Research Article
BibTex RIS Cite

Machine Learning Predictive Wi-Fi Antenna Design for Wireless Communication Technologies

Year 2022, Volume: 2 Issue: 2, 82 - 86, 26.12.2022

Abstract

The use of the Internet has become indispensable with the developing technology. Providing access to the internet, which is the most important part of technology, has become one of the greatest needs. Antennas are the most important stage to access the Internet. Recently, development studies have increased considerably for antennas, which are the first step of wireless communication technology. In this study, a Wi-Fi antenna design with 2.4 GHz operating frequency that can be used in wireless communication technology has been realized. Microstrip antenna has been chosen to meet the necessary needs. While designing the antenna, CST Microwave Studio program has been used and numerical calculations have been made. After the antenna design has been made, machine learning support has been provided. The most effective lengths of the antenna have been determined and parametric analysis has been performed. The results of the selected algorithms have been observed. Based on these results, the algorithm that made the closest prediction has been determined. As a result of this study, an antenna design with a return loss value of 21 dB and a bandwidth value operating between 2.37 GHz - 2.42 GHz frequencies has been carried out. The designed antenna is acceptable according to IEEE 802.11 standards. Decision Tree gave the best prediction result according to machine learning algorithms.

Supporting Institution

TUBITAK

Project Number

1919B012102519

Thanks

This study has been carried out using the laboratory facilities of İzmir Katip Celebi University Smart Factory Systems Application and Research Center (AFSUAM). This study is supported by TUBITAK 2209-A University Students Research Projects Support Program within the scope of project numbered 1919B012102519.

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ... & Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Rymanov, V., Palandöken, M., Lutzmann, S., Bouhlal, B., Tekin, T., & Stöhr, A. (2012, September). Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes. In 2012 IEEE International Topical Meeting on Microwave Photonics (pp. 253-256). IEEE.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Nasimuddin, N. , (Ed.). (2011). Microstrip Antennas. IntechOpen. https://doi.org/10.5772/609
  • Palandoken, M. (2012). Metamaterial-based compact filter design. In Metamaterial. IntechOpen.
  • H. H. M. Ghouz, M. F. Abo Sree and M. Aly Ibrahim, "Novel Wideband Microstrip Monopole Antenna Designs for WiFi/LTE/WiMax Devices," in IEEE Access, vol. 8, pp. 9532-9539, 2020, doi: 10.1109/ACCESS.2019.2963644.
  • Patel, R.H., Upadhyaya, T.K., Desai, A.H., & Palandoken, M. (2019). Low Profile Multiband Meander Antenna for LTE/WiMAX/WLAN and INSAT-C Application. AEU - International Journal of Electronics and Communications.
  • Wegmuller, M., Von Der Weid, J. P., Oberson, P., & Gisin, N. (2000, January). High resolution fiber distributed measurements with coherent OFDR. In Proc. ECOC’00 (Vol. 11, No. 4, p. 109).
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of dual band microstrip antenna for Wi-Fi and WiMax applications. Telkomnika, 16(6), 2864-2870.,
  • H. M. E. Misilmani and T. Naous, "Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms," 2019 International Conference on High Performance Computing & Simulation (HPCS), 2019, pp. 600-607, doi: 10.1109/HPCS48598.2019.9188224.
  • Kütük, H., Teşneli, A. Y., & Teşneli, N. B. (2000). 3.3 GHz mikroşerit anten tasarımı ve farklı besleme yöntemleri için analizi. Sakarya University Journal of Science, 17(1), 119-124.
  • ICSLMS Committee. (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std, 802, 50.
  • BAYTÖRE, C., GÖÇEN, C., PALANDÖKEN, M., Kaya, A., & ZORAL, E. Y. (2019). Compact metal-plate slotted WLAN- WIMAX antenna design with USB Wi-Fi adapter application. Turkish Journal of Electrical Engineering & Computer Sciences, 27(6), 4403-4417.
  • Demırbas, G. & Akar, E. (2022). Design and Interpretation of Microstrip Patch Antenna Operating at 2.4GHz for Wireless WI-FI Application. Avrupa Bilim ve Teknoloji Dergisi , Ejosat Special Issue 2022 (ICAENS-1) , 672-675 . DOI: 10.31590/ejosat.1084151
  • Akar, E., Akdag, I., & Gocen, C. (2022). Wi-Fi Antenna Design For E-Health Kit Based Biotelemetry Module. ICONTECH INTERNATIONAL JOURNAL, 6(1), 63-67. https://doi.org/10.46291/ICONTECHvol6iss1pp63-67
  • Demirbas, G., Gocen, C., & Akdag, I. (2022). Micro-strip Patch 2.4 GHz Wi-Fi Antenna Design For WLAN 4G- 5G Application . ICONTECH INTERNATIONAL JOURNAL, 6(1), 68-72. https://doi.org/10.46291/ICONTECHvol6iss1pp68-72
Year 2022, Volume: 2 Issue: 2, 82 - 86, 26.12.2022

Abstract

Project Number

1919B012102519

References

  • Montero-de-Paz, J., Oprea, I., Rymanov, V., Babiel, S., García-Muñoz, L. E., Lisauskas, A., ... & Carpintero, G. (2013). Compact modules for wireless communication systems in the E-band (71–76 GHz). Journal of Infrared, Millimeter, and Terahertz Waves, 34(3), 251-266.
  • Rymanov, V., Palandöken, M., Lutzmann, S., Bouhlal, B., Tekin, T., & Stöhr, A. (2012, September). Integrated photonic 71–76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes. In 2012 IEEE International Topical Meeting on Microwave Photonics (pp. 253-256). IEEE.
  • Palandöken, M., Rymanov, V., Stöhr, A., & Tekin, T. (2012, August). Compact metamaterial-based bias tee design for 1.55 μm waveguide-photodiode based 71–76GHz wireless transmitter. In Progress in Electromagnetics Research Symposium, PIERS.
  • Nasimuddin, N. , (Ed.). (2011). Microstrip Antennas. IntechOpen. https://doi.org/10.5772/609
  • Palandoken, M. (2012). Metamaterial-based compact filter design. In Metamaterial. IntechOpen.
  • H. H. M. Ghouz, M. F. Abo Sree and M. Aly Ibrahim, "Novel Wideband Microstrip Monopole Antenna Designs for WiFi/LTE/WiMax Devices," in IEEE Access, vol. 8, pp. 9532-9539, 2020, doi: 10.1109/ACCESS.2019.2963644.
  • Patel, R.H., Upadhyaya, T.K., Desai, A.H., & Palandoken, M. (2019). Low Profile Multiband Meander Antenna for LTE/WiMAX/WLAN and INSAT-C Application. AEU - International Journal of Electronics and Communications.
  • Wegmuller, M., Von Der Weid, J. P., Oberson, P., & Gisin, N. (2000, January). High resolution fiber distributed measurements with coherent OFDR. In Proc. ECOC’00 (Vol. 11, No. 4, p. 109).
  • Thaher, R. H., & Jamil, Z. S. (2018). Design of dual band microstrip antenna for Wi-Fi and WiMax applications. Telkomnika, 16(6), 2864-2870.,
  • H. M. E. Misilmani and T. Naous, "Machine Learning in Antenna Design: An Overview on Machine Learning Concept and Algorithms," 2019 International Conference on High Performance Computing & Simulation (HPCS), 2019, pp. 600-607, doi: 10.1109/HPCS48598.2019.9188224.
  • Kütük, H., Teşneli, A. Y., & Teşneli, N. B. (2000). 3.3 GHz mikroşerit anten tasarımı ve farklı besleme yöntemleri için analizi. Sakarya University Journal of Science, 17(1), 119-124.
  • ICSLMS Committee. (1997). Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. IEEE Std, 802, 50.
  • BAYTÖRE, C., GÖÇEN, C., PALANDÖKEN, M., Kaya, A., & ZORAL, E. Y. (2019). Compact metal-plate slotted WLAN- WIMAX antenna design with USB Wi-Fi adapter application. Turkish Journal of Electrical Engineering & Computer Sciences, 27(6), 4403-4417.
  • Demırbas, G. & Akar, E. (2022). Design and Interpretation of Microstrip Patch Antenna Operating at 2.4GHz for Wireless WI-FI Application. Avrupa Bilim ve Teknoloji Dergisi , Ejosat Special Issue 2022 (ICAENS-1) , 672-675 . DOI: 10.31590/ejosat.1084151
  • Akar, E., Akdag, I., & Gocen, C. (2022). Wi-Fi Antenna Design For E-Health Kit Based Biotelemetry Module. ICONTECH INTERNATIONAL JOURNAL, 6(1), 63-67. https://doi.org/10.46291/ICONTECHvol6iss1pp63-67
  • Demirbas, G., Gocen, C., & Akdag, I. (2022). Micro-strip Patch 2.4 GHz Wi-Fi Antenna Design For WLAN 4G- 5G Application . ICONTECH INTERNATIONAL JOURNAL, 6(1), 68-72. https://doi.org/10.46291/ICONTECHvol6iss1pp68-72
There are 16 citations in total.

Details

Primary Language English
Subjects Artificial Intelligence
Journal Section Research Articles
Authors

Gokcen Demırbas 0000-0002-9636-3919

Project Number 1919B012102519
Publication Date December 26, 2022
Submission Date July 29, 2022
Published in Issue Year 2022 Volume: 2 Issue: 2

Cite

IEEE G. Demırbas, “Machine Learning Predictive Wi-Fi Antenna Design for Wireless Communication Technologies”, Journal of Artificial Intelligence and Data Science, vol. 2, no. 2, pp. 82–86, 2022.

All articles published by JAIDA are licensed under a Creative Commons Attribution 4.0 International License.

88x31.png