Toxic Effect of Palladium Chloride on Blood and Spleen Tissue of Rats and Protective Role of Quercetin
Year 2025,
Volume: 10 Issue: 6, 876 - 882
Çağlar Adıgüzel
,
Hatice Karaboduk
,
Fatma Gökçe Apaydın
,
Yusuf Kalender
Abstract
Palladium is a heavy metal whose use in the industry has increased significantly in recent years, resulting in public health problems. Quercetin is a flavanol compound with antioxidant, anti-inflammatory and anticancer properties. In this study, the protective role of quercetin (Que) against the oxidative damage caused by palladium chloride (PdCl2) in the blood and spleen tissue of rats was investigated. Four groups were formed with 6 animals in each group. Control group, Que group (30 mg/kg bw), PdCl2 group (8 mg/kg bw) and Que+PdCl2 group. For 28 days, the administration substances were given to the rats by oral gavage. At the end of the experiment, there was a significant increase in the amount of MDA in the blood and spleen tissues of rats administered PdCl2 compared to the amount of MDA in the control group (p<0.05). At the same time, a significant decrease was observed in the SOD, CAT, GPx and GST antioxidant enzyme activities of rats in the PdCl2 group compared to the antioxidant enzyme activities of rats in the control group (p<0.05). When the quercetin-treated group was compared with the PdCl2-treated group, a significant increase in SOD, CAT, GPx and GST activities was reported, while the amount of MDA in blood and spleen tissues decreased. These results indicate that quercetin is an important food supplement.
References
-
Aarzoo, Nidhi, & Samim, M. (2022). Palladium
nanoparticles as emerging pollutants from motor
vehicles: An in-depth review on distribution,
uptake and toxicological effects in occupational
and living environment. Science of the Total
Environment, 823, 153787. DOI:
10.1016/j.scitotenv.2022.153787
-
Aarzoo, Siddiqui, M.A., Hasan, M., Nidhi, Khan, H.A.,
Rastogi, S., Arora, A., & Samim, M. (2024).
Palladium nanoparticles and lung health:
assessing morphology-dependent subacute
toxicity in rats and toxicity modulation by
naringin-paving the way for cleaner vehicular
emissions. ACS Omega, 9(30), 32745-32759
DOI: 10.1021/acsomega.4c02269
-
Adiguzel, C., & Karaboduk, H. (2024). Biochemical,
ımmunohistochemical, histopathological, and
apoptotic evaluation of nickel oxide nanoparticle-
and microparticle-ınduced testicular toxicity in
male rats. ACS Omega, 9(52), 50910-50921. DOI:
10.1021/acsomega.4c01005
-
Adiguzel, C., Karaboduk, H., Apaydın, F.G., &
Kalender, Y. (2025). Effects of quercetin on
palladium chloride-ınduced endoplasmic
reticulum stress, ınflammation, oxidative stress,
and apoptosis in hepatorenal tissues. Microscopy
and Microanalysis, 31(4), ozaf077. DOI:
10.1093/mam/ozaf077
-
Adiguzel, C., Karaboduk, H., Apaydin, F.G., Kalender,
S., & Kalender, Y. (2023). Comparison of nickel
oxide nano and microparticles toxicity in rat liver:
molecular, biochemical, and histopathological
study. Toxicology Research, 12(5), 741-750. DOI:
10.1093/toxres/tfad062
-
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology,
105, 121-126. DOI: 10.1016/S0076-
6879(84)05016-3
-
Al-Zharani, M., Mubarak, M., Rudayni, H.A., Al-
Doaiss, A.A., Abd-Elwahab, M.M., & Al-Eissa,
M.S. (2023). Quercetin as a dietary
supplementary flavonoid alleviates the oxidative
stress induced by lead toxicity in male wistar rats.
Nutrients, 15(8), 1888. DOI:
10.3390/nu15081888
-
Apaydin, F.G., Kalender, S., Bas, H., & Kalender, Y.
(2025). Evaluation of hepatotoxicity and
nephrotoxicity of fenitrothion on ultrastructural,
ımmunohistochemical, histopathological, and
biochemical changes: Protective role of gallic
acid. Microscopy and Microanalysis, 31(4),
ozaf068. DOI: 10.1093/mam/ozaf068
-
Apaydın, F.G., Baş, H., Kalender, S., & Kalender, Y.
(2016). Subacute effects of low dose lead nitrate
and mercury chloride exposure on kidney of rats.
Environmental Toxicology and Pharmacology,
41, 219-224. DOI: 10.1016/j.etap.2015.12.003
-
Apaydin, F.G., Kalender, S., Bas, H., Demir, F., &
Kalender, Y. (2015). Lead nitrate induced
testicular toxicity in diabetic and non-diabetic
rats: protective role of sodium selenite. Brazilian
Archives of Biology and Technology, 58(1), 68-
74.
-
Bernd, S., Christoph, S., & Sonja, Z. (2006). Biological
effects of palladium, In: Zereini, F. & Alt, F. (Ed),
Palladium emissions in the environment.
Analytical methods, environmental assessment
and health effects. 489-500p, Springer, Berlin,
Germany. DOI: 10.1007/3-540-29220-9
-
Boscolo, P., Di Giampaolo, L., Reale, M., Castellani,
M.L., Volpe, A.R., Carmignani, M., Ponti, J.,
Paganelli, R., Sabbioni, E., Conti, P., & Di
Gioacchino, M. (2004). Different effects of
platinum, palladium, and rhodium salts on
lymphocyte proliferation and cytokine release.
Annals of Clinical & Laboratory Science, 34(3),
299-306.
-
Chandimali, N., Bak, S.G., Park, E H., Lim, H.J., Won,
Y.S., Kim, E.K., Park, S.I., & Lee, S.J. (2025).
Free radicals and their impact on health and
antioxidant defenses: a review. Cell Death
Discovery, 11(1), 19. DOI: 10.1038/s41420-024-
02278-8
-
Ciftci, O., Beytur, A., Cakir, O., Gurbuz, N., & Vardi,
N. (2011). Comparison of reproductive toxicity
caused by cisplatin and novel platinum‐N‐
heterocyclic carbene complex in male rats. Basic & Clinical Pharmacology & Toxicology, 109(5),
328-333. DOI: 10.1111/j.1742-
7843.2011.00737.x
-
Ding, L., Wang, K., Zhu, H., Liu, Z., & Wang, J. (2024).
Protective effect of quercetin on cadmium-
induced kidney apoptosis in rats based on PERK
signaling pathway. Journal of Trace Elements in
Medicine and Biology, 82, 127355. DOI:
10.1016/j.jtemb.2023.127355
-
Drabkin, D.L. (1946). Spectrophotometric studies: XIV.
The crystallographic and optical properties of the
hemoglobin of man in comparison with those of
other species. Journal of Biological Chemistry,
164(2), 703-723. DOI: 10.1016/S0021-
9258(17)41272-5
-
El-Boshy, M.E., Risha, E.F., Abdelhamid, F.M.,
Mubarak, M.S., & Hadda, T.B. (2015).
Protective effects of selenium against cadmium
induced hematological disturbances,
immunosuppressive, oxidative stress and
hepatorenal damage in rats. Journal of Trace
Elements in Medicine and Biology, 29, 104-110.
DOIO: 10.1016/j.jtemb.2014.05.009
-
Fontana, L., Leso, V., Marinaccio, A., Cenacchi, G.,
Papa, V., Leopold, K., Schindl, R., Bocca, B.,
Alimonti, A., & Iavicoli, I. (2015). The effects of
palladium nanoparticles on the renal function of
female Wistar rats. Nanotoxicology, 9(7), 843-
851. DOI: 10.3109/17435390.2014.980759
-
Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974).
Glutathione S-transferases: the first enzymatic
step in mercapturic acid formation. Journal of
Biological Chemistry, 249(22), 7130-7139. DOI:
10.1016/S0021-9258(19)42083-8
-
Hashemzaei, A.M., Yarahmazehi, B.M., Tabrizian,
C.K., & Shahraki, D.J. (2016). Palladium
induced oxidative stress and cell death in normal
hepatocytes. Journal of Fundamental and Applied
Sciences, 8(2), 99-111. DOI: 10.4314/jfas.8vi2s.6
-
Holbrook Jr.D.J., Washington, M.E., Leake, H.B., &
Brubaker, P.E. (1975). Studies on the evaluation
of the toxicity of various salts of lead, manganese,
platinum, and palladium. Environmental Health
Perspectives., 10, 95-101. DOI:
10.1289/ehp.751095
-
Iavicoli, I., Bocca, B., Fontana, L., Caimi, S.,
Bergamaschi, A., & Alimonti, A. (2010).
Distribution and elimination of palladium in rats
after 90-day oral administration. Toxicology and
Industrial Health, 26(3), 183-189. DOI:
10.1177/0748233710362383
-
Iavicoli, I., Fontana, L., Leso, V., Corbi, M.,
Marinaccio, A., Leopold, K., Schind, R.,
Lucchetti, D., Calapa, F., & Sgambato, A.
(2018). Subchronic exposure to palladium
nanoparticles affects serum levels of cytokines in
female Wistar rats. Human & Experimental
Toxicology, 37(3), 309-320. DOI:
10.1177/0960327117702952
-
Iavicoli, I., Fontana, L., Corbi, M., Leso, V.,
Marinaccio, A., Leopold, K., Schindl, R., &
Sgambato, A. (2015). Exposure to palladium
nanoparticles affects serum levels of cytokines in
female wistar rats. PloS One, 10(11), e0143801.
DOI: 10.1371/journal.pone.0143801
-
Jomova, K., Alomar, S.Y., Valko, R., Liska, J.,
Nepovimova, E., Kuca, K., & Valko, M. (2025).
Flavonoids and their role in oxidative stress,
inflammation, and human diseases. Chemico-
Biological Interactions, 111489. DOI:
10.1016/j.cbi.2025.111489
-
Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., &
Pérez-Lebeña, E. (2021). The chemistry of
reactive oxygen species (ROS) revisited:
outlining their role in biological macromolecules
(DNA, lipids and proteins) and induced
pathologies. International Journal of Molecular
Sciences, 22(9), 4642. DOI:
10.3390/ijms22094642
-
Kalender, S., Apaydin, F.G., & Kalender, Y. (2019).
Testicular toxicity of orally administrated
bisphenol A in rats and protective role of taurine
and curcumin. Pakistan Journal of
Pharmaceutical Sciences, 32(3), 1043-1047.
-
Kalender, S., Apaydin, F.G., Baş, H., & Kalender, Y.
(2015). Protective effects of sodium selenite on
lead nitrate-induced hepatotoxicity in diabetic and
non-diabetic rats. Environmental Toxicology and
Pharmacology, 40(2), 568-574. DOI:
10.1016/j.etap.2015.08.011
-
Kalender, Y., Kaya, S., Durak, D., Uzun, F.G., &
Demir, F. (2012). Protective effects of catechin
and quercetin on antioxidant status, lipid
peroxidation and testis-histoarchitecture induced
by chlorpyrifos in male rats. Environmental
Toxicology and Pharmacology, 33(2), 141-148.
DOI: 10.1016/j.etap.2011.12.008
-
Kamala, C.T., Balaram, V., Satyanarayanan, M., Kiran
Kumar, A., & Subramanyam, K.S.V. (2015).
Biomonitoring of airborne platinum group
elements in urban traffic police officers. Archives
of Environmental Contamination and Toxicology,
68, 421-431. DOI: 10.1007/s00244-014-0114-7
-
Karaboduk, H., Adıgüzel, Ç., Apaydın, F.G., Kalender,
S., Uzunhisarcikli, M., & Kalender, Y. (2024).
Fenamifos' un sıçan kan ve dalak dokusunda
sebep olduğu oksidatif stres üzerine naringenin'in
koruyucu rolü. Journal of the Institute of Science
and Technology, 14(2), 625-635. DOI:
10.21597/jist.1381156
-
Karaboduk, H., & Kalender, Y. (2021). The effects of
lead nitrate and mercury chloride on rat liver
tissue. Fresenius Environmental Bulletin, 30(3),
2368-2379.
-
Le, N.A. (2015). Lipoprotein-associated oxidative stress:
A new twist to the postprandial hypothesis.
International Journal of Molecular Sciences,
16(1), 401-419. DOI: 10.3390/ijms16010401
-
Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song,
L., & Huang, X. (2021). Protective effects of
folic acid on oxidative damage of rat spleen
induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. DOI:
10.1016/j.ecoenv.2021.111917
-
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall,
R.J. (1951). Protein measurement with the Folin
phenol reagent. Journal of Biological Chemistry,
193(1), 265-275.
-
Marklund, S., & Marklund, G. (1974). Involvement of
the superoxide anion radical in the autoxidation of
pyrogallol and a convenient assay for superoxide
dismutase. European Journal of Biochemistry,
47(3), 469-474. DOI: 10.1111/j.1432-
1033.1974.tb03714.x
-
Moore, W., Hysell, D., Hall, L., Campbell, K., & Sttara,
J. (1975). Preliminary studies on the toxicity and
metabolism of palladium and platinum.
Environmental Health Perspectives, 10, 63-71
DOI: 10.1289/ehp.751063
-
Muris, J., Goossens, A., Gonçalo, M., Bircher, A.J.,
Giménez‐Arnau, A., Foti, C., Rustemeyer, T.,
Feilzer, A.J., & Kleverlaan, C.J. (2015).
Sensitization to palladium and nickel in Europe
and the relationship with oral disease and dental
alloys. Contact Dermatitis, 72(5), 286-296. DOI:
10.1111/cod.12327
-
Ohkawa, H., Ohishi, N., & Yagi, K., (1979). Assay for
lipid peroxides in animal tissues by thiobarbituric
acid reaction. Analytical Biochemistry, 95(2),
351-358. DOI: 10.1016/0003-2697(79)90738-3
-
Paglia, D.E., & Valentine, W.N., (1987). Studies on the
quantative and qualitative characterization of
glutathione peroxidase. Journal of Laboratory
and Clinical Medicine, 70, 158-165.
-
Peric, T., Lj. Jakovljevic, V., Zivkovic, V., Krkeljic,
J.,D. Petrovic, Z., Simijonovic, D., Novokmet,
S., Djuric, D.M., & Jankovic, M.S., (2012).
Toxic effects of palladium compounds on the
isolated rat heart. Medicinal Chemistry, 8(1), 9-
13. DOI: 10.2174/157340612799278612
-
Shi, Y., Wang, K., Ling, H., Mao, J., Xu, B., Liu, Z., &
Wang, J. (2024). Quercetin attenuates cadmium-
induced hepatotoxicity by suppressing oxidative
stress and apoptosis in rat. Journal of Trace
Elements in Medicine and Biology, 86, 127554.
DOI: 10.1016/j.jtemb.2024.127554
-
Thyssen, J.P., & Menné, T. (2010). Metal allergy A
review on exposures, penetration, genetics,
prevalence, and clinical implications. Chemical
Research in Toxicology, 23(2), 309-318. DOI:
10.1021/tx9002726
-
Uzun, F., & Kalender, Y. (2011). Protective effect of
vitamins c and e on malathion-induced
nephrotoxicity in male rats. Gazi University
Journal of Science, 24(2), 193-201.
-
Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced
hepatotoxic and hematologic changes in rats: The
role of quercetin and catechin. Food and
Chemical Toxicology, 55, 549-556. DOI:
10.1016/j.fct. 2013.01.056
-
Uzunhisarcikli, M., Apaydin, F.G., Bas, H., &
Kalender, Y. (2021). Hepatoprotective effects of
quercetin and curcumin against fipronil-induced
hepatic injury in rats. Fresenius Environmental
Bulletin, 30(7A), 9309-9321
-
Uzunhisarcikli, M., Apaydin, F.G., Bas, H., &
Kalender, Y. (2023). The ameliorative effects of
quercetin and curcumin against subacute
nephrotoxicity of fipronil induced in Wistar rats.
Toxicology Research, 12(3), 493-502. DOI:
10.1093/toxres/tfad034
-
Wang, J., Ding, L., Wang, K., Huang, R., Yu, W., Yan,
B., Wang, H., Zhang, C., Yang, Z., & Liu, Z.
(2022). Role of endoplasmic reticulum stress in
cadmium-induced hepatocyte apoptosis and the
protective effect of quercetin. Ecotoxicology and
Environmental Safety, 241, 113772. DOI:
10.1016/j.ecoenv.2022.113772
-
Wataha, J.C., & Hanks, C.T. (1996). Biological effects
of palladium and risk of using palladium in dental
casting alloys. Journal of Oral Rehabilitation,
23(5), 309-320. DOI: 10.1111/j.1365-
2842.1996.tb00858.x
-
Yeni, Y., Genc, S., Nadaroglu, H., & Hacımuftuoglu, A.
(2025). Effects of quercetin-immobilized albumin
cerium oxide nanoparticles on glutamate toxicity:
in vitro study. Naunyn-Schmiedeberg's Archives
of Pharmacology, 398(5), 5147-5156. DOI:
10.1007/s00210-024-03610-w.
Sıçanların Kan ve Dalak Dokusu Üzerine Paladyum Klorür’ün Toksik Etkisi ve Kuersetin’in Koruyucu Rolü
Year 2025,
Volume: 10 Issue: 6, 876 - 882
Çağlar Adıgüzel
,
Hatice Karaboduk
,
Fatma Gökçe Apaydın
,
Yusuf Kalender
Abstract
Paladyum son yıllarda endüstride kullanımı ciddi anlamda artan ve bunun sonucu olarak da halk sağlığı problemlerini meydana getiren bir ağır metaldir. Kuersetin antioksidan, anti-inflamatuar ve anti-kanser gibi özellikleri ile öne çıkan flavanol bir bileşiktir. Bu çalışmada paladyum klorürün (PdCl2) sıçanların kan ve dalak dokusunda yarattığı oksidatif hasara karşı kuersetinin (Que) korucu rolü araştırılmıştır. Her grupta 6 hayvan olacak şekilde 4 grup oluşturulmuştur. Kontrol grubu, Que grubu (30 mg/kg v.a.), PdCl2 grubu (8 mg/kg v.a.) ve Que+PdCl2 grubu. 28 gün boyunca uygulama maddeleri sıçanlara oral gavaj yoluyla verilmiştir. Deney sonunda PdCl2 uygulanan sıçanların kan ve dalak dokularındaki MDA miktarında kontrol grubundaki sıçanların MDA miktarına göre anlamlı bir artış meydana gelmiştir (p<0,05). Aynı zamanda PdCl2 grubundaki sıçanların SOD, CAT, GPx ve GST antioksidan enzim aktivitelerinde, kontrol grubundaki sıçanların antioksidan enzim aktivitelerine göre anlamlı bir azalma gözlenmiştir (p<0,05). Kuersetin uygulamalı grup ile PdCl2 uygulamalı grup karşılaştırıldığında kan ve dalak dokularındaki MDA miktarı azalırken, SOD, CAT, GPx ve GST aktivitelerinde anlamlı bir artış rapor edilmiştir. Bu sonuçlar kuersetinin önemli bir takviye gıda olduğunu göstermektedir.
Ethical Statement
Tüm deney prosedürleri için Gazi Üniversitesi Hayvan Deneyleri Yerel Etik Kurulu tarafından onay alındı (G.Ü.ET-23.064).
Thanks
Çalışmamızın deney hayvanları kısmını maddi olarak destekleyen Gazi Üniversitesi Bilimsel Araştırma Projeleri birimine teşekkür ederiz
References
-
Aarzoo, Nidhi, & Samim, M. (2022). Palladium
nanoparticles as emerging pollutants from motor
vehicles: An in-depth review on distribution,
uptake and toxicological effects in occupational
and living environment. Science of the Total
Environment, 823, 153787. DOI:
10.1016/j.scitotenv.2022.153787
-
Aarzoo, Siddiqui, M.A., Hasan, M., Nidhi, Khan, H.A.,
Rastogi, S., Arora, A., & Samim, M. (2024).
Palladium nanoparticles and lung health:
assessing morphology-dependent subacute
toxicity in rats and toxicity modulation by
naringin-paving the way for cleaner vehicular
emissions. ACS Omega, 9(30), 32745-32759
DOI: 10.1021/acsomega.4c02269
-
Adiguzel, C., & Karaboduk, H. (2024). Biochemical,
ımmunohistochemical, histopathological, and
apoptotic evaluation of nickel oxide nanoparticle-
and microparticle-ınduced testicular toxicity in
male rats. ACS Omega, 9(52), 50910-50921. DOI:
10.1021/acsomega.4c01005
-
Adiguzel, C., Karaboduk, H., Apaydın, F.G., &
Kalender, Y. (2025). Effects of quercetin on
palladium chloride-ınduced endoplasmic
reticulum stress, ınflammation, oxidative stress,
and apoptosis in hepatorenal tissues. Microscopy
and Microanalysis, 31(4), ozaf077. DOI:
10.1093/mam/ozaf077
-
Adiguzel, C., Karaboduk, H., Apaydin, F.G., Kalender,
S., & Kalender, Y. (2023). Comparison of nickel
oxide nano and microparticles toxicity in rat liver:
molecular, biochemical, and histopathological
study. Toxicology Research, 12(5), 741-750. DOI:
10.1093/toxres/tfad062
-
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology,
105, 121-126. DOI: 10.1016/S0076-
6879(84)05016-3
-
Al-Zharani, M., Mubarak, M., Rudayni, H.A., Al-
Doaiss, A.A., Abd-Elwahab, M.M., & Al-Eissa,
M.S. (2023). Quercetin as a dietary
supplementary flavonoid alleviates the oxidative
stress induced by lead toxicity in male wistar rats.
Nutrients, 15(8), 1888. DOI:
10.3390/nu15081888
-
Apaydin, F.G., Kalender, S., Bas, H., & Kalender, Y.
(2025). Evaluation of hepatotoxicity and
nephrotoxicity of fenitrothion on ultrastructural,
ımmunohistochemical, histopathological, and
biochemical changes: Protective role of gallic
acid. Microscopy and Microanalysis, 31(4),
ozaf068. DOI: 10.1093/mam/ozaf068
-
Apaydın, F.G., Baş, H., Kalender, S., & Kalender, Y.
(2016). Subacute effects of low dose lead nitrate
and mercury chloride exposure on kidney of rats.
Environmental Toxicology and Pharmacology,
41, 219-224. DOI: 10.1016/j.etap.2015.12.003
-
Apaydin, F.G., Kalender, S., Bas, H., Demir, F., &
Kalender, Y. (2015). Lead nitrate induced
testicular toxicity in diabetic and non-diabetic
rats: protective role of sodium selenite. Brazilian
Archives of Biology and Technology, 58(1), 68-
74.
-
Bernd, S., Christoph, S., & Sonja, Z. (2006). Biological
effects of palladium, In: Zereini, F. & Alt, F. (Ed),
Palladium emissions in the environment.
Analytical methods, environmental assessment
and health effects. 489-500p, Springer, Berlin,
Germany. DOI: 10.1007/3-540-29220-9
-
Boscolo, P., Di Giampaolo, L., Reale, M., Castellani,
M.L., Volpe, A.R., Carmignani, M., Ponti, J.,
Paganelli, R., Sabbioni, E., Conti, P., & Di
Gioacchino, M. (2004). Different effects of
platinum, palladium, and rhodium salts on
lymphocyte proliferation and cytokine release.
Annals of Clinical & Laboratory Science, 34(3),
299-306.
-
Chandimali, N., Bak, S.G., Park, E H., Lim, H.J., Won,
Y.S., Kim, E.K., Park, S.I., & Lee, S.J. (2025).
Free radicals and their impact on health and
antioxidant defenses: a review. Cell Death
Discovery, 11(1), 19. DOI: 10.1038/s41420-024-
02278-8
-
Ciftci, O., Beytur, A., Cakir, O., Gurbuz, N., & Vardi,
N. (2011). Comparison of reproductive toxicity
caused by cisplatin and novel platinum‐N‐
heterocyclic carbene complex in male rats. Basic & Clinical Pharmacology & Toxicology, 109(5),
328-333. DOI: 10.1111/j.1742-
7843.2011.00737.x
-
Ding, L., Wang, K., Zhu, H., Liu, Z., & Wang, J. (2024).
Protective effect of quercetin on cadmium-
induced kidney apoptosis in rats based on PERK
signaling pathway. Journal of Trace Elements in
Medicine and Biology, 82, 127355. DOI:
10.1016/j.jtemb.2023.127355
-
Drabkin, D.L. (1946). Spectrophotometric studies: XIV.
The crystallographic and optical properties of the
hemoglobin of man in comparison with those of
other species. Journal of Biological Chemistry,
164(2), 703-723. DOI: 10.1016/S0021-
9258(17)41272-5
-
El-Boshy, M.E., Risha, E.F., Abdelhamid, F.M.,
Mubarak, M.S., & Hadda, T.B. (2015).
Protective effects of selenium against cadmium
induced hematological disturbances,
immunosuppressive, oxidative stress and
hepatorenal damage in rats. Journal of Trace
Elements in Medicine and Biology, 29, 104-110.
DOIO: 10.1016/j.jtemb.2014.05.009
-
Fontana, L., Leso, V., Marinaccio, A., Cenacchi, G.,
Papa, V., Leopold, K., Schindl, R., Bocca, B.,
Alimonti, A., & Iavicoli, I. (2015). The effects of
palladium nanoparticles on the renal function of
female Wistar rats. Nanotoxicology, 9(7), 843-
851. DOI: 10.3109/17435390.2014.980759
-
Habig, W.H., Pabst, M.J., & Jakoby, W.B. (1974).
Glutathione S-transferases: the first enzymatic
step in mercapturic acid formation. Journal of
Biological Chemistry, 249(22), 7130-7139. DOI:
10.1016/S0021-9258(19)42083-8
-
Hashemzaei, A.M., Yarahmazehi, B.M., Tabrizian,
C.K., & Shahraki, D.J. (2016). Palladium
induced oxidative stress and cell death in normal
hepatocytes. Journal of Fundamental and Applied
Sciences, 8(2), 99-111. DOI: 10.4314/jfas.8vi2s.6
-
Holbrook Jr.D.J., Washington, M.E., Leake, H.B., &
Brubaker, P.E. (1975). Studies on the evaluation
of the toxicity of various salts of lead, manganese,
platinum, and palladium. Environmental Health
Perspectives., 10, 95-101. DOI:
10.1289/ehp.751095
-
Iavicoli, I., Bocca, B., Fontana, L., Caimi, S.,
Bergamaschi, A., & Alimonti, A. (2010).
Distribution and elimination of palladium in rats
after 90-day oral administration. Toxicology and
Industrial Health, 26(3), 183-189. DOI:
10.1177/0748233710362383
-
Iavicoli, I., Fontana, L., Leso, V., Corbi, M.,
Marinaccio, A., Leopold, K., Schind, R.,
Lucchetti, D., Calapa, F., & Sgambato, A.
(2018). Subchronic exposure to palladium
nanoparticles affects serum levels of cytokines in
female Wistar rats. Human & Experimental
Toxicology, 37(3), 309-320. DOI:
10.1177/0960327117702952
-
Iavicoli, I., Fontana, L., Corbi, M., Leso, V.,
Marinaccio, A., Leopold, K., Schindl, R., &
Sgambato, A. (2015). Exposure to palladium
nanoparticles affects serum levels of cytokines in
female wistar rats. PloS One, 10(11), e0143801.
DOI: 10.1371/journal.pone.0143801
-
Jomova, K., Alomar, S.Y., Valko, R., Liska, J.,
Nepovimova, E., Kuca, K., & Valko, M. (2025).
Flavonoids and their role in oxidative stress,
inflammation, and human diseases. Chemico-
Biological Interactions, 111489. DOI:
10.1016/j.cbi.2025.111489
-
Juan, C.A., Pérez de la Lastra, J.M., Plou, F.J., &
Pérez-Lebeña, E. (2021). The chemistry of
reactive oxygen species (ROS) revisited:
outlining their role in biological macromolecules
(DNA, lipids and proteins) and induced
pathologies. International Journal of Molecular
Sciences, 22(9), 4642. DOI:
10.3390/ijms22094642
-
Kalender, S., Apaydin, F.G., & Kalender, Y. (2019).
Testicular toxicity of orally administrated
bisphenol A in rats and protective role of taurine
and curcumin. Pakistan Journal of
Pharmaceutical Sciences, 32(3), 1043-1047.
-
Kalender, S., Apaydin, F.G., Baş, H., & Kalender, Y.
(2015). Protective effects of sodium selenite on
lead nitrate-induced hepatotoxicity in diabetic and
non-diabetic rats. Environmental Toxicology and
Pharmacology, 40(2), 568-574. DOI:
10.1016/j.etap.2015.08.011
-
Kalender, Y., Kaya, S., Durak, D., Uzun, F.G., &
Demir, F. (2012). Protective effects of catechin
and quercetin on antioxidant status, lipid
peroxidation and testis-histoarchitecture induced
by chlorpyrifos in male rats. Environmental
Toxicology and Pharmacology, 33(2), 141-148.
DOI: 10.1016/j.etap.2011.12.008
-
Kamala, C.T., Balaram, V., Satyanarayanan, M., Kiran
Kumar, A., & Subramanyam, K.S.V. (2015).
Biomonitoring of airborne platinum group
elements in urban traffic police officers. Archives
of Environmental Contamination and Toxicology,
68, 421-431. DOI: 10.1007/s00244-014-0114-7
-
Karaboduk, H., Adıgüzel, Ç., Apaydın, F.G., Kalender,
S., Uzunhisarcikli, M., & Kalender, Y. (2024).
Fenamifos' un sıçan kan ve dalak dokusunda
sebep olduğu oksidatif stres üzerine naringenin'in
koruyucu rolü. Journal of the Institute of Science
and Technology, 14(2), 625-635. DOI:
10.21597/jist.1381156
-
Karaboduk, H., & Kalender, Y. (2021). The effects of
lead nitrate and mercury chloride on rat liver
tissue. Fresenius Environmental Bulletin, 30(3),
2368-2379.
-
Le, N.A. (2015). Lipoprotein-associated oxidative stress:
A new twist to the postprandial hypothesis.
International Journal of Molecular Sciences,
16(1), 401-419. DOI: 10.3390/ijms16010401
-
Li, N., Zhao, Y., Shen, Y., Cheng, Y., Qiao, M., Song,
L., & Huang, X. (2021). Protective effects of
folic acid on oxidative damage of rat spleen
induced by lead acetate. Ecotoxicology and Environmental Safety, 211, 111917. DOI:
10.1016/j.ecoenv.2021.111917
-
Lowry, O.H., Rosebrough, N.J., Farr, A.L., & Randall,
R.J. (1951). Protein measurement with the Folin
phenol reagent. Journal of Biological Chemistry,
193(1), 265-275.
-
Marklund, S., & Marklund, G. (1974). Involvement of
the superoxide anion radical in the autoxidation of
pyrogallol and a convenient assay for superoxide
dismutase. European Journal of Biochemistry,
47(3), 469-474. DOI: 10.1111/j.1432-
1033.1974.tb03714.x
-
Moore, W., Hysell, D., Hall, L., Campbell, K., & Sttara,
J. (1975). Preliminary studies on the toxicity and
metabolism of palladium and platinum.
Environmental Health Perspectives, 10, 63-71
DOI: 10.1289/ehp.751063
-
Muris, J., Goossens, A., Gonçalo, M., Bircher, A.J.,
Giménez‐Arnau, A., Foti, C., Rustemeyer, T.,
Feilzer, A.J., & Kleverlaan, C.J. (2015).
Sensitization to palladium and nickel in Europe
and the relationship with oral disease and dental
alloys. Contact Dermatitis, 72(5), 286-296. DOI:
10.1111/cod.12327
-
Ohkawa, H., Ohishi, N., & Yagi, K., (1979). Assay for
lipid peroxides in animal tissues by thiobarbituric
acid reaction. Analytical Biochemistry, 95(2),
351-358. DOI: 10.1016/0003-2697(79)90738-3
-
Paglia, D.E., & Valentine, W.N., (1987). Studies on the
quantative and qualitative characterization of
glutathione peroxidase. Journal of Laboratory
and Clinical Medicine, 70, 158-165.
-
Peric, T., Lj. Jakovljevic, V., Zivkovic, V., Krkeljic,
J.,D. Petrovic, Z., Simijonovic, D., Novokmet,
S., Djuric, D.M., & Jankovic, M.S., (2012).
Toxic effects of palladium compounds on the
isolated rat heart. Medicinal Chemistry, 8(1), 9-
13. DOI: 10.2174/157340612799278612
-
Shi, Y., Wang, K., Ling, H., Mao, J., Xu, B., Liu, Z., &
Wang, J. (2024). Quercetin attenuates cadmium-
induced hepatotoxicity by suppressing oxidative
stress and apoptosis in rat. Journal of Trace
Elements in Medicine and Biology, 86, 127554.
DOI: 10.1016/j.jtemb.2024.127554
-
Thyssen, J.P., & Menné, T. (2010). Metal allergy A
review on exposures, penetration, genetics,
prevalence, and clinical implications. Chemical
Research in Toxicology, 23(2), 309-318. DOI:
10.1021/tx9002726
-
Uzun, F., & Kalender, Y. (2011). Protective effect of
vitamins c and e on malathion-induced
nephrotoxicity in male rats. Gazi University
Journal of Science, 24(2), 193-201.
-
Uzun, F.G., & Kalender, Y. (2013). Chlorpyrifos induced
hepatotoxic and hematologic changes in rats: The
role of quercetin and catechin. Food and
Chemical Toxicology, 55, 549-556. DOI:
10.1016/j.fct. 2013.01.056
-
Uzunhisarcikli, M., Apaydin, F.G., Bas, H., &
Kalender, Y. (2021). Hepatoprotective effects of
quercetin and curcumin against fipronil-induced
hepatic injury in rats. Fresenius Environmental
Bulletin, 30(7A), 9309-9321
-
Uzunhisarcikli, M., Apaydin, F.G., Bas, H., &
Kalender, Y. (2023). The ameliorative effects of
quercetin and curcumin against subacute
nephrotoxicity of fipronil induced in Wistar rats.
Toxicology Research, 12(3), 493-502. DOI:
10.1093/toxres/tfad034
-
Wang, J., Ding, L., Wang, K., Huang, R., Yu, W., Yan,
B., Wang, H., Zhang, C., Yang, Z., & Liu, Z.
(2022). Role of endoplasmic reticulum stress in
cadmium-induced hepatocyte apoptosis and the
protective effect of quercetin. Ecotoxicology and
Environmental Safety, 241, 113772. DOI:
10.1016/j.ecoenv.2022.113772
-
Wataha, J.C., & Hanks, C.T. (1996). Biological effects
of palladium and risk of using palladium in dental
casting alloys. Journal of Oral Rehabilitation,
23(5), 309-320. DOI: 10.1111/j.1365-
2842.1996.tb00858.x
-
Yeni, Y., Genc, S., Nadaroglu, H., & Hacımuftuoglu, A.
(2025). Effects of quercetin-immobilized albumin
cerium oxide nanoparticles on glutamate toxicity:
in vitro study. Naunyn-Schmiedeberg's Archives
of Pharmacology, 398(5), 5147-5156. DOI:
10.1007/s00210-024-03610-w.