Review
BibTex RIS Cite

BIOCHAR IN AGRICULTURE: A SUSTAINABLE APPROACH FOR SOIL IMPROVEMENT AND CROP PRODUCTIVITY

Year 2023, Volume: 1 Issue: 1, 7 - 13, 02.01.2024

Abstract

Bu çalışmanın özeti, tarımda biyokömürün kullanımının toprak iyileştirmesi ve ürün verimliliği açısından sürdürülebilir bir yaklaşım sunduğunu vurgulamaktadır. Biyokömür, tarımsal ve ormansal atıkların kontrol edilen bir piroliz süreciyle karbonize edilmesiyle elde edilen karbon zengini bir malzemedir. Bu malzemenin topraklara uygulanması, toprak verimliliğini artırma, su tutma kapasitesini iyileştirme ve bitki besin maddelerinin daha etkili kullanılmasını sağlama potansiyeline sahiptir. Biyokömürün toprak mikrobiyotası ve biyolojik aktivite üzerinde olumlu etkileri, sürdürülebilir tarım uygulamalarına katkı sağlamaktadır. Ayrıca, biyokömürün iklim değişikliği ile mücadelede karbon tutma yeteneği, bu malzemenin çevresel sürdürülebilirlik açısından önemini vurgular. Bu çalışma, biyokömürün tarımda kullanımının çeşitli avantajlarını ele alarak, sürdürülebilir tarımın teşvik edilmesine yönelik önemli bir adım olarak değerlendirilmektedir.

References

  • [1] Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agronomy for Sustainable Development, 29(1), 1–6. https://doi.org/10.1051/agro:2008054.
  • [2] Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability (Switzerland), 13(3), 1–22. https://doi.org/10.3390/su13031330.
  • [3] Amalina, F., Razak, A. S. A., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, 3(September 2021), 100045. https://doi.org/10.1016/j.clema.2022.100045.
  • [4] Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282.
  • [5] López-Beceiro, J., Díaz-Díaz, A. M., Álvarez-García, A., Tarrío-Saavedra, J., Naya, S., & Artiaga, R. (2021). The complexity of lignin thermal degradation in the isothermal context. Processes, 9(7). https://doi.org/10.3390/pr9071154.
  • [6] Ha, J. H., & Lee, I. G. (2020). Study of a method to effectively remove char byproduct generated from fast pyrolysis of lignocellulosic biomass in a bubbling fluidized bed reactor. Processes, 8(11), 1–14. https://doi.org/10.3390/pr8111407.
  • [7] Shahbaz, M., AlNouss, A., Parthasarathy, P., Abdelaal, A. H., Mackey, H., McKay, G., & Al-Ansari, T. (2022). Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conversion and Biorefinery, 12(3), 669–681. https://doi.org/10.1007/s13399-020-01040-1.
  • [8] Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333–347. https://doi.org/10.1016/j.sajb.2019.11.015.
  • [9] Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., & Nichols, K. A. (2012). Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environmental Quality, 41(4), 973–989. https://doi.org/10.2134/jeq2011.0069.
  • [10] Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1–2), 81–84. https://doi.org/10.1016/j.fcr.2008.10.008.
  • [11] Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x.
  • [12] Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275. https://doi.org/10.1007/s11104-011-0957-x.
  • [14] Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231–238. https://doi.org/10.1016/j.eja.2011.01.006.
  • [15] Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634. https://doi.org/10.1071/SR07109.
  • [16] Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant and Soil, 373(1–2), 583–594. https://doi.org/10.1007/s11104-013-1806-x.
  • [17] Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. Ben, Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913–921. https://doi.org/10.1094/PHYTO-100-9-0913.
  • [18] Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1–2), 31–44. https://doi.org/10.1007/s11104-015-2445-1.
  • [19] Elmer, W. H., & Pignatello, J. J. (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95(8), 960–966. https://doi.org/10.1094/PDIS-10-10-0741.
  • [20] Harel, Y. M., Elad, Y., Rav-David, D., Borenstein, M., Shulchani, R., Lew, B., & Graber, E. R. (2012). Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil, 357(1), 245–257. https://doi.org/10.1007/s11104-012-1129-3.
  • [21] Jaiswal, A. K., Elad, Y., Graber, E. R., & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 69, 110–118. https://doi.org/10.1016/j.soilbio.2013.10.051.
  • [22] Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., & Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) merr. Under drought stress. Pakistan Journal of Botany, 49(Special Issue), 7–13.
  • [23] Haider, G., Koyro, H. W., Azam, F., Steffens, D., Müller, C., & Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395(1–2), 141–157. https://doi.org/10.1007/s11104-014-2294-3.
  • [24] Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153–159. https://doi.org/10.1016/j.chemosphere. 2015.06.041.
  • [25] Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029.
  • [26] Hua, L., Lu, Z., Ma, H., & Jin, S. (2014). Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy, 33(3), 941–946. https://doi.org/https://doi.org/10.1002/ep.11867.
  • [27] Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3–22. https://doi.org/10.1007/s42773-019-00009-2.
  • [28] Prayogo, C., Jones, J. E., Baeyens, J., & Bending, G. D. (2014). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50(4), 695–702. https://doi.org/10.1007/s00374-013-0884-5.
  • [29] Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
  • [30] Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870.
  • [31] Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.12026.
  • [32] Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
  • [33] Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., & Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, 213(1–4), 47–55. https://doi.org/10.1007/s11270-010-0366-4.
  • [34] Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471.

TARIMDA BİYOKÖMÜR: TOPRAK İYİLEŞTİRMESİ VE ÜRÜN VERİMLİLİĞİ İÇİN SÜRDÜRÜLEBİLİR BİR YAKLAŞIM

Year 2023, Volume: 1 Issue: 1, 7 - 13, 02.01.2024

Abstract

References

  • [1] Lichtfouse, E., Navarrete, M., Debaeke, P., Souchère, V., Alberola, C., & Ménassieu, J. (2009). Agronomy for sustainable agriculture. A review. Agronomy for Sustainable Development, 29(1), 1–6. https://doi.org/10.1051/agro:2008054.
  • [2] Ayaz, M., Feizienė, D., Tilvikienė, V., Akhtar, K., Stulpinaitė, U., & Iqbal, R. (2021). Biochar role in the sustainability of agriculture and environment. Sustainability (Switzerland), 13(3), 1–22. https://doi.org/10.3390/su13031330.
  • [3] Amalina, F., Razak, A. S. A., Krishnan, S., Zularisam, A. W., & Nasrullah, M. (2022). A comprehensive assessment of the method for producing biochar, its characterization, stability, and potential applications in regenerative economic sustainability – A review. Cleaner Materials, 3(September 2021), 100045. https://doi.org/10.1016/j.clema.2022.100045.
  • [4] Wang, J., & Wang, S. (2019). Preparation, modification and environmental application of biochar: A review. Journal of Cleaner Production, 227, 1002–1022. https://doi.org/10.1016/j.jclepro.2019.04.282.
  • [5] López-Beceiro, J., Díaz-Díaz, A. M., Álvarez-García, A., Tarrío-Saavedra, J., Naya, S., & Artiaga, R. (2021). The complexity of lignin thermal degradation in the isothermal context. Processes, 9(7). https://doi.org/10.3390/pr9071154.
  • [6] Ha, J. H., & Lee, I. G. (2020). Study of a method to effectively remove char byproduct generated from fast pyrolysis of lignocellulosic biomass in a bubbling fluidized bed reactor. Processes, 8(11), 1–14. https://doi.org/10.3390/pr8111407.
  • [7] Shahbaz, M., AlNouss, A., Parthasarathy, P., Abdelaal, A. H., Mackey, H., McKay, G., & Al-Ansari, T. (2022). Investigation of biomass components on the slow pyrolysis products yield using Aspen Plus for techno-economic analysis. Biomass Conversion and Biorefinery, 12(3), 669–681. https://doi.org/10.1007/s13399-020-01040-1.
  • [8] Semida, W. M., Beheiry, H. R., Sétamou, M., Simpson, C. R., Abd El-Mageed, T. A., Rady, M. M., & Nelson, S. D. (2019). Biochar implications for sustainable agriculture and environment: A review. South African Journal of Botany, 127, 333–347. https://doi.org/10.1016/j.sajb.2019.11.015.
  • [9] Spokas, K. A., Cantrell, K. B., Novak, J. M., Archer, D. W., Ippolito, J. A., Collins, H. P., Boateng, A. A., Lima, I. M., Lamb, M. C., McAloon, A. J., Lentz, R. D., & Nichols, K. A. (2012). Biochar: A Synthesis of Its Agronomic Impact beyond Carbon Sequestration. Journal of Environmental Quality, 41(4), 973–989. https://doi.org/10.2134/jeq2011.0069.
  • [10] Asai, H., Samson, B. K., Stephan, H. M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., & Horie, T. (2009). Biochar amendment techniques for upland rice production in Northern Laos. 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Research, 111(1–2), 81–84. https://doi.org/10.1016/j.fcr.2008.10.008.
  • [11] Uzoma, K. C., Inoue, M., Andry, H., Fujimaki, H., Zahoor, A., & Nishihara, E. (2011). Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use and Management, 27(2), 205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x.
  • [12] Zhang, A., Liu, Y., Pan, G., Hussain, Q., Li, L., Zheng, J., & Zhang, X. (2012). Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant and Soil, 351(1–2), 263–275. https://doi.org/10.1007/s11104-011-0957-x.
  • [14] Vaccari, F. P., Baronti, S., Lugato, E., Genesio, L., Castaldi, S., Fornasier, F., & Miglietta, F. (2011). Biochar as a strategy to sequester carbon and increase yield in durum wheat. European Journal of Agronomy, 34(4), 231–238. https://doi.org/10.1016/j.eja.2011.01.006.
  • [15] Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634. https://doi.org/10.1071/SR07109.
  • [16] Liu, X., Zhang, A., Ji, C., Joseph, S., Bian, R., Li, L., Pan, G., & Paz-Ferreiro, J. (2013). Biochar’s effect on crop productivity and the dependence on experimental conditions-a meta-analysis of literature data. Plant and Soil, 373(1–2), 583–594. https://doi.org/10.1007/s11104-013-1806-x.
  • [17] Elad, Y., David, D. R., Harel, Y. M., Borenshtein, M., Kalifa, H. Ben, Silber, A., & Graber, E. R. (2010). Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology, 100(9), 913–921. https://doi.org/10.1094/PHYTO-100-9-0913.
  • [18] Mehari, Z. H., Elad, Y., Rav-David, D., Graber, E. R., & Meller Harel, Y. (2015). Induced systemic resistance in tomato (Solanum lycopersicum) against Botrytis cinerea by biochar amendment involves jasmonic acid signaling. Plant and Soil, 395(1–2), 31–44. https://doi.org/10.1007/s11104-015-2445-1.
  • [19] Elmer, W. H., & Pignatello, J. J. (2011). Effect of biochar amendments on mycorrhizal associations and Fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95(8), 960–966. https://doi.org/10.1094/PDIS-10-10-0741.
  • [20] Harel, Y. M., Elad, Y., Rav-David, D., Borenstein, M., Shulchani, R., Lew, B., & Graber, E. R. (2012). Biochar mediates systemic response of strawberry to foliar fungal pathogens. Plant and Soil, 357(1), 245–257. https://doi.org/10.1007/s11104-012-1129-3.
  • [21] Jaiswal, A. K., Elad, Y., Graber, E. R., & Frenkel, O. (2014). Rhizoctonia solani suppression and plant growth promotion in cucumber as affected by biochar pyrolysis temperature, feedstock and concentration. Soil Biology and Biochemistry, 69, 110–118. https://doi.org/10.1016/j.soilbio.2013.10.051.
  • [22] Hafeez, Y., Iqbal, S., Jabeen, K., Shahzad, S., Jahan, S., & Rasul, F. (2017). Effect of biochar application on seed germination and seedling growth of Glycine max (L.) merr. Under drought stress. Pakistan Journal of Botany, 49(Special Issue), 7–13.
  • [23] Haider, G., Koyro, H. W., Azam, F., Steffens, D., Müller, C., & Kammann, C. (2015). Biochar but not humic acid product amendment affected maize yields via improving plant-soil moisture relations. Plant and Soil, 395(1–2), 141–157. https://doi.org/10.1007/s11104-014-2294-3.
  • [24] Kim, H. S., Kim, K. R., Yang, J. E., Ok, Y. S., Owens, G., Nehls, T., Wessolek, G., & Kim, K. H. (2016). Effect of biochar on reclaimed tidal land soil properties and maize (Zea mays L.) response. Chemosphere, 142, 153–159. https://doi.org/10.1016/j.chemosphere. 2015.06.041.
  • [25] Omondi, M. O., Xia, X., Nahayo, A., Liu, X., Korai, P. K., & Pan, G. (2016). Quantification of biochar effects on soil hydrological properties using meta-analysis of literature data. Geoderma, 274, 28–34. https://doi.org/10.1016/j.geoderma.2016.03.029.
  • [26] Hua, L., Lu, Z., Ma, H., & Jin, S. (2014). Effect of biochar on carbon dioxide release, organic carbon accumulation, and aggregation of soil. Environmental Progress & Sustainable Energy, 33(3), 941–946. https://doi.org/https://doi.org/10.1002/ep.11867.
  • [27] Palansooriya, K. N., Wong, J. T. F., Hashimoto, Y., Huang, L., Rinklebe, J., Chang, S. X., Bolan, N., Wang, H., & Ok, Y. S. (2019). Response of microbial communities to biochar-amended soils: a critical review. Biochar, 1(1), 3–22. https://doi.org/10.1007/s42773-019-00009-2.
  • [28] Prayogo, C., Jones, J. E., Baeyens, J., & Bending, G. D. (2014). Impact of biochar on mineralisation of C and N from soil and willow litter and its relationship with microbial community biomass and structure. Biology and Fertility of Soils, 50(4), 695–702. https://doi.org/10.1007/s00374-013-0884-5.
  • [29] Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
  • [30] Chintala, R., Mollinedo, J., Schumacher, T. E., Malo, D. D., & Julson, J. L. (2014). Effect of biochar on chemical properties of acidic soil. Archives of Agronomy and Soil Science, 60(3), 393–404. https://doi.org/10.1080/03650340.2013.789870.
  • [31] Basso, A. S., Miguez, F. E., Laird, D. A., Horton, R., & Westgate, M. (2013). Assessing potential of biochar for increasing water-holding capacity of sandy soils. GCB Bioenergy, 5(2), 132–143. https://doi.org/10.1111/gcbb.12026.
  • [32] Blanco-Canqui, H. (2017). Biochar and Soil Physical Properties. Soil Science Society of America Journal, 81(4), 687–711. https://doi.org/10.2136/sssaj2017.01.0017.
  • [33] Ding, Y., Liu, Y. X., Wu, W. X., Shi, D. Z., Yang, M., & Zhong, Z. K. (2010). Evaluation of biochar effects on nitrogen retention and leaching in multi-layered soil columns. Water, Air, and Soil Pollution, 213(1–4), 47–55. https://doi.org/10.1007/s11270-010-0366-4.
  • [34] Yao, Y., Gao, B., Zhang, M., Inyang, M., & Zimmerman, A. R. (2012). Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 89(11), 1467–1471.
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Precision Agriculture Technologies
Journal Section Research Article
Authors

Ali Özcan

Ali Tuncer 0009-0004-0694-988X

Publication Date January 2, 2024
Submission Date December 27, 2023
Acceptance Date January 2, 2024
Published in Issue Year 2023 Volume: 1 Issue: 1

Cite

Vancouver Özcan A, Tuncer A. TARIMDA BİYOKÖMÜR: TOPRAK İYİLEŞTİRMESİ VE ÜRÜN VERİMLİLİĞİ İÇİN SÜRDÜRÜLEBİLİR BİR YAKLAŞIM. JAFE. 2024;1(1):7-13.