Research Article
BibTex RIS Cite

Reducing Overall Water Risk through Green Infrastructure in the Eastern Black Sea Coast

Year 2025, Volume: 10 Issue: 6, 807 - 815
https://doi.org/10.35229/jaes.1762331

Abstract

This study examines the concepts of "general water risk" and "green infrastructure" within the context of climate change, both globally and specifically for the Eastern Black Sea Region. The research was designed in two stages. In the first stage, the relationships, thematic clusters, and trends between these two concepts were revealed through bibliometric analysis conducted in Web of Science, PubMed, and Embase databases. In the second stage, the general water risk profile of the Eastern Black Sea provinces was compared with that of Turkey as a whole using Water Risk Atlas data. The findings indicate that in the literature, green infrastructure is predominantly associated with technical and environmental themes such as climate change, flood risk management, rainwater management, and ecosystem services, while the public health dimension has received limited attention. An examination of the general water risk of the Eastern Black Sea Coastal region reveals that the region experiences low water stress thanks to its high rainfall regime, abundant surface water resources, and low agricultural irrigation demand. However, to counter the potential increase in river flooding and flash flood risks due to climate change, it is recommended that green infrastructure practices be expanded in stream beds and floodplains. This approach will contribute to both maintaining the current low risk level and increasing regional climate adaptation capacity.

References

  • Benoit, T., Martel, J.-L., Bilodeau, É., Brissette, F., Charron, A., Brulé, D., . . . Deslauriers, S. (2025). Limits of Blue and Green Infrastructures to Adapt Actual Urban Drainage Systems to the Impact of Climate Change. Journal of Irrigation and Drainage Engineering, 151(2), 04025003. DOI: 10.1061/JIDEDH.IRENG-10330
  • Borah, G. (2025). Urban Water Stress: Climate Change Implications for Water Supply in Cities. Water Conservation Science and Engineering, 10(1), 20. DOI: 10.1007/s41101-025-00344-5
  • Fuady, M., Buraida, Kevin, M.A., Farrel, M.R., & Triaputri, A. (2025). Enhancing Urban Resilience: Opportunities and Challenges in Adapting to Natural Disasters in Indonesian Cities. Sustainability, 17(4). DOI: 10.3390/su17041632
  • Gray, S., O’Mahony, C., Hills, J., O’Dwyer, B., Devoy, R., & Gault, J. (2020). Strengthening coastal adaptation planning through scenario analysis: A beneficial but incomplete solution. Marine Policy, 111, 102391. DOI: 10.1016/j.marpol.2016.04.031
  • Gulpinar Sekban, D.U., & Acar, C. (2021). Determining usages in post-mining sites according to landscape design approaches. Land Degradation & Development, 32(8), 2661-2676. DOI: 10.1002/ldr.3933
  • Gulpinar Sekban, D.U., & Acar, C. (2024a). Evaluation of the variables affecting usage preferences in reclaimed areas through design focus and intensity. European Planning Studies, 32(1), 121- 147. DOI: 10.1080/09654313.2023.2177099
  • Gulpinar Sekban, D.U., & Acar, C. (2024b). Combining Climate Change Adaptation Strategies with Spatial Analysis and Transforming Urban Open Spaces into Landscape Design Solutions: Case of Trabzon City, Türkiye. Journal of Urban Planning and Development, 150(3), 05024020. DOI: 10.1061/JUPDDM.UPENG-4809
  • Gulpinar Sekban, D.U., & Akyol, D. (2023). Contributions of Green Infrastructure-Oriented Planning and Designing in Residential Gardens to the City’s Ecosystem: Case of Trabzon City, Turkey. Journal of Urban Planning and Development, 149(1), 05022043. DOI: 10.1061/(ASCE)UP.1943-5444.0000898
  • Gulpinar Sekban, D.U., & Düzgüneş, E. (2021). Planting Design Approach in Sustainable Urban Planning. International Journal of Built Environment and Sustainability, 8(2), 63-71. DOI: 10.11113/ijbes.v8.n2.674
  • IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change In H. L. a. J. R. e. Core Writing Team (Ed.), IPCC (pp. 35-115). Switzerland.
  • Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. (2017). Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, 13(1), 205-212. DOI: 10.1007/s11355-016-0309-3
  • Kadıoğlu, Y., Bağcı, H.R., & Yılmaz, C. (2017). Doğu Karadeniz Kıyı Kuşağındaki Doğal Afetlere Bir Örnek: 21 Eylül 2016 Tarihli Beşikdüzü Seli ve Heyelanları. Marmara Coğrafya Dergisi, 36, 232- 242.
  • Khan, M.O., D. Keesstra, S., Słowik-Opoka, E., Klamerus-Iwan, A., & Liaqat, W. (2025). Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature- Based Solutions in Urban Ecosystem. Water, 17(3). DOI: 10.3390/w17030322
  • Kreibich, H., & Thieken, A. H. (2009). Coping with floods in the city of Dresden, Germany. Natural Hazards, 51(3), 423-436. DOI: 10.1007/s11069- 007-9200-8
  • Larsen, T.A., & Gujer, W. (1997). The concept of sustainable Urban Water Management. Water Science and Technology, 35(9), 3-10. DOI: 10.1016/S0273-1223(97)00179-0
  • Lin, Z.-H., Laffan, S.W., & Metternicht, G. (2025). Role of green infrastructure planning in achieving sustainable development goals through an environmental efficiency lens: An integrated literature review. Ecological Indicators, 174, 113471. DOI: 10.1016/j.ecolind.2025.113471
  • Onur, M. (2024). The Employment of Rain Gardens in Urban Water Management to Improve Biodiversity and Ecosystem Resilience. In A. Stefanakis, H.V. Oral, C. Calheiros, & P. Carvalho (Eds.), Nature-based Solutions for Circular Management of Urban Water (pp. 73- 91). Cham: Springer International Publishing.
  • Onur, M., & Gulpinar Sekban, D.U. (2022). Sandy Beaches Changing in Line with Urbanization Visual Quality Values. International Journal of Built Environment and Sustainability, 9(2), 35-45. DOI: 10.11113/ijbes.v9.n2.932
  • Osborne, L.L., & Kovacic, D.A. (1993). Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology, 29(2), 243-258. DOI: 10.1111/j.1365- 2427.1993.tb00761.x
  • Radu, G., Chevereșan, M.I., Perju, S., & Bărbulescu, A. (2025). Integrating Nature-Based Solutions for Increased Resilience to Urban Flooding in the Climate Change Context. Hydrology, 12(1). DOI: 10.3390/hydrology12010016
  • Rimal, B., Zhang, L., Keshtkar, H., Sun, X., & Rijal, S. (2018). Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal. Land, 7(1). DOI: 10.3390/land7010037
  • Seelam, D.R., Kidiyur, M.D., Whig, P., Gupta, S.K., & Balantrapu, S.S. (2025). Integrating Artificial Intelligence in Blue-Green Infrastructure: Enhancing Sustainability and Resilience. In S. K.
  • Gupta, N. Maurya, F. A. Malik, & L. Razzak Janjua (Eds.), Integrating Blue-Green Infrastructure Into Urban Development (pp. 347- 372). Hershey, PA, USA: IGI Global Scientific Publishing.
  • Wri. (2025). Water Risk Atlas. Retrieved 10.05.2025, 2025, from https://www.wri.org/applications/aqueduct/water-risk-atlas/
  • Wu, H., Zhang, M., He, Y., Chen, P., Pasquier, U., Hu, H., & Wen, J. (2025). Scenario-based flood adaption of a fast-developing delta city: Modeling the extreme compound flood adaptations for shanghai. International Journal of Disaster Risk Reduction, 117, 105207. DOI: 10.1016/j.ijdrr.2025.105207
  • Yan, K., Di Baldassarre, G., Solomatine, D.P., & Schumann, G. J.P. (2015). A review of low-cost space-borne data for flood modelling: topography, flood extent and water level. Hydrological Processes, 29(15), 3368-3387. DOI: 10.1002/hyp.10449
  • Yang, K., Hou, H., Li, Y., Chen, Y., Wang, L., Wang, P., & Hu, T. (2022). Future urban waterlogging simulation based on LULC forecast model: A case study in Haining City, China. Sustainable Cities and Society, 87, 104167. DOI: 10.1016/j.scs.2022.104167
  • Zhou, M., He, Y., & Qiu, Z. (2025). Construction of a Multi-level Blue-Green Infrastructure Network in a Riverside City: A Case Study of Shaoxing. Ecosystem Health and Sustainability, 11, 0287. DOI: 10.34133/ehs.0287
  • Zhou, S., Diao, H., Wang, J., Jia, W., Xu, H., Xu, X., . . ., &Wu, Z. (2025). Multi-stage optimization framework for synergetic grey-green infrastructure in response to long-term climate variability based on shared socio-economic pathways. Water Research, 274, 123091. DOI: 10.1016/j.watres.2025.123091.

Doğu Karadeniz Kıyılarında Yeşil Altyapı ile Genel Su Riskinin Azaltılması

Year 2025, Volume: 10 Issue: 6, 807 - 815
https://doi.org/10.35229/jaes.1762331

Abstract

Bu çalışma, iklim değişikliği kapsamında “genel su riski” ve “yeşil altyapı” kavramlarını hem küresel ölçekte hem de Doğu Karadeniz Bölgesi özelinde incelemektedir. Araştırma iki aşamalı olarak tasarlanmıştır. İlk aşamada, Web of Science, PubMed ve Embase veri tabanlarında yapılan bibliometrik analiz ile bu iki kavram arasındaki ilişkiler, tematik kümeler ve eğilimler ortaya konmuştur. İkinci aşamada, Water Risk Atlas verileri kullanılarak Doğu Karadeniz illerinin genel su riski profili Türkiye geneli ile karşılaştırılmıştır. Bulgular, literatürde yeşil altyapının ağırlıklı olarak iklim değişikliği, sel riski yönetimi, yağmur suyu yönetimi ve ekosistem hizmetleri gibi teknik ve çevresel temalarla ilişkilendirildiğini gösterirken halk sağlığı boyutunun ise sınırlı bir yer tuttuğunu göstermektedir. Doğu Karadeniz Kıyı bölgesinin genel su riski incelendiğinde ise bölgenin yüksek yağış rejimi, bol yüzey suyu kaynakları ve düşük tarımsal sulama talebi sayesinde düşük su stresine sahip olduğunu ortaya koymuştur. Ancak iklim değişikliği kapsamında artabilecek nehir taşkınları ve ani sel risklerine karşı, dere yatakları ve taşkın alanlarında yeşil altyapı uygulamalarının yaygınlaştırılması önerilmektedir. Bu yaklaşım, hem mevcut düşük risk seviyesinin korunmasına hem de bölgesel iklim uyum kapasitesinin artırılmasına katkı sağlayacaktır.

References

  • Benoit, T., Martel, J.-L., Bilodeau, É., Brissette, F., Charron, A., Brulé, D., . . . Deslauriers, S. (2025). Limits of Blue and Green Infrastructures to Adapt Actual Urban Drainage Systems to the Impact of Climate Change. Journal of Irrigation and Drainage Engineering, 151(2), 04025003. DOI: 10.1061/JIDEDH.IRENG-10330
  • Borah, G. (2025). Urban Water Stress: Climate Change Implications for Water Supply in Cities. Water Conservation Science and Engineering, 10(1), 20. DOI: 10.1007/s41101-025-00344-5
  • Fuady, M., Buraida, Kevin, M.A., Farrel, M.R., & Triaputri, A. (2025). Enhancing Urban Resilience: Opportunities and Challenges in Adapting to Natural Disasters in Indonesian Cities. Sustainability, 17(4). DOI: 10.3390/su17041632
  • Gray, S., O’Mahony, C., Hills, J., O’Dwyer, B., Devoy, R., & Gault, J. (2020). Strengthening coastal adaptation planning through scenario analysis: A beneficial but incomplete solution. Marine Policy, 111, 102391. DOI: 10.1016/j.marpol.2016.04.031
  • Gulpinar Sekban, D.U., & Acar, C. (2021). Determining usages in post-mining sites according to landscape design approaches. Land Degradation & Development, 32(8), 2661-2676. DOI: 10.1002/ldr.3933
  • Gulpinar Sekban, D.U., & Acar, C. (2024a). Evaluation of the variables affecting usage preferences in reclaimed areas through design focus and intensity. European Planning Studies, 32(1), 121- 147. DOI: 10.1080/09654313.2023.2177099
  • Gulpinar Sekban, D.U., & Acar, C. (2024b). Combining Climate Change Adaptation Strategies with Spatial Analysis and Transforming Urban Open Spaces into Landscape Design Solutions: Case of Trabzon City, Türkiye. Journal of Urban Planning and Development, 150(3), 05024020. DOI: 10.1061/JUPDDM.UPENG-4809
  • Gulpinar Sekban, D.U., & Akyol, D. (2023). Contributions of Green Infrastructure-Oriented Planning and Designing in Residential Gardens to the City’s Ecosystem: Case of Trabzon City, Turkey. Journal of Urban Planning and Development, 149(1), 05022043. DOI: 10.1061/(ASCE)UP.1943-5444.0000898
  • Gulpinar Sekban, D.U., & Düzgüneş, E. (2021). Planting Design Approach in Sustainable Urban Planning. International Journal of Built Environment and Sustainability, 8(2), 63-71. DOI: 10.11113/ijbes.v8.n2.674
  • IPCC. (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change In H. L. a. J. R. e. Core Writing Team (Ed.), IPCC (pp. 35-115). Switzerland.
  • Ishimatsu, K., Ito, K., Mitani, Y., Tanaka, Y., Sugahara, T., & Naka, Y. (2017). Use of rain gardens for stormwater management in urban design and planning. Landscape and Ecological Engineering, 13(1), 205-212. DOI: 10.1007/s11355-016-0309-3
  • Kadıoğlu, Y., Bağcı, H.R., & Yılmaz, C. (2017). Doğu Karadeniz Kıyı Kuşağındaki Doğal Afetlere Bir Örnek: 21 Eylül 2016 Tarihli Beşikdüzü Seli ve Heyelanları. Marmara Coğrafya Dergisi, 36, 232- 242.
  • Khan, M.O., D. Keesstra, S., Słowik-Opoka, E., Klamerus-Iwan, A., & Liaqat, W. (2025). Determining the Role of Urban Greenery in Soil Hydrology: A Bibliometric Analysis of Nature- Based Solutions in Urban Ecosystem. Water, 17(3). DOI: 10.3390/w17030322
  • Kreibich, H., & Thieken, A. H. (2009). Coping with floods in the city of Dresden, Germany. Natural Hazards, 51(3), 423-436. DOI: 10.1007/s11069- 007-9200-8
  • Larsen, T.A., & Gujer, W. (1997). The concept of sustainable Urban Water Management. Water Science and Technology, 35(9), 3-10. DOI: 10.1016/S0273-1223(97)00179-0
  • Lin, Z.-H., Laffan, S.W., & Metternicht, G. (2025). Role of green infrastructure planning in achieving sustainable development goals through an environmental efficiency lens: An integrated literature review. Ecological Indicators, 174, 113471. DOI: 10.1016/j.ecolind.2025.113471
  • Onur, M. (2024). The Employment of Rain Gardens in Urban Water Management to Improve Biodiversity and Ecosystem Resilience. In A. Stefanakis, H.V. Oral, C. Calheiros, & P. Carvalho (Eds.), Nature-based Solutions for Circular Management of Urban Water (pp. 73- 91). Cham: Springer International Publishing.
  • Onur, M., & Gulpinar Sekban, D.U. (2022). Sandy Beaches Changing in Line with Urbanization Visual Quality Values. International Journal of Built Environment and Sustainability, 9(2), 35-45. DOI: 10.11113/ijbes.v9.n2.932
  • Osborne, L.L., & Kovacic, D.A. (1993). Riparian vegetated buffer strips in water-quality restoration and stream management. Freshwater Biology, 29(2), 243-258. DOI: 10.1111/j.1365- 2427.1993.tb00761.x
  • Radu, G., Chevereșan, M.I., Perju, S., & Bărbulescu, A. (2025). Integrating Nature-Based Solutions for Increased Resilience to Urban Flooding in the Climate Change Context. Hydrology, 12(1). DOI: 10.3390/hydrology12010016
  • Rimal, B., Zhang, L., Keshtkar, H., Sun, X., & Rijal, S. (2018). Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal. Land, 7(1). DOI: 10.3390/land7010037
  • Seelam, D.R., Kidiyur, M.D., Whig, P., Gupta, S.K., & Balantrapu, S.S. (2025). Integrating Artificial Intelligence in Blue-Green Infrastructure: Enhancing Sustainability and Resilience. In S. K.
  • Gupta, N. Maurya, F. A. Malik, & L. Razzak Janjua (Eds.), Integrating Blue-Green Infrastructure Into Urban Development (pp. 347- 372). Hershey, PA, USA: IGI Global Scientific Publishing.
  • Wri. (2025). Water Risk Atlas. Retrieved 10.05.2025, 2025, from https://www.wri.org/applications/aqueduct/water-risk-atlas/
  • Wu, H., Zhang, M., He, Y., Chen, P., Pasquier, U., Hu, H., & Wen, J. (2025). Scenario-based flood adaption of a fast-developing delta city: Modeling the extreme compound flood adaptations for shanghai. International Journal of Disaster Risk Reduction, 117, 105207. DOI: 10.1016/j.ijdrr.2025.105207
  • Yan, K., Di Baldassarre, G., Solomatine, D.P., & Schumann, G. J.P. (2015). A review of low-cost space-borne data for flood modelling: topography, flood extent and water level. Hydrological Processes, 29(15), 3368-3387. DOI: 10.1002/hyp.10449
  • Yang, K., Hou, H., Li, Y., Chen, Y., Wang, L., Wang, P., & Hu, T. (2022). Future urban waterlogging simulation based on LULC forecast model: A case study in Haining City, China. Sustainable Cities and Society, 87, 104167. DOI: 10.1016/j.scs.2022.104167
  • Zhou, M., He, Y., & Qiu, Z. (2025). Construction of a Multi-level Blue-Green Infrastructure Network in a Riverside City: A Case Study of Shaoxing. Ecosystem Health and Sustainability, 11, 0287. DOI: 10.34133/ehs.0287
  • Zhou, S., Diao, H., Wang, J., Jia, W., Xu, H., Xu, X., . . ., &Wu, Z. (2025). Multi-stage optimization framework for synergetic grey-green infrastructure in response to long-term climate variability based on shared socio-economic pathways. Water Research, 274, 123091. DOI: 10.1016/j.watres.2025.123091.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Environmental Assessment and Monitoring, Environmental Management (Other)
Journal Section Research Article
Authors

Demet Ulku Gulpinar Sekban 0000-0002-9614-6009

Early Pub Date November 15, 2025
Publication Date November 26, 2025
Submission Date August 11, 2025
Acceptance Date September 6, 2025
Published in Issue Year 2025 Volume: 10 Issue: 6

Cite

APA Gulpinar Sekban, D. U. (2025). Doğu Karadeniz Kıyılarında Yeşil Altyapı ile Genel Su Riskinin Azaltılması. Journal of Anatolian Environmental and Animal Sciences, 10(6), 807-815. https://doi.org/10.35229/jaes.1762331


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS