Research Article
BibTex RIS Cite

3-Boyutlu İnşaat Yazımı ile Hızlı ve Güvenilir Barınma Çözümleri

Year 2022, Volume: 1 Issue: 1, 88 - 112, 25.09.2022

Abstract

Amaç: 3-B inşa yazımı teknoloji ve yönteminin acil barınma merkezi kurulumunda kullanılmasının getireceği fırsatlar, potansiyeller ve engeller öneri bir senaryo üzerinden araştırılmıştır.
Metodoloji / Yaklaşım: 3-B inşa yazımı teknolojisinin işleyişi, mevcut durumu, özellikleri ve geliştirilmeye açık alanları incelenmiştir. Acil barınmanın problem teşkil ettiği durumlar özetlenerek, acil eylem planlarında tarif edilen acil barınma merkezi kurulumu süreci 3-B inşa yazımı dahil edilerek yeniden kurgulanmış ve bir senaryo dahilinde sunularak normal süreç ile birlikte değerlendirilmiştir.
Bulgular: Acil barınma birimleri üretiminde 3-B inşa yazımı yöntemi, hızlı olması, neredeyse sıfır atık bırakması ve yerel malzeme kullanımı gibi imkanları nedeniyle faydalıdır. Bunun yanında normal süreçte barınma birimleri standart olarak ve asgari düzeyde konfor ve barınma imkânı sağlıyorken, 3-B inşa yazımı barınma birimlerinde çeşitli kullanıcı odaklı konfor, ebat ve barınma seçenekleri oluşturabilir.
Orijinallik: 3-B inşa yazım yöntemi halen geliştirilmekte olan bir alandır. Acil barınma birimleri üretiminde 3-B inşa yazımının kullanılmasının getireceği olumlu ve olumsuz yönler bir senaryo üzerinden değerlendirilmiştir.
Kısıtlamalar: Araştırma, senaryo olarak kurgulanmış ve mevcut literatür çalışmalarından derlenen sentetik bulgularla desteklenmiştir. Çalışmanın gerçek hayatta uygulanabilir bir düzeye gelebilmesi için acil barınma ve 3-B inşa yazımı paydaşları ile birlikte daha ayrıntılı çalışmalarla bulguların desteklenmesi gerekmektedir.
Pratik Çıkarımlar: Mevcut acil eylem planlarında kullanılan acil barınma birimleri üretim süresi ve maliyeti gibi kısıtlamalar nedeniyle kullanıcı odaklılıktan ziyade kurulumu en kısa sürede olacak şekilde kurgulanır. Ancak 3-B inşa yazımının hızlı olması ve yerel malzeme kullanım seçeneği, acil durum ortaya çıktıktan sonraki süreçte kullanıcının birtakım kişiselleştirme gereksinimlerini karşılayabilme gibi çeşitli imkanlar sunmaktadır. Bu durum 3-B inşa yazımının çadır ve konteyner gibi hazır çözümlerin sunduğundan çok daha konforlu ve kullanıcı odaklı barınma birimlerinin üretilebilmesine olanak sağlamaktadır

References

  • AFAD. (2019). Stratejik Plan 2019-2013. www.afad.gov.tr.
  • ASASOĞLU, A. (2013). Konut ve Konut Alanları Örneğinde Mimarlık Serüveni. International Journal of Architecture and Planning, 1(1), 57–65.
  • ATMACA, A., & ATMACA, N. (2016). Comparative life cycle energy and cost analysis of post-disaster temporary housings. Applied Energy, 171(March 2011), 429–443.
  • BIGGERSTAFF, A. O., LEPECH, M. D., & LOFTUS, D. J. (2021). Evaluation of a Biopolymer-Bound Soil Composite for 3D Printing on the Lunar Surface. Earth and Space 2021, 36–51.
  • BOS, F., WOLFS, R., AHMED, Z., & SALET, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concret printing. Virtual and Physical Prototyping, 11(3), 209–225.
  • BUCHANAN, C., & GARDNER, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180(October 2018), 332–348. https://doi.org/10.1016/j.engstruct.2018.11.045.
  • BULGER, S., & SKONİECZNY, K. (2016). Towards Mobile 3D Printing for Planetary Construction. Earth and Space 2016, 324–332.
  • BUSWELL, R., XU, J., DE BECKER, D., DOBRZANSKİ, J., PROVİS, J., KOLAWOLE, J. T., & KİNNELL, P. (2022). Geometric quality assurance for 3D concrete printing and hybrid construction manufacturing using a standardised test part for benchmarking capability. Cement and Concrete Research, 156(December 2021), 106773. https://doi.org/10.1016/j.cemconres.2022.106773.
  • ÇINAR, A. K. (2018). Analysing The Planning Criterias of Emergency Assembly Points and Temporary Shelter Areas: Case of İzmir-Karşıyaka. Journal of Planning, 28(2), 179–200. https://doi.org/10.14744/planlama.2018.07088.
  • DE SCHUTTER, G., LESAGE, K., MECHTCHERİNE, V., NERELLA, V. N., HABERT, G., & AGUSTİ-JUAN, I. (2018). Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 112(June), 25–36. https://doi.org/10.1016/j.cemconres.2018.06.001.
  • GOSSELIN, C., DUBALLET, R., ROUX, P., GAUDILLIÈRE, N., DIRRENBERGER, J., & MOREL, P. (2016). Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders. Materials and Design, 100, 102–109. https://doi.org/10.1016/j.matdes.2016.03.097.
  • HASOL, D. (2014). Ansiklopedik Mimarlık Sözlüğü (13th ed.).
  • JIANG, Z. (2021). Research on the application of 3D printing and BIM technology in the direction of bridges. E3S Web of Conferences, 257. https://doi.org/10.1051/e3sconf/202125702051.
  • KALFAOGLU HATİPOGLU, H. (2020). Understanding Post-War Social Housing Strategies of Vienna: A Reference for the Reproduction of Current Cities? Theory and Research in Architecture, Planning and Design, December, 201–220.
  • KARAMAN, Z. T., & ALTAY, A. (2016). Bütünleşik Afet Yönetimi. İlkem Yayınları.
  • KHAN, M. S., SANCHEZ, F., & ZHOU, H. (2020). 3-D printing of concrete: Beyond horizons. Cement and Concrete Research, 133(April). https://doi.org/10.1016/j.cemconres.2020.106070.
  • KOLSAL, F., & YEŞİLTEPE, A. D. (2020). Konut Alanı Tasarımına Geleneksel ve Çağdaş Konut Dokuları Üzerinden Karşılaştırmalı Bir Bakış. Online Journal of Art and Design, 8(4), 259–290.
  • LABONNOTE, N., RØNNQUIST, A., MANUM, B., & RÜTHER, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72, 347–366.
  • LACHMAYER, L., EKANAYAKA, V., HÜRKAMP, A., & RAATZ, A. (2021). Approach to an optimized printing path for additive manufacturing in construction utilizing FEM modeling. Procedia CIRP, 104, 600–605. https://doi.org/10.1016/j.procir.2021.11.101.
  • OBYN, S., VAN MOESEKE, G., & VİRGO, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. https://doi.org/10.1016/j.enbuild.2014.12.035.
  • ÖMÜRGÖNÜLŞEN, M., & MENTEN, C. (2021). Bulanık TOPSIS Yöntemi ile Ankara İli İçin Olası Afet Sonrası Geçici Barınma Alanlarının Seçimi. Doğal Afetler ve Çevre Dergisi, 90(312), 159–175. https://doi.org/10.21324/dacd.691088.
  • ÖZTÜRK, S. M., & DİNÇER, A. E. (2020). An investigation on the design principles of dormitory buildings in Karabük. Tasarım + Kuram, 16(30), 61–76. https://doi.org/10.14744/tasarimkuram.2020.84755.
  • PASQUIRE, C., & GIBB, A. G. (2002). Considerations for assessing the benefits of standardisation and pre-assembly in construction. Journal of Financial Management of Property and Construction, 7(3), 151–161.
  • PAUL, S. C., VAN ZIJL, G. P. A. G., & GIBSON, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal, 24(4), 784–798. https://doi.org/10.1108/RPJ-09-2016-0154
  • PERKINS, I., & SKITMORE, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1–9.
  • PRASITTISOPIN, L., SAKDANARASETH, T., & HORAYANGKURA, V. (2021). Design and Construction Method of a 3D Concrete Printing Self-Supporting Curvilinear Pavilion. Journal of Architectural Engineering, 27(3), 1–9. https://doi.org/10.1061/(asce)ae.1943-5568.0000485
  • RAHUL, A. V., & SANTHANAM, M. (2020). Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, 109(February), 103570.
  • ROLLAKANTI, C. R., & PRASAD, C. V. S. R. (2022). Applications, performance, challenges and current progress of 3D concrete printing technologies as the future of sustainable construction - A state of the art review. Materials Today: Proceedings, xxxx.
  • ROMAN, M. C., EBERLY, E. A., MUELLER, R. P., & DEUTSCH, S. (2016). NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat. Earth and Space 2016, 333–342.
  • SAKİN, M., & KİROGLU, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. https://doi.org/10.1016/j.egypro.2017.09.562.
  • ŞANLIURFA İL AFET VE ACİL DURUM MÜDÜRLÜĞÜ. (2016). İl Afet ve Acil Durum Müdürlüğü.
  • SHAHZAD, Q., SHEN, J., NASEEM, R., YAO, Y., WAQAR, S., & LİU, W. (2021). Influence of phase change material on concrete behavior for construction 3D printing. Construction and Building Materials, 309(September), 125121.
  • SMARSLY, K., PERALTA, P., LUCKEY, D., HEİNE, S., & LUDWİG, H. M. (2021). BIM-Based Concrete Printing. Lecture Notes in Civil Engineering, 98, 992–1002.
  • T.C. İÇ İŞLERİ BAKANLIĞI. (2022). Göç İdaresi Başkanlığı.
  • TAN, A. Y. K., & TAN, C. K. (2021). Thermal comfort performances of temporary shelters using experimental and computational assessments. Buildings, 11(12). https://doi.org/10.3390/buildings11120655.
  • TAY, Y. W. D., PANDA, B., PAUL, S. C., NOOR MOHAMED, N. A., TAN, M. J., & LEONG, K. F. (2017). 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261–276. https://doi.org/10.1080/17452759.2017.1326724.
  • TDK. (2022). https://sozluk.gov.tr/
  • TING, G. H. A., TAY, Y. W. D., & TAN, M. J. (2021). Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing. Journal of Cleaner Production, 300, 126919. https://doi.org/10.1016/j.jclepro.2021.126919.
  • TROEMNER, M., RAMYAR, E., MEEHAN, J., JOHNSON, B., GOUDARZI, N., & CUSATİS, G. (2022). A 3D-Printing Centered Approach to Mars Habitat Architecture and Fabrication. Journal of Aerospace Engineering, 35(1), 1–13. https://doi.org/10.1061/(asce)as.1943-5525.0001359.
  • ULUBEYLİ, S. (2022). Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronautica, 195(March), 318–343. https://doi.org/10.1016/j.actaastro.2022.03.033.
  • UNHCR. (2022). Ukraine Emergency.
  • WANG, K.-C., & SKIBNIEWSKI, M. J. (2019). Feasibility Study of Integrating BIM and 3D Printing to Support Building Construction. Creative Construction Conference (2019) 116, 845–850. https://doi.org/10.3311/ccc2019-116.
  • WANG, Y., DENG, S., WANG, L., XIANG, M., & LONG, E. (2015). The Influence of the Deteriorations in Living Environments on the Health of Disaster Victims Following a Natural Disaster. Procedia Engineering, 121, 203–211.
  • WON, D., HWANG, B.-G., CHI, S., & KOR, J. L. (2022). Adoption of Three-Dimensional Printing Technology in Public Housing in Singapore: Drivers, Challenges, and Strategies. Journal of Management in Engineering, 38(4), 1–16. https://doi.org/10.1061/(asce)me.1943-5479.0001065.
  • WU, P., WANG, J., & WANG, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21–31. https://doi.org/10.1016/j.autcon.2016.04.005.
  • WU, P., ZHAO, X., BALLER, J. H., & WANG, X. (2018). Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry. Architectural Science Review, 61(3), 133–142. https://doi.org/10.1080/00038628.2018.1450727.
  • YASHAR, M., MICHEALSEN, P., HAMMOND, B., ALVIZAR, J., CİARDULLO, C., MORRIS, M., PAİLES-FRIEDMAN, R., SHEN, T., BELL, G., TUCKER, R., AUSTIN, S., & LEBLANC, L. (2021). Building Information Modeling (BIM) Workflows for Construction Sequencing & 4D-Planning of 3D-Printed ISRU Surface Habitats. Earth and Space 2021, 1394–1408.

Rapid and Safe Shelter Construction with 3-D Printing

Year 2022, Volume: 1 Issue: 1, 88 - 112, 25.09.2022

Abstract

Purpose: The opportunities, potentials and handicaps by use of 3-D printing in construction technologies and methods on emergency shelter construction have been investigated with a proposed scenario.
Methodology/Approach: State of the art of 3-D printing in construction technology has been explored by referencing key terms and terminologies. Emergency sheltering conditions and requirements were described in the official reports and a scenario is established incorporating the use of 3-D printing technology on establishment of an emergency shelter center instead of the use of existing sheltering units.
Findings: In addition to taking benefit from general advantages of 3-D printing in construction such as rapid construction, use of local material, and almost no waste disposal, it presents a certain level of user-oriented design and comfort at shelter units in terms of size and commissioning options.
Originality: 3-D printing in construction is a developing new topic. The paper investigates the advantages and disadvantages of 3-D printing technology in emergency shelter creation upon a scenario.
Limitations: The research is based upon the scenario of the use of 3-D printing in emergency shelter construction without making real-world experiments and thus relies on synthetic findings. The study must be supported by detailed in site experiments incorporating 3-D printing and emergency sheltering stakeholders.
Practical Implications: Regarding the existing official reports, emergency sheltering units are required to be constructed and installed as fast as possible when the emergency condition becomes real due to manufacturing time and cost limitations. Since 3-D printing has the ability to overcome such limitations, it has been revealed that there are also opportunities for the user to make a certain level of customization on the design and manufacturing of shelter units.

References

  • AFAD. (2019). Stratejik Plan 2019-2013. www.afad.gov.tr.
  • ASASOĞLU, A. (2013). Konut ve Konut Alanları Örneğinde Mimarlık Serüveni. International Journal of Architecture and Planning, 1(1), 57–65.
  • ATMACA, A., & ATMACA, N. (2016). Comparative life cycle energy and cost analysis of post-disaster temporary housings. Applied Energy, 171(March 2011), 429–443.
  • BIGGERSTAFF, A. O., LEPECH, M. D., & LOFTUS, D. J. (2021). Evaluation of a Biopolymer-Bound Soil Composite for 3D Printing on the Lunar Surface. Earth and Space 2021, 36–51.
  • BOS, F., WOLFS, R., AHMED, Z., & SALET, T. (2016). Additive manufacturing of concrete in construction: potentials and challenges of 3D concret printing. Virtual and Physical Prototyping, 11(3), 209–225.
  • BUCHANAN, C., & GARDNER, L. (2019). Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges. Engineering Structures, 180(October 2018), 332–348. https://doi.org/10.1016/j.engstruct.2018.11.045.
  • BULGER, S., & SKONİECZNY, K. (2016). Towards Mobile 3D Printing for Planetary Construction. Earth and Space 2016, 324–332.
  • BUSWELL, R., XU, J., DE BECKER, D., DOBRZANSKİ, J., PROVİS, J., KOLAWOLE, J. T., & KİNNELL, P. (2022). Geometric quality assurance for 3D concrete printing and hybrid construction manufacturing using a standardised test part for benchmarking capability. Cement and Concrete Research, 156(December 2021), 106773. https://doi.org/10.1016/j.cemconres.2022.106773.
  • ÇINAR, A. K. (2018). Analysing The Planning Criterias of Emergency Assembly Points and Temporary Shelter Areas: Case of İzmir-Karşıyaka. Journal of Planning, 28(2), 179–200. https://doi.org/10.14744/planlama.2018.07088.
  • DE SCHUTTER, G., LESAGE, K., MECHTCHERİNE, V., NERELLA, V. N., HABERT, G., & AGUSTİ-JUAN, I. (2018). Vision of 3D printing with concrete — Technical, economic and environmental potentials. Cement and Concrete Research, 112(June), 25–36. https://doi.org/10.1016/j.cemconres.2018.06.001.
  • GOSSELIN, C., DUBALLET, R., ROUX, P., GAUDILLIÈRE, N., DIRRENBERGER, J., & MOREL, P. (2016). Large-scale 3D printing of ultra-high performance concrete - a new processing route for architects and builders. Materials and Design, 100, 102–109. https://doi.org/10.1016/j.matdes.2016.03.097.
  • HASOL, D. (2014). Ansiklopedik Mimarlık Sözlüğü (13th ed.).
  • JIANG, Z. (2021). Research on the application of 3D printing and BIM technology in the direction of bridges. E3S Web of Conferences, 257. https://doi.org/10.1051/e3sconf/202125702051.
  • KALFAOGLU HATİPOGLU, H. (2020). Understanding Post-War Social Housing Strategies of Vienna: A Reference for the Reproduction of Current Cities? Theory and Research in Architecture, Planning and Design, December, 201–220.
  • KARAMAN, Z. T., & ALTAY, A. (2016). Bütünleşik Afet Yönetimi. İlkem Yayınları.
  • KHAN, M. S., SANCHEZ, F., & ZHOU, H. (2020). 3-D printing of concrete: Beyond horizons. Cement and Concrete Research, 133(April). https://doi.org/10.1016/j.cemconres.2020.106070.
  • KOLSAL, F., & YEŞİLTEPE, A. D. (2020). Konut Alanı Tasarımına Geleneksel ve Çağdaş Konut Dokuları Üzerinden Karşılaştırmalı Bir Bakış. Online Journal of Art and Design, 8(4), 259–290.
  • LABONNOTE, N., RØNNQUIST, A., MANUM, B., & RÜTHER, P. (2016). Additive construction: State-of-the-art, challenges and opportunities. Automation in Construction, 72, 347–366.
  • LACHMAYER, L., EKANAYAKA, V., HÜRKAMP, A., & RAATZ, A. (2021). Approach to an optimized printing path for additive manufacturing in construction utilizing FEM modeling. Procedia CIRP, 104, 600–605. https://doi.org/10.1016/j.procir.2021.11.101.
  • OBYN, S., VAN MOESEKE, G., & VİRGO, V. (2015). Thermal performance of shelter modelling: Improvement of temporary structures. Energy and Buildings, 89, 170–182. https://doi.org/10.1016/j.enbuild.2014.12.035.
  • ÖMÜRGÖNÜLŞEN, M., & MENTEN, C. (2021). Bulanık TOPSIS Yöntemi ile Ankara İli İçin Olası Afet Sonrası Geçici Barınma Alanlarının Seçimi. Doğal Afetler ve Çevre Dergisi, 90(312), 159–175. https://doi.org/10.21324/dacd.691088.
  • ÖZTÜRK, S. M., & DİNÇER, A. E. (2020). An investigation on the design principles of dormitory buildings in Karabük. Tasarım + Kuram, 16(30), 61–76. https://doi.org/10.14744/tasarimkuram.2020.84755.
  • PASQUIRE, C., & GIBB, A. G. (2002). Considerations for assessing the benefits of standardisation and pre-assembly in construction. Journal of Financial Management of Property and Construction, 7(3), 151–161.
  • PAUL, S. C., VAN ZIJL, G. P. A. G., & GIBSON, I. (2018). A review of 3D concrete printing systems and materials properties: current status and future research prospects. Rapid Prototyping Journal, 24(4), 784–798. https://doi.org/10.1108/RPJ-09-2016-0154
  • PERKINS, I., & SKITMORE, M. (2015). Three-dimensional printing in the construction industry: A review. International Journal of Construction Management, 15(1), 1–9.
  • PRASITTISOPIN, L., SAKDANARASETH, T., & HORAYANGKURA, V. (2021). Design and Construction Method of a 3D Concrete Printing Self-Supporting Curvilinear Pavilion. Journal of Architectural Engineering, 27(3), 1–9. https://doi.org/10.1061/(asce)ae.1943-5568.0000485
  • RAHUL, A. V., & SANTHANAM, M. (2020). Evaluating the printability of concretes containing lightweight coarse aggregates. Cement and Concrete Composites, 109(February), 103570.
  • ROLLAKANTI, C. R., & PRASAD, C. V. S. R. (2022). Applications, performance, challenges and current progress of 3D concrete printing technologies as the future of sustainable construction - A state of the art review. Materials Today: Proceedings, xxxx.
  • ROMAN, M. C., EBERLY, E. A., MUELLER, R. P., & DEUTSCH, S. (2016). NASA Centennial Challenge: Three Dimensional (3D) Printed Habitat. Earth and Space 2016, 333–342.
  • SAKİN, M., & KİROGLU, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702–711. https://doi.org/10.1016/j.egypro.2017.09.562.
  • ŞANLIURFA İL AFET VE ACİL DURUM MÜDÜRLÜĞÜ. (2016). İl Afet ve Acil Durum Müdürlüğü.
  • SHAHZAD, Q., SHEN, J., NASEEM, R., YAO, Y., WAQAR, S., & LİU, W. (2021). Influence of phase change material on concrete behavior for construction 3D printing. Construction and Building Materials, 309(September), 125121.
  • SMARSLY, K., PERALTA, P., LUCKEY, D., HEİNE, S., & LUDWİG, H. M. (2021). BIM-Based Concrete Printing. Lecture Notes in Civil Engineering, 98, 992–1002.
  • T.C. İÇ İŞLERİ BAKANLIĞI. (2022). Göç İdaresi Başkanlığı.
  • TAN, A. Y. K., & TAN, C. K. (2021). Thermal comfort performances of temporary shelters using experimental and computational assessments. Buildings, 11(12). https://doi.org/10.3390/buildings11120655.
  • TAY, Y. W. D., PANDA, B., PAUL, S. C., NOOR MOHAMED, N. A., TAN, M. J., & LEONG, K. F. (2017). 3D printing trends in building and construction industry: a review. Virtual and Physical Prototyping, 12(3), 261–276. https://doi.org/10.1080/17452759.2017.1326724.
  • TDK. (2022). https://sozluk.gov.tr/
  • TING, G. H. A., TAY, Y. W. D., & TAN, M. J. (2021). Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing. Journal of Cleaner Production, 300, 126919. https://doi.org/10.1016/j.jclepro.2021.126919.
  • TROEMNER, M., RAMYAR, E., MEEHAN, J., JOHNSON, B., GOUDARZI, N., & CUSATİS, G. (2022). A 3D-Printing Centered Approach to Mars Habitat Architecture and Fabrication. Journal of Aerospace Engineering, 35(1), 1–13. https://doi.org/10.1061/(asce)as.1943-5525.0001359.
  • ULUBEYLİ, S. (2022). Lunar shelter construction issues: The state-of-the-art towards 3D printing technologies. Acta Astronautica, 195(March), 318–343. https://doi.org/10.1016/j.actaastro.2022.03.033.
  • UNHCR. (2022). Ukraine Emergency.
  • WANG, K.-C., & SKIBNIEWSKI, M. J. (2019). Feasibility Study of Integrating BIM and 3D Printing to Support Building Construction. Creative Construction Conference (2019) 116, 845–850. https://doi.org/10.3311/ccc2019-116.
  • WANG, Y., DENG, S., WANG, L., XIANG, M., & LONG, E. (2015). The Influence of the Deteriorations in Living Environments on the Health of Disaster Victims Following a Natural Disaster. Procedia Engineering, 121, 203–211.
  • WON, D., HWANG, B.-G., CHI, S., & KOR, J. L. (2022). Adoption of Three-Dimensional Printing Technology in Public Housing in Singapore: Drivers, Challenges, and Strategies. Journal of Management in Engineering, 38(4), 1–16. https://doi.org/10.1061/(asce)me.1943-5479.0001065.
  • WU, P., WANG, J., & WANG, X. (2016). A critical review of the use of 3-D printing in the construction industry. Automation in Construction, 68, 21–31. https://doi.org/10.1016/j.autcon.2016.04.005.
  • WU, P., ZHAO, X., BALLER, J. H., & WANG, X. (2018). Developing a conceptual framework to improve the implementation of 3D printing technology in the construction industry. Architectural Science Review, 61(3), 133–142. https://doi.org/10.1080/00038628.2018.1450727.
  • YASHAR, M., MICHEALSEN, P., HAMMOND, B., ALVIZAR, J., CİARDULLO, C., MORRIS, M., PAİLES-FRIEDMAN, R., SHEN, T., BELL, G., TUCKER, R., AUSTIN, S., & LEBLANC, L. (2021). Building Information Modeling (BIM) Workflows for Construction Sequencing & 4D-Planning of 3D-Printed ISRU Surface Habitats. Earth and Space 2021, 1394–1408.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Architecture
Journal Section Research Articles
Authors

Ramazan Sarı 0000-0001-8936-5716

Ekrem Bahadır Çalışkan 0000-0002-5258-2976

Publication Date September 25, 2022
Submission Date September 1, 2022
Published in Issue Year 2022 Volume: 1 Issue: 1

Cite

APA Sarı, R., & Çalışkan, E. B. (2022). 3-Boyutlu İnşaat Yazımı ile Hızlı ve Güvenilir Barınma Çözümleri. Digital International Journal of Architecture Art Heritage, 1(1), 88-112.

Creative Commons License
Digital International Journal of Architecture, Art & Heritage by https://aybu.edu.tr/jah/en is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.