytokine expression in juvenile Lates calcarifer. Frontiers in Microbiology, 13, 827371.
  • Tay, D.D., Choo, M.Y., Musa, S.M., & Ahmad, H.F. (2023). Whole genome sequencing of Priestia megaterium isolated from the gut of sea cucumber (Holothuria leucospilota). Materials Today: Proceedings, 75, 123-126.
  • Trust, T.J., & Sparrow, R.A.H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219-1225.
  • Ture, M., Kilic, M.B., & Altinok, I. (2021). Relationship between heavy metal accumulation in fish muscle and heavy metal resistance genes in bacteria isolated from fish. Biological Trace Element Research, 199(4), 1595-1603.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703.
  • Yan, W., Hamid, N., Deng, S., Jia, P.P., & Pei, D.S. (2020). Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). Journal of Hazardous Materials, 397, 122795.
  • Yang, J., Feng, Y., Zhan, H., Liu, J., Yang, F., Zhang, K., Zhang, L., & Chen, S. (2018).Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of D-phenothrin. Frontiers in Microbiology, 9, 1003.
  • Yildiz, T., & Karakulak, F.S. (2016). An investigation of age, growth and mortality of the red mullet Mullus barbatus Linnaeus, 1758 in the western Black Sea. Cahiers de Biologie Marine, 57(4), 415-425.
  • Yuan, Q., Wang, P., Wang, X., Hu, B., Liu, S., & Ma, J. (2022). Abundant microbial communities act as more sensitive bio-indicators for ecological evaluation of copper mine contamination than rare taxa in river sediments. Environmental Pollution, 305, 119310.
  • Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B.A., & Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927.
  • Zhang, D., Zhu, Z., Li, Y., Li, X., Guan, Z., & Zheng, J. (2021). Comparative genomics of Exiguobacterium reveals what makes a cosmopolitan bacterium. mSystems, 6(4), e00257- 21.
  • Zhao, Y., Wei, H.M., Yuan, J.L., Xu, L., & Sun, J.Q. (2023). A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Frontiers in Microbiology, 14, 1177951.
  • Zlateva, I., Raykov, V., Alexandrova, A., Ivanova, P., Chipev, N., Stefanova, K., & Petrov, K. (2023). Effects of anthropogenic and environmental stressors on the current status of red mullet (Mullus barbatus L., 1758) populations inhabiting the Bulgarian Black Sea waters. Nature Conservation, 54, 55-79.

Culturable Gut-Associated Bacteria of Red Mullet (Mullus barbatus) from the Black Sea Show Broad Heavy-Metal Tolerance and High Phylogenetic Diversity

Year 2025, Volume: 10 Issue: 5, 729 - 739, 30.09.2025
https://doi.org/10.35229/jaes.1739996

Abstract

The present study sought to determine the phylogenetic diversity and heavy metal resistance profile of culturable gut-associated bacteria isolated from Black Sea red mullet (Mullus barbatus) specimens. Twelve bacteria were isolated using culture-dependent methods and characterized by 16S rRNA gene sequencing. The three dominant bacterial phyla represented were Actinomycetota, Bacillota, and Pseudomonadota. One of the isolates, Z1T07, was less than 98.65% identical at the sequence level to the closest type strain, which suggests the possibility of a new species within the genus Luteococcus. The heavy metal resistance of the bacteria was tested against cadmium, chromium, copper, mercury, nickel, and zinc. The great majority of the strains were tolerant of the highest level of chromium and nickel tested and had slightly inhibitory effects of mercury and cadmium. Of the strains examined, the widest range of resistance was shown by the Acinetobacter sp. Z2T15. The results of this work demonstrate that the marine sedentary fish microbiota of a species such as M. barbatus serves as a significant ecological indicator. In addition, a recommendation of M. barbatus as a good sentinel for the monitoring of heavy metal contamination within the Black Sea is presented. Future genomic work should aim at elucidating the resistance mechanisms as a preface to the full determination of the biotechnological potential of these heavy metal-tolerant bacteria.

Supporting Institution

The Scientific and Technological Research Council of Türkiye (TÜBİTAK)

Project Number

1919B012320509

References

  • Adamovsky, O., Buerger, A.N., Wormington, A.M., Ector, N., Griffitt, R.J., Bisesi, J.H., & Martyniuk, C.J. (2018). The gut microbiome and aquatic toxicology: An emerging concept for environmental health. Environmental Toxicology and Chemistry, 37(11), 2758-2775.
  • Bachouche, S., Houma, F., Gomiero, A., & Rabah, B. (2017). Distribution and environmental risk assessment of heavy metal in surface sediments and red mullet (Mullus barbatus) from Algiers and BouIsmail Bay (Algeria). Environmental Modeling & Assessment, 22, 473-490.
  • Belov, A.A., Cheptsov, V.S., & Vorobyova, E.A. (2018). Soil bacterial communities of Sahara and Gibson deserts: Physiological and taxonomical characteristics. AIMS Microbiology, 4(4), 685-710.
  • Beveridge, M.C.M., Sikdar, P.K., Frerichs, G.N., & Millar, S. (1991). The ingestion of bacteria in suspension by the common carp Cyprinus carpio L. Journal of Fish Biology, 39(6), 825-831.
  • Bhat, R.A., Alam, A., Jha, D.N., Kumar, V., Kumar, J., Thakur, V.R., & Das, B.K. (2024). Fate and effects of heavy metals in fishes: Antioxidant defense system, miRNA/gene expression response, and histopathological reproductive manifestations. Biological Trace Element Research, DOI: 10.1007/s12011-024-04478-w
  • Bhattacharya, A., & Gupta, A. (2013). Evaluation of Acinetobacter sp. B9 for Cr (VI) resistance and detoxification with potential application in bioremediation of heavy-metals-rich industrial wastewater. Environmental Science and Pollution Research, 20, 6628-6637.
  • Bist, P., & Choudhary, S. (2022). Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: A review. Biological Trace Element Research, 200(12), 5328-5350.
  • Boran, M., & Altınok, I. (2010). A review of heavy metals in water, sediment and living organisms in the Black Sea. Turkish Journal of Fisheries and Aquatic Sciences, 10(4), 565-572.
  • Buchholz-Cleven, B.E., Rattunde, B., & Straub, K.L. (1997). Screening for genetic diversity of isolates of anaerobic Fe (II)-oxidizing bacteria using DGGE and whole-cell hybridization. Systematic and Applied Microbiology, 20(2), 301-309.
  • Burgos-Aceves, M.A., Banaee, M., Vazzana, I., Betancourt-Lozano, M., González-Mille, D.J., Aliko, V., Faggio, C., & Ilizaliturri-Hernández, C.A. (2024). Effect of emerging pollutants on the gut microbiota of freshwater animals: Focusing on microplastics and pesticides. Science of The Total Environment, 948, 174809.
  • Castro-González, M. I., & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environmental Toxicology and Pharmacology, 26(3), 263-271.
  • Chakraborty, J., & Das, S. (2014). Characterization and cadmium-resistant gene expression of biofilm-forming marine bacterium Pseudomonas aeruginosa JP-11. Environmental Science and Pollution Research, 21, 14188-14201.
  • Chalita, M., Kim, Y.O., Park, S., Oh, H.S., Cho, J.H., Moon, J., ..., & Chun, J. (2024). EzBioCloud: a genome-driven database and platform for microbiome identification and discovery. International Journal of Systematic and Evolutionary Microbiology, 74(6), 006421.
  • Chen, P., Huang, J., Rao, L., Zhu, W., Yu, Y., Xiao, F., Chen, X., Yu, H., Wu, Y., Xu, K., Zheng, X., Hu, R., He, Z., & Yan, Q. (2021). Resistance and resilience of fish gut microbiota to silver nanoparticles. mSystems, 6(5), e00834-21. Chun, J., & Goodfellow, M. (1995). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. International Journal of Systematic and Evolutionary Microbiology, 45(2), 240-245.
  • Cobbina, S.J., Chen, Y., Zhou, Z., Wu, X., Zhao, T., Zhang, Z., Feng, W., Wang, W., Li, Q., Wu, X., & Yang, L. (2015). Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. Journal of Hazardous Materials, 294, 109-120.
  • Das, K.M., & Tripathi, S.D. (1991). Studies on the digestive enzymes of grass carp, Ctenopharyngodon idella (Val.). Aquaculture, 92, 21-32.
  • de Sousa, L.P. (2020). Mobile genetic elements in Pseudomonas stutzeri. Current Microbiology, 77(2), 179-184. Esposito, V., Andaloro, F., Bianca, D., Natalotto, A., Romeo, T., Scotti, G., & Castriota, L. (2014). Diet and prey selectivity of the red mullet, Mullus barbatus (Pisces: Mullidae), from the southern Tyrrhenian Sea: The role of the surf zone as a feeding ground. Marine Biology Research, 10(2), 167-178.
  • Feng, P., Ye, Z., Kakade, A., Virk, A. K., Li, X., & Liu, P. (2018). A review on gut remediation of selected environmental contaminants: Possible roles of probiotics and gut microbiota. Nutrients, 11(1), 22.
  • Fischer, W., Schneider, M., & Bauchot, M. L. (1987). Fiches FAO d’identification des espèces pour les besoins de la pêche. Méditerranée et Mer Noire. Zone de pêche 37. Volume II: Vertébrés. Rome, Italy: FAO.
  • Gosai, H.B., Sachaniya, B.K., Panseriya, H.Z., & Dave, B.P. (2018). Functional and phylogenetic diversity assessment of microbial communities at Gulf of Kachchh, India: An ecological footprint. Ecological Indicators, 93, 65-75.
  • Huang, Q., Sham, R.C., Deng, Y., Mao, Y., Wang, C., Zhang, T., & Leung, K.M. (2020). Diversity of gut microbiomes in marine fishes is shaped by host‐related factors. Molecular Ecology, 29(24), 5019-5034.
  • Işık, H., & Akkan, T. (2021). The global problem of the antibiotic and heavy metal resistance in aquatic resources, an examination of Gelevera Creek (Giresun), Turkey. Journal of Anatolian Environmental and Animal Sciences, 6(3), 382-389. DOI: 10.35229/jaes.960110
  • Jeon, J.H., Jang, K.M., Lee, J.H., Kang, L.W., & Lee, S.H. (2023). Transmission of antibiotic resistance genes through mobile genetic elements in Acinetobacter baumannii and gene-transfer prevention. Science of the Total Environment, 857, 159497.
  • Jukes, T.H., & Cantor, C.R. (1969). Evolution of protein molecules. In: Munro, H. N. (ed.) Mammalian protein metabolism, Academic Press, New York, pp. 21-132.
  • Kim, M., Oh, H.S., Park, S.C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64(Pt_2), 346-351.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547- 1549.
  • Lauritano, C., Rizzo, C., Lo Giudice, A., & Saggiomo, M. (2020). Physiological and molecular responses to main environmental stressors of microalgae and bacteria in polar marine environments. Microorganisms, 8(12), 1957.
  • Lombarte, A., & Aguirre, H. (1997). Quantitative differences in the chemoreceptor systems in the barbels of two species of Mullidae (Mullus surmuletus and M. barbatus) with different bottom habitats. Marine Ecology Progress Series, 150, 57-64.
  • McCarthy, C. (1997). Chromas (Version 1.45). Brisbane, Queensland: Griffith University.
  • Medina‐Félix, D., Garibay‐Valdez, E., Vargas‐Albores, F., & Martínez‐Porchas, M. (2023). Fish disease and intestinal microbiota: A close and indivisible relationship. Reviews in Aquaculture, 15(2), 820- 839.
  • Møller, A.K., Barkay, T., Hansen, M.A., Norman, A., Hansen, L.H., Sørensen, S.J., Boyd, E.S., & Kroer, N. (2014). Mercuric reductase genes (merA) and mercury resistance plasmids in High Arctic snow, freshwater and sea-ice brine. FEMS Microbiology Ecology, 87(1), 52-63.
  • Lee, L.H., Ab Mutalib, N.S., Law, J.W.F., Wong, S.H., & Letchumanan, V. (2018). Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Frontiers in Microbiology, 9, 2513.
  • Marijani, E. (2022). Prevalence and antimicrobial resistance of bacteria isolated from marine and freshwater fish in Tanzania. International Journal of Microbiology, 2022(1), 4652326.
  • Jalal, K.C.A., Akbar John, B., Nurul Lyana, M.S., Faizul, H.N., Noor Isma Yanti, M., Irwandi, J., & Bulbul, M. (2017). Comparative study on spoilage and pathogenic bacteria in selected commercial marine and freshwater fishes. International Food Research Journal, 24, S298- S304.
  • Mondal, S., Roy, T., & Ray, A.K. (2010). Characterization and identification of enzyme‐ producing bacteria isolated from the digestive tract of bata, Labeo bata. Journal of the World Aquaculture Society, 41(3), 369-377.
  • Mousa, W.K., Abu-Izneid, T., & Salah-Tantawy, A. (2024). High-throughput sequencing reveals the structure and metabolic resilience of desert microbiome confronting climate change. Frontiers in Plant Science, 15, 1294173.
  • Nil, S., & Abi-Ayad, S.M.E.A. (2024). Biodegradation of used engine oil by lead-resistant bacteria Acinetobacter sp. HAR20 newly isolated from harbour seawater (Oran, Algeria). Environmental Technology, 45(27), 5912-5927.
  • Noel, H.R., Petrey, J.R., & Palmer, L.D. (2022). Mobile genetic elements in Acinetobacter antibiotic‐ resistance acquisition and dissemination. Annals of the New York Academy of Sciences, 1518(1), 166-182.
  • Oros, A. (2025). Bioaccumulation and trophic transfer of heavy metals in marine fish: Ecological and ecosystem-level impacts. Journal of Xenobiotics, 15(2), 59.
  • Patel, S., & Gupta, R.S. (2020). A phylogenomic and comparative genomic framework for resolving the polyphyly of the genus Bacillus: Proposal for six new genera of Bacillus species, Peribacillus gen. nov., Cytobacillus gen. nov., Mesobacillus gen. nov., Neobacillus gen. nov., Metabacillus gen. nov. and Alkalihalobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology, 70(1), 406-438.
  • Pitacco, V., Orlando-Bonaca, M., & Avio, C.G. (2022). Plastic impact on marine benthic organisms and food webs. In Plastic pollution and marine conservation (pp. 95-151). Academic Press.
  • Poretsky, R., Rodriguez-R, L.M., Luo, C., Tsementzi, D., & Konstantinidis, K.T. (2014). Strengths and limitations of 16S rRNA gene amplicon sequencing in revealing temporal microbial community dynamics. PLOS ONE, 9(4), e93827.
  • Raffa, A. (2021). Mullus barbatus L., 1758 e Mullus surmuletus L., 1758 come bioindicatori di contaminazione in ambiente marino: analisi di biomarcatori di esposizione e di effetto (Doctoral dissertation, Università degli Studi di Torino, Italy).
  • Rahman, Z., & Singh, V.P. (2019). The relative impact of toxic heavy metals (THMs) (arsenic (As), cadmium (Cd), chromium (Cr)(VI), mercury (Hg), and lead (Pb)) on the total environment: An overview. Environmental Monitoring and Assessment, 191, 419.
  • Riley, T.V., & Taylor, M.L. (1989). A note on susceptibility of Branhamella catarrhalis to heavy metals. Journal of Applied Bacteriology, 67(2), 185-189.
  • Rinninella, E., Cintoni, M., Raoul, P., Lopetuso, L.R., Scaldaferri, F., Pulcini, G., Miggiano, G.A.D., Gasbarrini, A., & Mele, M.C. (2019). Food components and dietary habits: Keys for a healthy gut microbiota composition. Nutrients, 11(10), 2393.
  • Romero, J., Ringø, E., & Merrifield, D.L. (2014). The gut microbiota of fish. In Aquaculture Nutrition: Gut Health, Probiotics and Prebiotics (pp. 75- 100). Wiley-Blackwell.
  • Santos, R.A., Oliva-Teles, A., Pousão-Ferreira, P., Jerusik, R., Saavedra, M.J., Enes, P., & Serra, C.R. (2021). Isolation and characterization of fish-gut Bacillus spp. as source of natural antimicrobial compounds to fight aquaculture bacterial diseases. Marine Biotechnology, 23, 276-293.
  • Saticioglu, I. B., Altun, S., & Duman, M. (2020). Phenotypic, phylogenetic characterization and antimicrobial susceptibility determination of Chryseobacterium piscicola isolates recovered from diseased rainbow trout. Journal of Anatolian Environmental and Animal Sciences, 5(4), 624- 629. DOI: 10.35229/jaes.808537
  • Saygin, S. (2025). Differentiation of Mullus barbatus and Mullus surmuletus (Perciformes, Mullidae) from Turkish waters of the Mediterranean Sea using otolith shape analyses. Turkish Journal of Zoology, 49(1), 25-35.
  • Sehnal, L., Brammer-Robbins, E., Wormington, A.M., Blaha, L., Bisesi, J., Larkin, I., Martyniuk, C.J., Simonin, M., & Adamovsky, O. (2021). Microbiome composition and function in aquatic vertebrates: Small organisms making big impacts on aquatic animal health. Frontiers in Microbiology, 12, 567408.
  • Sevim, P., Ozer, S., & Rad, F. (2015). First isolation of Mycobacterium spp. in Mullus spp. in Turkey. Iranian Journal of Veterinary Research, 16(2), 144-149.
  • Shah, S.B. (2021). Heavy metals in the marine environment-An overview. In Heavy metals in Scleractinian corals (pp. 1–26). Springer.
  • Soltani, M., Ghosh, K., Hoseinifar, S. H., Kumar, V., Lymbery, A.J., Roy, S., & Ringø, E. (2019). Genus Bacillus, promising probiotics in aquaculture: Aquatic animal origin, bio-active components, bioremediation and efficacy in fish and shellfish. Reviews in Fisheries Science & Aquaculture, 27(3), 331-379.
  • Song, C., Wen, H., Liu, G., Ma, X., Lv, G., Wu, N., Chen, J., Xue, M., Li, H., & Xu, P. (2022). Gut microbes reveal Pseudomonas mediates ingestion preference via protein utilization and cellular homeostasis under feed domestication in freshwater drum, Aplodinotus grunniens. Frontiers in Microbiology, 13, 861705.
  • Spilsbury, F., Foysal, M.J., Tay, A., & Gagnon, M.M. (2022). Gut microbiome as a potential biomarker in fish: Dietary exposure to petroleum hydrocarbons and metals, metabolic functions and cytokine expression in juvenile Lates calcarifer. Frontiers in Microbiology, 13, 827371.
  • Tay, D.D., Choo, M.Y., Musa, S.M., & Ahmad, H.F. (2023). Whole genome sequencing of Priestia megaterium isolated from the gut of sea cucumber (Holothuria leucospilota). Materials Today: Proceedings, 75, 123-126.
  • Trust, T.J., & Sparrow, R.A.H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219-1225.
  • Ture, M., Kilic, M.B., & Altinok, I. (2021). Relationship between heavy metal accumulation in fish muscle and heavy metal resistance genes in bacteria isolated from fish. Biological Trace Element Research, 199(4), 1595-1603.
  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., & Lane, D. J. (1991). 16S ribosomal DNA amplification for phylogenetic study. Journal of Bacteriology, 173(2), 697-703.
  • Yan, W., Hamid, N., Deng, S., Jia, P.P., & Pei, D.S. (2020). Individual and combined toxicogenetic effects of microplastics and heavy metals (Cd, Pb, and Zn) perturb gut microbiota homeostasis and gonadal development in marine medaka (Oryzias melastigma). Journal of Hazardous Materials, 397, 122795.
  • Yang, J., Feng, Y., Zhan, H., Liu, J., Yang, F., Zhang, K., Zhang, L., & Chen, S. (2018).Characterization of a pyrethroid-degrading Pseudomonas fulva strain P31 and biochemical degradation pathway of D-phenothrin. Frontiers in Microbiology, 9, 1003.
  • Yildiz, T., & Karakulak, F.S. (2016). An investigation of age, growth and mortality of the red mullet Mullus barbatus Linnaeus, 1758 in the western Black Sea. Cahiers de Biologie Marine, 57(4), 415-425.
  • Yuan, Q., Wang, P., Wang, X., Hu, B., Liu, S., & Ma, J. (2022). Abundant microbial communities act as more sensitive bio-indicators for ecological evaluation of copper mine contamination than rare taxa in river sediments. Environmental Pollution, 305, 119310.
  • Yukgehnaish, K., Kumar, P., Sivachandran, P., Marimuthu, K., Arshad, A., Paray, B.A., & Arockiaraj, J. (2020). Gut microbiota metagenomics in aquaculture: Factors influencing gut microbiome and its physiological role in fish. Reviews in Aquaculture, 12(3), 1903-1927.
  • Zhang, D., Zhu, Z., Li, Y., Li, X., Guan, Z., & Zheng, J. (2021). Comparative genomics of Exiguobacterium reveals what makes a cosmopolitan bacterium. mSystems, 6(4), e00257- 21.
  • Zhao, Y., Wei, H.M., Yuan, J.L., Xu, L., & Sun, J.Q. (2023). A comprehensive genomic analysis provides insights on the high environmental adaptability of Acinetobacter strains. Frontiers in Microbiology, 14, 1177951.
  • Zlateva, I., Raykov, V., Alexandrova, A., Ivanova, P., Chipev, N., Stefanova, K., & Petrov, K. (2023). Effects of anthropogenic and environmental stressors on the current status of red mullet (Mullus barbatus L., 1758) populations inhabiting the Bulgarian Black Sea waters. Nature Conservation, 54, 55-79.
There are 68 citations in total.

Details

Primary Language English
Subjects Ecology (Other)
Journal Section Articles
Authors

Zeynep Baycelebi 0009-0000-0491-3489

Semra Saygın 0000-0002-3249-5074

Hayrettin Saygin 0000-0002-8642-5872

Project Number 1919B012320509
Early Pub Date September 30, 2025
Publication Date September 30, 2025
Submission Date July 11, 2025
Acceptance Date September 12, 2025
Published in Issue Year 2025 Volume: 10 Issue: 5

Cite

APA Baycelebi, Z., Saygın, S., & Saygin, H. (2025). Culturable Gut-Associated Bacteria of Red Mullet (Mullus barbatus) from the Black Sea Show Broad Heavy-Metal Tolerance and High Phylogenetic Diversity. Journal of Anatolian Environmental and Animal Sciences, 10(5), 729-739. https://doi.org/10.35229/jaes.1739996


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS