Research Article
BibTex RIS Cite

Acidithiobacillus ferrooxidans Kullanılarak Gerçekleştirilen Kalkopirit Cevherinin Biyoliç İşlemine Deniz Suyu İlavesinin Etkisi

Year 2025, Volume: 10 Issue: 6, 760 - 767
https://doi.org/10.35229/jaes.1708136

Abstract

Bu çalışmada, Kastamonu Hanönü bakır cevheri üzerinde, deniz suyu varlığında Acidithiobacillus ferrooxidans bakterisi kullanılarak biyoliç deneyleri gerçekleştirilmiştir. Numunenin karakterizasyonu XRD, XRF ve SEM analiz yöntemleri ile yapılmıştır. Biyoliç deneyleri sırasında, 360 saatlik test süresi boyunca bakteri konsantrasyonu, pH, bakır ve demir konsantrasyonları izlenmiştir. Sonuçlar, uygun bir deniz suyu oranının bakır geri kazanımını önemli ölçüde artırdığını ve katı-sıvı oranının bu süreçte kritik bir rol oynadığını göstermiştir. %30,00 deniz suyu varlığında ve %7 katı oranında, maksimum %81,43 bakır geri kazanımı elde edilirken, deniz suyu olmadan bu oran yalnızca %71,02 olarak gerçekleşmiştir. Bu çalışma, deniz suyunun hem çevresel hem de ekonomik faydalar sunan alternatif bir çözücü ortamı olarak potansiyelini vurgulamaktadır. Ayrıca, biyoliç yönteminin çevre dostu ve verimli bir süreç olarak uygulanabilirliği vurgulanmaktadır.

Ethical Statement

Bu çalışma, etik kurul onayı gerektirmeyen bir çalışma kapsamında yürütülmüştür.

Supporting Institution

Yazar araştırma için herhangi bir fon desteği almamıştır

Thanks

Yazar, makalenin değerlendirilmesi ve incelenmesi sürecinde editör ve hakemlerin değerli yorumları ile yapıcı önerileri için teşekkür eder.

References

  • Akakçe, N. (2023). Identifying Trace Element Concentrations in Coastal Seawater in Western Anatolia. Journal of Anatolian Environmental and Animal Sciences, 8(4), 612-615. DOI: 10.35229/jaes.1334864
  • Akçıl, A., & Çiftçi, H. (2003). Bacterial leaching of Kure copper ore. Scientific Mining Journal, 42(4), 15- 25.
  • Akçıl, A., & Çiftçi, H. (2006). Mechanisms of bacterial leaching in metal recovery. Scientific Mining Journal, 45(4), 19-27.
  • Atzori, G., Mancuso, S., & Masi, E. (2019). Seawater potential use in soilless culture: A review. Scientia Horticulturae, 249, 199-207. DOI: 10.1016/j.scienta.2019.01.035
  • Baba, A.A., Ayinla, K.I., Adekola, F.A., Ghosh, M.K., Ayanda, O.S., Bale, R.B., Sheik, A.R., & Pradhan, S.R. (2012). A review on novel techniques for chalcopyrite ore processing. International Journal of Mining Engineering and Mineral Processing, 1(1), 1-16. DOI: 10.5923/j.mining.20120101.01
  • Chen, W., Yin, S., Wu, A., Wang, L., & Chen, X. (2020). Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresource Technology, 297, 122453. DOI: 10.1016/j.biortech.2019.122453
  • Demirci, S. & Bayat, O. (2017). Effects of Ultraviolet Irradiation on Bacterial (Acidithiobacillus Ferrooxidans) Mutation and Bioleaching of Refractory Gold Ores from the Ovacik Gold Mine, Turkey. International Journal for Research in Applied Science and Engineering Technology, 5, 2304-2317.
  • Dong, Y.B., Lin, H., Zhou, S., Xu, X., & Zhang, Y. (2013). Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Minerals Engineering, 46-47, 177-179. DOI: 10.1016/j.mineng.2013.04.014
  • Granata, G., Takahashi, K., Kato, T., & Tokoro, C. (2019). Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement. Minerals Engineering, 131, 280-285. DOI: 10.1016/j.mineng.2018.11.027
  • Gu, T., Rastegar, S.O., Mousavi, S.M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 261, 428-440. DOI: 10.1016/j.biortech.2018.04.033
  • Gu, C.Y., Zhang, R.Y., Xia, J.L., Liu, H.C., Sand, W., Wang, Y.R., Chen, L., Nie, Z.Y., Zhang, Y.S., & Wang, J. (2025). Chalcopyrite bioleaching by an enriched microbial community in acidic artificial seawater. Journal of Central South University, 32(5), 1802-1821. DOI: 10.1007/s11771-025-5957-8
  • Huynh, D., Haferburg, G., Bunk, B., Kaschabek, S. R., Sand, W., & Schlömann, M. (2024). Alicyclobacillus sp. SO9, a novel halophilic acidophilic iron-oxidizing bacterium isolated from a tailings-contaminated beach, and its effect on copper extraction from chalcopyrite in the presence of high chloride concentration. Research in Microbiology, 175 104150. DOI: 10.1016/j.resmic.2023.104150
  • Joulian, C., Hubau, A., Pino-Herrera, D.O., & Guezennec, A. (2023). Bioleaching of polymetallic sulphidic mining residues: Influence of increasing solid concentration on microbial community dynamics and metal dissolution. Research in Microbiology, 175(1-2) 104112. DOI: 10.1016/j.resmic.2023.104112
  • Liang, C.L., Xia, J.L., Zhao, X.J., Yang, Y., Gong, S.Q., Nie, Z.Y., Ma, C.Y., Zheng, L., Zhao, Y.D., & Qiu, G.Z. (2010). Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 105(1-2), 179-185. DOI: 10.1016/j.hydromet.2010.07.012
  • Liang, C.L., Xia, J.L., Nie, Z.Y., Yang, Y., & Ma, C.Y. (2012). Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresource Technology, 110, 462-467. DOI: 10.1016/j.biortech.2012.01.084
  • Lopez Juarez, A.L., Rivera Santillan, R.E., & Gutierrez Arenas, N. (2006). Microbiological leaching of chalcopyrite: An environmentally sound approach to processing a sulphide copper concentrate. International Journal of Environment and Pollution, 26(1-3), 254-265. DOI: 10.1504/IJEP.2006.009110
  • Nkuna, R., Ijoma, G.N., Matambo, T.S., & Chimwani, N. (2022). Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals, 12, 506. DOI: 10.3390/min12050506
  • Owusu, C., Brito e Abreu, S., Skinner, W., Addai- Mensah, J., & Zanin, M. (2014). The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95. DOI: 10.1016/j.mineng.2013.09.018
  • Petersen, J. (2023). From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design. Hydrometallurgy, 221, 106148. DOI: 10.1016/j.hydromet.2023.106148
  • Rathna, R., & Nakkeeran, E. (2020). Biological treatment for the recovery of minerals from low- grade ores. In S. Varjani, A. Pandey, E. Gnansounou, S. K. Khanal, & S. Raveendran (Eds.), Current developments in biotechnology and bioengineering (pp. 437-458). Elsevier. DOI: 10.1016/B978-0-444-64321-6.00022-7
  • Sajjad, W., Zheng, G., Ma, X., Xu, W., Ali, B., Rafiq, M., Zada, S., Irfan, M., & Zeman, J. (2020). Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. Science of the Total Environment, 709, 136136. DOI: 10.1016/j.scitotenv.2019.136136
  • Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., & Willscher, S. (2014). Biomining: Metal recovery from ores with microorganisms. In A. Schippers, F. Glombitza, & W. Sand (Eds.), Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, 141, Springer. DOI: 10.1007/10_2013_216
  • Torres, D., Ayala, L., Jeldres, R.I., Cerecedo-Sáenz, E., Salinas-Rodríguez, E., Robles, P., & Toro, N. (2020). Leaching chalcopyrite with high MnO₂ and chloride concentrations. Metals, 10(1), 107. DOI: 10.3390/met10010107
  • Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A. & Holmes, D. (2008). Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 9, 597. DOI: 10.1186/1471-2164-9-597
  • Vilcáez, J., Yamada, R. & Inoue, C. (2009). Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures. Hydrometallurgy, 96(1-2), 62-71. DOI: 10.1016/j.hydromet.2008.08.003
  • Yang, S., Han, Z., Pan, X., Liu, B., & Zheng, D. (2018). Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 354, 653-662. DOI: 10.1016/j.cej.2018.07.191
  • Zhang, R., Wei, D., Shen, Y., Liu, W., Lu, T., & Han, C. (2016). Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering, 95, 74-78. DOI: 10.1016/j.mineng.2016.06.021

Influence of Seawater Addition on the Bioleaching Process of Chalcopyrite Ore Using Acidithiobacillus ferrooxidans

Year 2025, Volume: 10 Issue: 6, 760 - 767
https://doi.org/10.35229/jaes.1708136

Abstract

In this study, bioleaching experiments on Kastamonu Hanönü copper ore were conducted using the bacterium Acidithiobacillus ferrooxidans in the presence of seawater. The characterization of the sample was performed using XRD, XRF, and SEM analysis methods. During the bioleaching experiments, bacteria concentration, pH, copper and iron concentrations were monitored over the 360-hour test period. The results demonstrated that an appropriate proportion of seawater significantly promoted copper recovery, with the solid-to-liquid ratio playing a key role. A maximum copper recovery of 81.43% was achieved in the presence of 30.00% seawater, 7% solid rate compared to only 71.02% in its absence. This study highlights the potential of seawater as an alternative solvent medium, offering both environmental and economic benefits. Moreover, the findings emphasize the applicability of the bioleaching method as an environmentally friendly and efficient process.

Ethical Statement

This study was conducted within the scope of a research that did not require ethical approval.

Supporting Institution

The author received no funding for the research.

Thanks

The author gratefully acknowledges the editor and reviewers for their insightful comments and constructive suggestions during the review and evaluation process of the manuscript.

References

  • Akakçe, N. (2023). Identifying Trace Element Concentrations in Coastal Seawater in Western Anatolia. Journal of Anatolian Environmental and Animal Sciences, 8(4), 612-615. DOI: 10.35229/jaes.1334864
  • Akçıl, A., & Çiftçi, H. (2003). Bacterial leaching of Kure copper ore. Scientific Mining Journal, 42(4), 15- 25.
  • Akçıl, A., & Çiftçi, H. (2006). Mechanisms of bacterial leaching in metal recovery. Scientific Mining Journal, 45(4), 19-27.
  • Atzori, G., Mancuso, S., & Masi, E. (2019). Seawater potential use in soilless culture: A review. Scientia Horticulturae, 249, 199-207. DOI: 10.1016/j.scienta.2019.01.035
  • Baba, A.A., Ayinla, K.I., Adekola, F.A., Ghosh, M.K., Ayanda, O.S., Bale, R.B., Sheik, A.R., & Pradhan, S.R. (2012). A review on novel techniques for chalcopyrite ore processing. International Journal of Mining Engineering and Mineral Processing, 1(1), 1-16. DOI: 10.5923/j.mining.20120101.01
  • Chen, W., Yin, S., Wu, A., Wang, L., & Chen, X. (2020). Bioleaching of copper sulfides using mixed microorganisms and its community structure succession in the presence of seawater. Bioresource Technology, 297, 122453. DOI: 10.1016/j.biortech.2019.122453
  • Demirci, S. & Bayat, O. (2017). Effects of Ultraviolet Irradiation on Bacterial (Acidithiobacillus Ferrooxidans) Mutation and Bioleaching of Refractory Gold Ores from the Ovacik Gold Mine, Turkey. International Journal for Research in Applied Science and Engineering Technology, 5, 2304-2317.
  • Dong, Y.B., Lin, H., Zhou, S., Xu, X., & Zhang, Y. (2013). Effects of quartz addition on chalcopyrite bioleaching in shaking flasks. Minerals Engineering, 46-47, 177-179. DOI: 10.1016/j.mineng.2013.04.014
  • Granata, G., Takahashi, K., Kato, T., & Tokoro, C. (2019). Mechanochemical activation of chalcopyrite: Relationship between activation mechanism and leaching enhancement. Minerals Engineering, 131, 280-285. DOI: 10.1016/j.mineng.2018.11.027
  • Gu, T., Rastegar, S.O., Mousavi, S.M., Li, M., & Zhou, M. (2018). Advances in bioleaching for recovery of metals and bioremediation of fuel ash and sewage sludge. Bioresource Technology, 261, 428-440. DOI: 10.1016/j.biortech.2018.04.033
  • Gu, C.Y., Zhang, R.Y., Xia, J.L., Liu, H.C., Sand, W., Wang, Y.R., Chen, L., Nie, Z.Y., Zhang, Y.S., & Wang, J. (2025). Chalcopyrite bioleaching by an enriched microbial community in acidic artificial seawater. Journal of Central South University, 32(5), 1802-1821. DOI: 10.1007/s11771-025-5957-8
  • Huynh, D., Haferburg, G., Bunk, B., Kaschabek, S. R., Sand, W., & Schlömann, M. (2024). Alicyclobacillus sp. SO9, a novel halophilic acidophilic iron-oxidizing bacterium isolated from a tailings-contaminated beach, and its effect on copper extraction from chalcopyrite in the presence of high chloride concentration. Research in Microbiology, 175 104150. DOI: 10.1016/j.resmic.2023.104150
  • Joulian, C., Hubau, A., Pino-Herrera, D.O., & Guezennec, A. (2023). Bioleaching of polymetallic sulphidic mining residues: Influence of increasing solid concentration on microbial community dynamics and metal dissolution. Research in Microbiology, 175(1-2) 104112. DOI: 10.1016/j.resmic.2023.104112
  • Liang, C.L., Xia, J.L., Zhao, X.J., Yang, Y., Gong, S.Q., Nie, Z.Y., Ma, C.Y., Zheng, L., Zhao, Y.D., & Qiu, G.Z. (2010). Effect of activated carbon on chalcopyrite bioleaching with extreme thermophile Acidianus manzaensis. Hydrometallurgy, 105(1-2), 179-185. DOI: 10.1016/j.hydromet.2010.07.012
  • Liang, C.L., Xia, J.L., Nie, Z.Y., Yang, Y., & Ma, C.Y. (2012). Effect of sodium chloride on sulfur speciation of chalcopyrite bioleached by the extreme thermophile Acidianus manzaensis. Bioresource Technology, 110, 462-467. DOI: 10.1016/j.biortech.2012.01.084
  • Lopez Juarez, A.L., Rivera Santillan, R.E., & Gutierrez Arenas, N. (2006). Microbiological leaching of chalcopyrite: An environmentally sound approach to processing a sulphide copper concentrate. International Journal of Environment and Pollution, 26(1-3), 254-265. DOI: 10.1504/IJEP.2006.009110
  • Nkuna, R., Ijoma, G.N., Matambo, T.S., & Chimwani, N. (2022). Accessing metals from low-grade ores and the environmental impact considerations: A review of the perspectives of conventional versus bioleaching strategies. Minerals, 12, 506. DOI: 10.3390/min12050506
  • Owusu, C., Brito e Abreu, S., Skinner, W., Addai- Mensah, J., & Zanin, M. (2014). The influence of pyrite content on the flotation of chalcopyrite/pyrite mixtures. Minerals Engineering, 55, 87-95. DOI: 10.1016/j.mineng.2013.09.018
  • Petersen, J. (2023). From understanding the rate limitations of bioleaching mechanisms to improved bioleach process design. Hydrometallurgy, 221, 106148. DOI: 10.1016/j.hydromet.2023.106148
  • Rathna, R., & Nakkeeran, E. (2020). Biological treatment for the recovery of minerals from low- grade ores. In S. Varjani, A. Pandey, E. Gnansounou, S. K. Khanal, & S. Raveendran (Eds.), Current developments in biotechnology and bioengineering (pp. 437-458). Elsevier. DOI: 10.1016/B978-0-444-64321-6.00022-7
  • Sajjad, W., Zheng, G., Ma, X., Xu, W., Ali, B., Rafiq, M., Zada, S., Irfan, M., & Zeman, J. (2020). Dissolution of Cu and Zn-bearing ore by indigenous iron-oxidizing bacterial consortia supplemented with dried bamboo sawdust and variations in bacterial structural dynamics: A new concept in bioleaching. Science of the Total Environment, 709, 136136. DOI: 10.1016/j.scitotenv.2019.136136
  • Schippers, A., Hedrich, S., Vasters, J., Drobe, M., Sand, W., & Willscher, S. (2014). Biomining: Metal recovery from ores with microorganisms. In A. Schippers, F. Glombitza, & W. Sand (Eds.), Geobiotechnology I. Advances in Biochemical Engineering/Biotechnology, 141, Springer. DOI: 10.1007/10_2013_216
  • Torres, D., Ayala, L., Jeldres, R.I., Cerecedo-Sáenz, E., Salinas-Rodríguez, E., Robles, P., & Toro, N. (2020). Leaching chalcopyrite with high MnO₂ and chloride concentrations. Metals, 10(1), 107. DOI: 10.3390/met10010107
  • Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A. & Holmes, D. (2008). Acidithiobacillus ferrooxidans metabolism: From genome sequence to industrial applications. BMC Genomics, 9, 597. DOI: 10.1186/1471-2164-9-597
  • Vilcáez, J., Yamada, R. & Inoue, C. (2009). Effect of pH reduction and ferric ion addition on the leaching of chalcopyrite at thermophilic temperatures. Hydrometallurgy, 96(1-2), 62-71. DOI: 10.1016/j.hydromet.2008.08.003
  • Yang, S., Han, Z., Pan, X., Liu, B., & Zheng, D. (2018). Nitrogen oxide removal from simulated flue gas by UV-irradiated electrolyzed seawater: Efficiency optimization and pH-dependent mechanisms. Chemical Engineering Journal, 354, 653-662. DOI: 10.1016/j.cej.2018.07.191
  • Zhang, R., Wei, D., Shen, Y., Liu, W., Lu, T., & Han, C. (2016). Catalytic effect of polyethylene glycol on sulfur oxidation in chalcopyrite bioleaching by Acidithiobacillus ferrooxidans. Minerals Engineering, 95, 74-78. DOI: 10.1016/j.mineng.2016.06.021
There are 27 citations in total.

Details

Primary Language English
Subjects Environmental Assessment and Monitoring, Natural Resource Management, Environmental Management (Other), Freshwater and Marine Ecology
Journal Section Research Article
Authors

Zehra Çetinkaya 0000-0002-0553-0102

Early Pub Date November 15, 2025
Publication Date November 26, 2025
Submission Date May 28, 2025
Acceptance Date October 3, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Çetinkaya, Z. (2025). Influence of Seawater Addition on the Bioleaching Process of Chalcopyrite Ore Using Acidithiobacillus ferrooxidans. Journal of Anatolian Environmental and Animal Sciences, 10(6), 760-767. https://doi.org/10.35229/jaes.1708136


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS