Research Article
BibTex RIS Cite

Toxic Effect of Palladium Chloride on Blood and Spleen Tissue of Rats and Protective Role of Quercetin

Year 2025, Volume: 10 Issue: 6, 876 - 882
https://doi.org/10.35229/jaes.1754345

Abstract

Palladium is a heavy metal whose use in the industry has increased significantly in recent years, resulting in public health problems. Quercetin is a flavanol compound with antioxidant, anti-inflammatory and anticancer properties. In this study, the protective role of quercetin (Que) against the oxidative damage caused by palladium chloride (PdCl2) in the blood and spleen tissue of rats was investigated. Four groups were formed with 6 animals in each group. Control group, Que group (30 mg/kg bw), PdCl2 group (8 mg/kg bw) and Que+PdCl2 group. For 28 days, the administration substances were given to the rats by oral gavage. At the end of the experiment, there was a significant increase in the amount of MDA in the blood and spleen tissues of rats administered PdCl2 compared to the amount of MDA in the control group (p<0.05). At the same time, a significant decrease was observed in the SOD, CAT, GPx and GST antioxidant enzyme activities of rats in the PdCl2 group compared to the antioxidant enzyme activities of rats in the control group (p<0.05). When the quercetin-treated group was compared with the PdCl2-treated group, a significant increase in SOD, CAT, GPx and GST activities was reported, while the amount of MDA in blood and spleen tissues decreased. These results indicate that quercetin is an important food supplement.

References

  • Aarzoo, Nidhi, & Samim, M. (2022). Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. Science of the Total Environment, 823, 153787. DOI: 10.1016/j.scitotenv.2022.153787
  • Aarzoo, Siddiqui, M.A., Hasan, M., Nidhi, Khan, H.A., Rastogi, S., Arora, A., & Samim, M. (2024). Palladium nanoparticles and lung health: assessing morphology-dependent subacute toxicity in rats and toxicity modulation by naringin-paving the way for cleaner vehicular emissions. ACS Omega, 9(30), 32745-32759 DOI: 10.1021/acsomega.4c02269
  • Adiguzel, C., & Karaboduk, H. (2024). Biochemical, ımmunohistochemical, histopathological, and apoptotic evaluation of nickel oxide nanoparticle- and microparticle-ınduced testicular toxicity in male rats. ACS Omega, 9(52), 50910-50921. DOI: 10.1021/acsomega.4c01005
  • Adiguzel, C., Karaboduk, H., Apaydın, F.G., & Kalender, Y. (2025). Effects of quercetin on palladium chloride-ınduced endoplasmic reticulum stress, ınflammation, oxidative stress, and apoptosis in hepatorenal tissues. Microscopy and Microanalysis, 31(4), ozaf077. DOI: 10.1093/mam/ozaf077
  • Adiguzel, C., Karaboduk, H., Apaydin, F.G., Kalender, S., & Kalender, Y. (2023). Comparison of nickel oxide nano and microparticles toxicity in rat liver: molecular, biochemical, and histopathological study. Toxicology Research, 12(5), 741-750. DOI: 10.1093/toxres/tfad062
  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. DOI: 10.1016/S0076- 6879(84)05016-3
  • Al-Zharani, M., Mubarak, M., Rudayni, H.A., Al- Doaiss, A.A., Abd-Elwahab, M.M., & Al-Eissa, M.S. (2023). Quercetin as a dietary supplementary flavonoid alleviates the oxidative stress induced by lead toxicity in male wistar rats. Nutrients, 15(8), 1888. DOI: 10.3390/nu15081888
  • Apaydin, F.G., Kalender, S., Bas, H., & Kalender, Y. (2025). Evaluation of hepatotoxicity and nephrotoxicity of fenitrothion on ultrastructural, ımmunohistochemical, histopathological, and biochemical changes: Protective role of gallic acid. Microscopy and Microanalysis, 31(4), ozaf068. DOI: 10.1093/mam/ozaf068
  • Apaydın, F.G., Baş, H., Kalender, S., & Kalender, Y. (2016). Subacute effects of low dose lead nitrate and mercury chloride exposure on kidney of rats. Environmental Toxicology and Pharmacology, 41, 219-224. DOI: 10.1016/j.etap.2015.12.003
  • Apaydin, F.G., Kalender, S., Bas, H., Demir, F., & Kalender, Y. (2015). Lead nitrate induced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Brazilian Archives of Biology and Technology, 58(1), 68- 74.
  • Bernd, S., Christoph, S., & Sonja, Z. (2006). Biological effects of palladium, In: Zereini, F. & Alt, F. (Ed), Palladium emissions in the environment. Analytical methods, environmental assessment and health effects. 489-500p, Springer, Berlin, Germany. DOI: 10.1007/3-540-29220-9
  • Boscolo, P., Di Giampaolo, L., Reale, M., Castellani, M.L., Volpe, A.R., Carmignani, M., Ponti, J., Paganelli, R., Sabbioni, E., Conti, P., & Di Gioacchino, M. (2004). Different effects of platinum, palladium, and rhodium salts on lymphocyte proliferation and cytokine release. Annals of Clinical & Laboratory Science, 34(3), 299-306.
  • Chandimali, N., Bak, S.G., Park, E H., Lim, H.J., Won, Y.S., Kim, E.K., Park, S.I., & Lee, S.J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19. DOI: 10.1038/s41420-024- 02278-8
  • Ciftci, O., Beytur, A., Cakir, O., Gurbuz, N., & Vardi, N. (2011). Comparison of reproductive toxicity caused by cisplatin and novel platinum‐N‐ heterocyclic carbene complex in male rats. Basic & Clinical Pharmacology & Toxicology, 109(5), 328-333. DOI: 10.1111/j.1742- 7843.2011.00737.x
  • Ding, L., Wang, K., Zhu, H., Liu, Z., & Wang, J. (2024). Protective effect of quercetin on cadmium- induced kidney apoptosis in rats based on PERK signaling pathway. Journal of Trace Elements in Medicine and Biology, 82, 127355. DOI: 10.1016/j.jtemb.2023.127355
  • Drabkin, D.L. (1946). Spectrophotometric studies: XIV. The crystallographic and optical properties of the hemoglobin of man in comparison with those of other species. Journal of Biological Chemistry, 164(2), 703-723. DOI: 10.1016/S0021- 9258(17)41272-5
  • El-Boshy, M.E., Risha, E.F., Abdelhamid, F.M., Mubarak, M.S., & Hadda, T.B. (2015). Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. Journal of Trace Elements in Medicine and Biology, 29, 104-110. DOIO: 10.1016/j.jtemb.2014.05.009
  • Fontana, L., Leso, V., Marinaccio, A., Cenacchi, G., Papa, V., Leopold, K., Schindl, R., Bocca, B., Alimonti, A., & Iavicoli, I. (2015). The effects of palladium nanoparticles on the renal function of female Wistar rats. Nanotoxicology, 9(7), 843- 851. DOI: 10.3109/17435390.2014.980759
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139. DOI: 10.1016/S0021-9258(19)42083-8
  • Hashemzaei, A.M., Yarahmazehi, B.M., Tabrizian, C.K., & Shahraki, D.J. (2016). Palladium induced oxidative stress and cell death in normal hepatocytes. Journal of Fundamental and Applied Sciences, 8(2), 99-111. DOI: 10.4314/jfas.8vi2s.6
  • Holbrook Jr.D.J., Washington, M.E., Leake, H.B., & Brubaker, P.E. (1975). Studies on the evaluation of the toxicity of various salts of lead, manganese, platinum, and palladium. Environmental Health Perspectives., 10, 95-101. DOI: 10.1289/ehp.751095
  • Iavicoli, I., Bocca, B., Fontana, L., Caimi, S., Bergamaschi, A., & Alimonti, A. (2010). Distribution and elimination of palladium in rats after 90-day oral administration. Toxicology and Industrial Health, 26(3), 183-189. DOI: 10.1177/0748233710362383
  • Iavicoli, I., Fontana, L., Leso, V., Corbi, M., Marinaccio, A., Leopold, K., Schind, R., Lucchetti, D., Calapa, F., & Sgambato, A. (2018). Subchronic exposure to palladium nanoparticles affects serum levels of cytokines in female Wistar rats. Human & Experimental Toxicology, 37(3), 309-320. DOI: 10.1177/0960327117702952
  • Iavicoli, I., Fontana, L., Corbi, M., Leso, V., Marinaccio, A., Leopold, K., Schindl, R., & Sgambato, A. (2015). Exposure to palladium nanoparticles affects serum levels of cytokines in female wistar rats. PloS One, 10(11), e0143801. DOI: 10.1371/journal.pone.0143801
  • Jomova, K., Alomar, S.Y., Valko, R., Liska, J., Nepovimova, E., Kuca, K., & Valko, M. (2025). Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chemico- Biological Interactions, 111489. DOI: 10.1016/j.cbi.2025.111489
  • Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. DOI: 10.3390/ijms22094642
  • Kalender, S., Apaydin, F.G., & Kalender, Y. (2019). Testicular toxicity of orally administrated bisphenol A in rats and protective role of taurine and curcumin. Pakistan Journal of Pharmaceutical Sciences, 32(3), 1043-1047.
  • Kalender, S., Apaydin, F.G., Baş, H., & Kalender, Y. (2015). Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats. Environmental Toxicology and Pharmacology, 40(2), 568-574. DOI: 10.1016/j.etap.2015.08.011
  • Kalender, Y., Kaya, S., Durak, D., Uzun, F.G., & Demir, F. (2012). Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environmental Toxicology and Pharmacology, 33(2), 141-148. DOI: 10.1016/j.etap.2011.12.008
  • Kamala, C.T., Balaram, V., Satyanarayanan, M., Kiran Kumar, A., & Subramanyam, K.S.V. (2015). Biomonitoring of airborne platinum group elements in urban traffic police officers. Archives of Environmental Contamination and Toxicology, 68, 421-431. DOI: 10.1007/s00244-014-0114-7
  • Karaboduk, H., Adıgüzel, Ç., Apaydın, F.G., Kalender, S., Uzunhisarcikli, M., & Kalender, Y. (2024). Fenamifos' un sıçan kan ve dalak dokusunda sebep olduğu oksidatif stres üzerine naringenin'in koruyucu rolü. Journal of the Institute of Science and Technology, 14(2), 625-635. DOI: 10.21597/jist.1381156
  • Karaboduk, H., & Kalender, Y. (2021). The effects of lead nitrate and mercury chloride on rat liver tissue. Fresenius Environmental Bulletin, 30(3), 2368-2379.
  • Le, N.A. (2015). Lipoprotein-associated oxidative stress: A new twist to the postprandial hypothesis. International Journal of Molecular Sciences, 16(1), 401-419. DOI: 10.3390/ijms16010401
  • Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song, L., & Huang, X. (2021). Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. DOI: 10.1016/j.ecoenv.2021.111917
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474. DOI: 10.1111/j.1432- 1033.1974.tb03714.x
  • Moore, W., Hysell, D., Hall, L., Campbell, K., & Sttara, J. (1975). Preliminary studies on the toxicity and metabolism of palladium and platinum. Environmental Health Perspectives, 10, 63-71 DOI: 10.1289/ehp.751063
  • Muris, J., Goossens, A., Gonçalo, M., Bircher, A.J., Giménez‐Arnau, A., Foti, C., Rustemeyer, T., Feilzer, A.J., & Kleverlaan, C.J. (2015). Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys. Contact Dermatitis, 72(5), 286-296. DOI: 10.1111/cod.12327
  • Ohkawa, H., Ohishi, N., & Yagi, K., (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Paglia, D.E., & Valentine, W.N., (1987). Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-165.
  • Peric, T., Lj. Jakovljevic, V., Zivkovic, V., Krkeljic, J.,D. Petrovic, Z., Simijonovic, D., Novokmet, S., Djuric, D.M., & Jankovic, M.S., (2012). Toxic effects of palladium compounds on the isolated rat heart. Medicinal Chemistry, 8(1), 9- 13. DOI: 10.2174/157340612799278612
  • Shi, Y., Wang, K., Ling, H., Mao, J., Xu, B., Liu, Z., & Wang, J. (2024). Quercetin attenuates cadmium- induced hepatotoxicity by suppressing oxidative stress and apoptosis in rat. Journal of Trace Elements in Medicine and Biology, 86, 127554. DOI: 10.1016/j.jtemb.2024.127554
  • Thyssen, J.P., & Menné, T. (2010). Metal allergy A review on exposures, penetration, genetics, prevalence, and clinical implications. Chemical Research in Toxicology, 23(2), 309-318. DOI: 10.1021/tx9002726
  • Uzun, F., & Kalender, Y. (2011). Protective effect of vitamins c and e on malathion-induced nephrotoxicity in male rats. Gazi University Journal of Science, 24(2), 193-201.
  • Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin. Food and Chemical Toxicology, 55, 549-556. DOI: 10.1016/j.fct. 2013.01.056
  • Uzunhisarcikli, M., Apaydin, F.G., Bas, H., & Kalender, Y. (2021). Hepatoprotective effects of quercetin and curcumin against fipronil-induced hepatic injury in rats. Fresenius Environmental Bulletin, 30(7A), 9309-9321
  • Uzunhisarcikli, M., Apaydin, F.G., Bas, H., & Kalender, Y. (2023). The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicology Research, 12(3), 493-502. DOI: 10.1093/toxres/tfad034
  • Wang, J., Ding, L., Wang, K., Huang, R., Yu, W., Yan, B., Wang, H., Zhang, C., Yang, Z., & Liu, Z. (2022). Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. Ecotoxicology and Environmental Safety, 241, 113772. DOI: 10.1016/j.ecoenv.2022.113772
  • Wataha, J.C., & Hanks, C.T. (1996). Biological effects of palladium and risk of using palladium in dental casting alloys. Journal of Oral Rehabilitation, 23(5), 309-320. DOI: 10.1111/j.1365- 2842.1996.tb00858.x
  • Yeni, Y., Genc, S., Nadaroglu, H., & Hacımuftuoglu, A. (2025). Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. Naunyn-Schmiedeberg's Archives of Pharmacology, 398(5), 5147-5156. DOI: 10.1007/s00210-024-03610-w.

Sıçanların Kan ve Dalak Dokusu Üzerine Paladyum Klorür’ün Toksik Etkisi ve Kuersetin’in Koruyucu Rolü

Year 2025, Volume: 10 Issue: 6, 876 - 882
https://doi.org/10.35229/jaes.1754345

Abstract

Paladyum son yıllarda endüstride kullanımı ciddi anlamda artan ve bunun sonucu olarak da halk sağlığı problemlerini meydana getiren bir ağır metaldir. Kuersetin antioksidan, anti-inflamatuar ve anti-kanser gibi özellikleri ile öne çıkan flavanol bir bileşiktir. Bu çalışmada paladyum klorürün (PdCl2) sıçanların kan ve dalak dokusunda yarattığı oksidatif hasara karşı kuersetinin (Que) korucu rolü araştırılmıştır. Her grupta 6 hayvan olacak şekilde 4 grup oluşturulmuştur. Kontrol grubu, Que grubu (30 mg/kg v.a.), PdCl2 grubu (8 mg/kg v.a.) ve Que+PdCl2 grubu. 28 gün boyunca uygulama maddeleri sıçanlara oral gavaj yoluyla verilmiştir. Deney sonunda PdCl2 uygulanan sıçanların kan ve dalak dokularındaki MDA miktarında kontrol grubundaki sıçanların MDA miktarına göre anlamlı bir artış meydana gelmiştir (p<0,05). Aynı zamanda PdCl2 grubundaki sıçanların SOD, CAT, GPx ve GST antioksidan enzim aktivitelerinde, kontrol grubundaki sıçanların antioksidan enzim aktivitelerine göre anlamlı bir azalma gözlenmiştir (p<0,05). Kuersetin uygulamalı grup ile PdCl2 uygulamalı grup karşılaştırıldığında kan ve dalak dokularındaki MDA miktarı azalırken, SOD, CAT, GPx ve GST aktivitelerinde anlamlı bir artış rapor edilmiştir. Bu sonuçlar kuersetinin önemli bir takviye gıda olduğunu göstermektedir.

Ethical Statement

Tüm deney prosedürleri için Gazi Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu tarafından onay alındı (G.Ü.ET-23.064).

Thanks

Çalışmamızın deney hayvanları kısmını maddi olarak destekleyen Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederiz

References

  • Aarzoo, Nidhi, & Samim, M. (2022). Palladium nanoparticles as emerging pollutants from motor vehicles: An in-depth review on distribution, uptake and toxicological effects in occupational and living environment. Science of the Total Environment, 823, 153787. DOI: 10.1016/j.scitotenv.2022.153787
  • Aarzoo, Siddiqui, M.A., Hasan, M., Nidhi, Khan, H.A., Rastogi, S., Arora, A., & Samim, M. (2024). Palladium nanoparticles and lung health: assessing morphology-dependent subacute toxicity in rats and toxicity modulation by naringin-paving the way for cleaner vehicular emissions. ACS Omega, 9(30), 32745-32759 DOI: 10.1021/acsomega.4c02269
  • Adiguzel, C., & Karaboduk, H. (2024). Biochemical, ımmunohistochemical, histopathological, and apoptotic evaluation of nickel oxide nanoparticle- and microparticle-ınduced testicular toxicity in male rats. ACS Omega, 9(52), 50910-50921. DOI: 10.1021/acsomega.4c01005
  • Adiguzel, C., Karaboduk, H., Apaydın, F.G., & Kalender, Y. (2025). Effects of quercetin on palladium chloride-ınduced endoplasmic reticulum stress, ınflammation, oxidative stress, and apoptosis in hepatorenal tissues. Microscopy and Microanalysis, 31(4), ozaf077. DOI: 10.1093/mam/ozaf077
  • Adiguzel, C., Karaboduk, H., Apaydin, F.G., Kalender, S., & Kalender, Y. (2023). Comparison of nickel oxide nano and microparticles toxicity in rat liver: molecular, biochemical, and histopathological study. Toxicology Research, 12(5), 741-750. DOI: 10.1093/toxres/tfad062
  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121-126. DOI: 10.1016/S0076- 6879(84)05016-3
  • Al-Zharani, M., Mubarak, M., Rudayni, H.A., Al- Doaiss, A.A., Abd-Elwahab, M.M., & Al-Eissa, M.S. (2023). Quercetin as a dietary supplementary flavonoid alleviates the oxidative stress induced by lead toxicity in male wistar rats. Nutrients, 15(8), 1888. DOI: 10.3390/nu15081888
  • Apaydin, F.G., Kalender, S., Bas, H., & Kalender, Y. (2025). Evaluation of hepatotoxicity and nephrotoxicity of fenitrothion on ultrastructural, ımmunohistochemical, histopathological, and biochemical changes: Protective role of gallic acid. Microscopy and Microanalysis, 31(4), ozaf068. DOI: 10.1093/mam/ozaf068
  • Apaydın, F.G., Baş, H., Kalender, S., & Kalender, Y. (2016). Subacute effects of low dose lead nitrate and mercury chloride exposure on kidney of rats. Environmental Toxicology and Pharmacology, 41, 219-224. DOI: 10.1016/j.etap.2015.12.003
  • Apaydin, F.G., Kalender, S., Bas, H., Demir, F., & Kalender, Y. (2015). Lead nitrate induced testicular toxicity in diabetic and non-diabetic rats: protective role of sodium selenite. Brazilian Archives of Biology and Technology, 58(1), 68- 74.
  • Bernd, S., Christoph, S., & Sonja, Z. (2006). Biological effects of palladium, In: Zereini, F. & Alt, F. (Ed), Palladium emissions in the environment. Analytical methods, environmental assessment and health effects. 489-500p, Springer, Berlin, Germany. DOI: 10.1007/3-540-29220-9
  • Boscolo, P., Di Giampaolo, L., Reale, M., Castellani, M.L., Volpe, A.R., Carmignani, M., Ponti, J., Paganelli, R., Sabbioni, E., Conti, P., & Di Gioacchino, M. (2004). Different effects of platinum, palladium, and rhodium salts on lymphocyte proliferation and cytokine release. Annals of Clinical & Laboratory Science, 34(3), 299-306.
  • Chandimali, N., Bak, S.G., Park, E H., Lim, H.J., Won, Y.S., Kim, E.K., Park, S.I., & Lee, S.J. (2025). Free radicals and their impact on health and antioxidant defenses: a review. Cell Death Discovery, 11(1), 19. DOI: 10.1038/s41420-024- 02278-8
  • Ciftci, O., Beytur, A., Cakir, O., Gurbuz, N., & Vardi, N. (2011). Comparison of reproductive toxicity caused by cisplatin and novel platinum‐N‐ heterocyclic carbene complex in male rats. Basic & Clinical Pharmacology & Toxicology, 109(5), 328-333. DOI: 10.1111/j.1742- 7843.2011.00737.x
  • Ding, L., Wang, K., Zhu, H., Liu, Z., & Wang, J. (2024). Protective effect of quercetin on cadmium- induced kidney apoptosis in rats based on PERK signaling pathway. Journal of Trace Elements in Medicine and Biology, 82, 127355. DOI: 10.1016/j.jtemb.2023.127355
  • Drabkin, D.L. (1946). Spectrophotometric studies: XIV. The crystallographic and optical properties of the hemoglobin of man in comparison with those of other species. Journal of Biological Chemistry, 164(2), 703-723. DOI: 10.1016/S0021- 9258(17)41272-5
  • El-Boshy, M.E., Risha, E.F., Abdelhamid, F.M., Mubarak, M.S., & Hadda, T.B. (2015). Protective effects of selenium against cadmium induced hematological disturbances, immunosuppressive, oxidative stress and hepatorenal damage in rats. Journal of Trace Elements in Medicine and Biology, 29, 104-110. DOIO: 10.1016/j.jtemb.2014.05.009
  • Fontana, L., Leso, V., Marinaccio, A., Cenacchi, G., Papa, V., Leopold, K., Schindl, R., Bocca, B., Alimonti, A., & Iavicoli, I. (2015). The effects of palladium nanoparticles on the renal function of female Wistar rats. Nanotoxicology, 9(7), 843- 851. DOI: 10.3109/17435390.2014.980759
  • Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130-7139. DOI: 10.1016/S0021-9258(19)42083-8
  • Hashemzaei, A.M., Yarahmazehi, B.M., Tabrizian, C.K., & Shahraki, D.J. (2016). Palladium induced oxidative stress and cell death in normal hepatocytes. Journal of Fundamental and Applied Sciences, 8(2), 99-111. DOI: 10.4314/jfas.8vi2s.6
  • Holbrook Jr.D.J., Washington, M.E., Leake, H.B., & Brubaker, P.E. (1975). Studies on the evaluation of the toxicity of various salts of lead, manganese, platinum, and palladium. Environmental Health Perspectives., 10, 95-101. DOI: 10.1289/ehp.751095
  • Iavicoli, I., Bocca, B., Fontana, L., Caimi, S., Bergamaschi, A., & Alimonti, A. (2010). Distribution and elimination of palladium in rats after 90-day oral administration. Toxicology and Industrial Health, 26(3), 183-189. DOI: 10.1177/0748233710362383
  • Iavicoli, I., Fontana, L., Leso, V., Corbi, M., Marinaccio, A., Leopold, K., Schind, R., Lucchetti, D., Calapa, F., & Sgambato, A. (2018). Subchronic exposure to palladium nanoparticles affects serum levels of cytokines in female Wistar rats. Human & Experimental Toxicology, 37(3), 309-320. DOI: 10.1177/0960327117702952
  • Iavicoli, I., Fontana, L., Corbi, M., Leso, V., Marinaccio, A., Leopold, K., Schindl, R., & Sgambato, A. (2015). Exposure to palladium nanoparticles affects serum levels of cytokines in female wistar rats. PloS One, 10(11), e0143801. DOI: 10.1371/journal.pone.0143801
  • Jomova, K., Alomar, S.Y., Valko, R., Liska, J., Nepovimova, E., Kuca, K., & Valko, M. (2025). Flavonoids and their role in oxidative stress, inflammation, and human diseases. Chemico- Biological Interactions, 111489. DOI: 10.1016/j.cbi.2025.111489
  • Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., & Pérez-Lebeña, E. (2021). The chemistry of reactive oxygen species (ROS) revisited: outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. International Journal of Molecular Sciences, 22(9), 4642. DOI: 10.3390/ijms22094642
  • Kalender, S., Apaydin, F.G., & Kalender, Y. (2019). Testicular toxicity of orally administrated bisphenol A in rats and protective role of taurine and curcumin. Pakistan Journal of Pharmaceutical Sciences, 32(3), 1043-1047.
  • Kalender, S., Apaydin, F.G., Baş, H., & Kalender, Y. (2015). Protective effects of sodium selenite on lead nitrate-induced hepatotoxicity in diabetic and non-diabetic rats. Environmental Toxicology and Pharmacology, 40(2), 568-574. DOI: 10.1016/j.etap.2015.08.011
  • Kalender, Y., Kaya, S., Durak, D., Uzun, F.G., & Demir, F. (2012). Protective effects of catechin and quercetin on antioxidant status, lipid peroxidation and testis-histoarchitecture induced by chlorpyrifos in male rats. Environmental Toxicology and Pharmacology, 33(2), 141-148. DOI: 10.1016/j.etap.2011.12.008
  • Kamala, C.T., Balaram, V., Satyanarayanan, M., Kiran Kumar, A., & Subramanyam, K.S.V. (2015). Biomonitoring of airborne platinum group elements in urban traffic police officers. Archives of Environmental Contamination and Toxicology, 68, 421-431. DOI: 10.1007/s00244-014-0114-7
  • Karaboduk, H., Adıgüzel, Ç., Apaydın, F.G., Kalender, S., Uzunhisarcikli, M., & Kalender, Y. (2024). Fenamifos' un sıçan kan ve dalak dokusunda sebep olduğu oksidatif stres üzerine naringenin'in koruyucu rolü. Journal of the Institute of Science and Technology, 14(2), 625-635. DOI: 10.21597/jist.1381156
  • Karaboduk, H., & Kalender, Y. (2021). The effects of lead nitrate and mercury chloride on rat liver tissue. Fresenius Environmental Bulletin, 30(3), 2368-2379.
  • Le, N.A. (2015). Lipoprotein-associated oxidative stress: A new twist to the postprandial hypothesis. International Journal of Molecular Sciences, 16(1), 401-419. DOI: 10.3390/ijms16010401
  • Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song, L., & Huang, X. (2021). Protective effects of folic acid on oxidative damage of rat spleen induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. DOI: 10.1016/j.ecoenv.2021.111917
  • Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193(1), 265-275.
  • Marklund, S., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. European Journal of Biochemistry, 47(3), 469-474. DOI: 10.1111/j.1432- 1033.1974.tb03714.x
  • Moore, W., Hysell, D., Hall, L., Campbell, K., & Sttara, J. (1975). Preliminary studies on the toxicity and metabolism of palladium and platinum. Environmental Health Perspectives, 10, 63-71 DOI: 10.1289/ehp.751063
  • Muris, J., Goossens, A., Gonçalo, M., Bircher, A.J., Giménez‐Arnau, A., Foti, C., Rustemeyer, T., Feilzer, A.J., & Kleverlaan, C.J. (2015). Sensitization to palladium and nickel in Europe and the relationship with oral disease and dental alloys. Contact Dermatitis, 72(5), 286-296. DOI: 10.1111/cod.12327
  • Ohkawa, H., Ohishi, N., & Yagi, K., (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351-358. DOI: 10.1016/0003-2697(79)90738-3
  • Paglia, D.E., & Valentine, W.N., (1987). Studies on the quantative and qualitative characterization of glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-165.
  • Peric, T., Lj. Jakovljevic, V., Zivkovic, V., Krkeljic, J.,D. Petrovic, Z., Simijonovic, D., Novokmet, S., Djuric, D.M., & Jankovic, M.S., (2012). Toxic effects of palladium compounds on the isolated rat heart. Medicinal Chemistry, 8(1), 9- 13. DOI: 10.2174/157340612799278612
  • Shi, Y., Wang, K., Ling, H., Mao, J., Xu, B., Liu, Z., & Wang, J. (2024). Quercetin attenuates cadmium- induced hepatotoxicity by suppressing oxidative stress and apoptosis in rat. Journal of Trace Elements in Medicine and Biology, 86, 127554. DOI: 10.1016/j.jtemb.2024.127554
  • Thyssen, J.P., & Menné, T. (2010). Metal allergy A review on exposures, penetration, genetics, prevalence, and clinical implications. Chemical Research in Toxicology, 23(2), 309-318. DOI: 10.1021/tx9002726
  • Uzun, F., & Kalender, Y. (2011). Protective effect of vitamins c and e on malathion-induced nephrotoxicity in male rats. Gazi University Journal of Science, 24(2), 193-201.
  • Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced hepatotoxic and hematologic changes in rats: The role of quercetin and catechin. Food and Chemical Toxicology, 55, 549-556. DOI: 10.1016/j.fct. 2013.01.056
  • Uzunhisarcikli, M., Apaydin, F.G., Bas, H., & Kalender, Y. (2021). Hepatoprotective effects of quercetin and curcumin against fipronil-induced hepatic injury in rats. Fresenius Environmental Bulletin, 30(7A), 9309-9321
  • Uzunhisarcikli, M., Apaydin, F.G., Bas, H., & Kalender, Y. (2023). The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicology Research, 12(3), 493-502. DOI: 10.1093/toxres/tfad034
  • Wang, J., Ding, L., Wang, K., Huang, R., Yu, W., Yan, B., Wang, H., Zhang, C., Yang, Z., & Liu, Z. (2022). Role of endoplasmic reticulum stress in cadmium-induced hepatocyte apoptosis and the protective effect of quercetin. Ecotoxicology and Environmental Safety, 241, 113772. DOI: 10.1016/j.ecoenv.2022.113772
  • Wataha, J.C., & Hanks, C.T. (1996). Biological effects of palladium and risk of using palladium in dental casting alloys. Journal of Oral Rehabilitation, 23(5), 309-320. DOI: 10.1111/j.1365- 2842.1996.tb00858.x
  • Yeni, Y., Genc, S., Nadaroglu, H., & Hacımuftuoglu, A. (2025). Effects of quercetin-immobilized albumin cerium oxide nanoparticles on glutamate toxicity: in vitro study. Naunyn-Schmiedeberg's Archives of Pharmacology, 398(5), 5147-5156. DOI: 10.1007/s00210-024-03610-w.
There are 50 citations in total.

Details

Primary Language Turkish
Subjects Animal Physiology-Ecophysiology
Journal Section Research Article
Authors

Çağlar Adıgüzel 0000-0003-3716-0051

Hatice Karaboduk 0000-0001-6752-7219

Fatma Gökçe Apaydın 0000-0002-2771-7488

Yusuf Kalender 0000-0001-5457-0517

Early Pub Date November 15, 2025
Publication Date November 26, 2025
Submission Date July 31, 2025
Acceptance Date November 4, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Adıgüzel, Ç., Karaboduk, H., Apaydın, F. G., Kalender, Y. (2025). Sıçanların Kan ve Dalak Dokusu Üzerine Paladyum Klorür’ün Toksik Etkisi ve Kuersetin’in Koruyucu Rolü. Journal of Anatolian Environmental and Animal Sciences, 10(6), 876-882. https://doi.org/10.35229/jaes.1754345


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS