Research Article
BibTex RIS Cite

Artificial Intelligence Based Customer Risk Classification for Receivables Management of Businesses

Year 2024, Volume: 4 Issue: 2, 97 - 103, 27.12.2024

Abstract

This study is carried out with the aim of developing and implementing artificial intelligence-based receivables management systems for businesses. A model is created to predict customers' debt payment situations. In the study, invoice data of a company named QF_CARIRAPOR is utilized. The features table is created in Apache druid and risk scoring label is made manually according to set rules. Then, various machine learning models such as XGBoost, Random Forest are implemented on MindsDB platform. The classified risk score is visualized with the Streamlit user interface using the results created in MindsDB. Among the applied models, XGBoost has resulted in the highest classification accuracy of 98.8 %. The findings reveal the potential to increase the effectiveness of receivables management processes by applying machine learning models.

References

  • H.Lam, “Analyzing the Measures of Credit Risk on Financial Corporation and It’s Impact on Profitability,” International Journal of Research in Vocational Studies (IJRVOCAS), vol. 3, no. 1, pp. 64-70, 2023.
  • N. Wilson, B. Summers, R. Hope, “Using payment behaviour data for credit risk modelling,” International Journal of the Economics of Business; vol. 7, no. 3, pp. 33-346, 2000.
  • J. Reyes, J. Perez, and S. Ake, “Credit risk management analysis: An application of fuzzy theory to forecast the probability of default in a financial institution,” Contaduría y Administración, vol. 69, no. 1, pp. 18 211, 2024.
  • A. Markov, Z. Seleznyova, and V. Lapshin, “Credit scoring methods: Latest trends and points to consider,” The Journal of Finance and Data Science, vol. 8, pp. 180-201, 2022.
  • X. Dastile, T. Celik, and M. Potsane, “Statistical and machine learning models in credit scoring: A systematic literature survey,” Applied Soft Computingt, vol. 91, 106263, 2000.
  • Q. Zhou, “Predicting Systemic Risk in Financial Markets Using Machine Learning,” Transactions on Economics Business and Management Research vol. 8, pp. 455-460, 2024.
  • K. Xu, Y. Wu, Z. Li, R. Zhang, and Z. Feng, “Investigating Financial Risk Behavior Prediction Using Deep Learning and Big Data,” International Journal of Innovative Research in Engineering and Management (IJIREM), vol. 11, no. 3,pp. 77-81, 2024.
  • Scikit-learn Machine Learning in Python, https://scikit-learn.org
  • https://druid.apache.org
  • MindsDB-Platform for Building AI, https://docs.mindsdb.com
  • https://streamlit.io

İşletmelerin Alacak Yönetiminde Yapay Zeka Tabanlı Müşteri Risk Sınıflandırması

Year 2024, Volume: 4 Issue: 2, 97 - 103, 27.12.2024

Abstract

Bu çalışma, işletmeler için yapay zeka tabanlı alacak yönetim sistemleri geliştirmek ve uygulamak amacıyla gerçekleştirilmiştir. Müşterilerin borç ödeme durumlarını tahmin etmek için bir model oluşturulmuştur. Çalışmada QF_CARIRAPOR adlı bir şirketin fatura verilerinden yararlanılmıştır. Özellikler tablosu Apache druid'de oluşturulmuş ve risk puanlama etiketi belirlenen kurallara göre manuel olarak yapılmıştır. Daha sonra MindsDB platformunda XGBoost, Random Forest gibi çeşitli makine öğrenimi modelleri uygulanmıştır. Sınıflandırılmış risk puanı, MindsDB'de oluşturulan sonuçlar kullanılarak Streamlit kullanıcı arayüzü ile görselleştirilmiştir. Uygulanan modeller arasında XGBoost, %98 ile en yüksek sınıflandırma doğruluğunu sağlamıştır. Bulgular, makine öğrenimi modellerinin uygulanmasıyla alacak yönetimi süreçlerinin etkinliğini artırma potansiyelini ortaya koymaktadır.

References

  • H.Lam, “Analyzing the Measures of Credit Risk on Financial Corporation and It’s Impact on Profitability,” International Journal of Research in Vocational Studies (IJRVOCAS), vol. 3, no. 1, pp. 64-70, 2023.
  • N. Wilson, B. Summers, R. Hope, “Using payment behaviour data for credit risk modelling,” International Journal of the Economics of Business; vol. 7, no. 3, pp. 33-346, 2000.
  • J. Reyes, J. Perez, and S. Ake, “Credit risk management analysis: An application of fuzzy theory to forecast the probability of default in a financial institution,” Contaduría y Administración, vol. 69, no. 1, pp. 18 211, 2024.
  • A. Markov, Z. Seleznyova, and V. Lapshin, “Credit scoring methods: Latest trends and points to consider,” The Journal of Finance and Data Science, vol. 8, pp. 180-201, 2022.
  • X. Dastile, T. Celik, and M. Potsane, “Statistical and machine learning models in credit scoring: A systematic literature survey,” Applied Soft Computingt, vol. 91, 106263, 2000.
  • Q. Zhou, “Predicting Systemic Risk in Financial Markets Using Machine Learning,” Transactions on Economics Business and Management Research vol. 8, pp. 455-460, 2024.
  • K. Xu, Y. Wu, Z. Li, R. Zhang, and Z. Feng, “Investigating Financial Risk Behavior Prediction Using Deep Learning and Big Data,” International Journal of Innovative Research in Engineering and Management (IJIREM), vol. 11, no. 3,pp. 77-81, 2024.
  • Scikit-learn Machine Learning in Python, https://scikit-learn.org
  • https://druid.apache.org
  • MindsDB-Platform for Building AI, https://docs.mindsdb.com
  • https://streamlit.io
There are 11 citations in total.

Details

Primary Language English
Subjects Machine Learning (Other)
Journal Section Research Articles
Authors

Şaban Can Tiryaki This is me 0009-0006-2765-5551

Adnan Kavak 0000-0001-5694-8042

Publication Date December 27, 2024
Submission Date November 30, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 4 Issue: 2

Cite

IEEE Ş. C. Tiryaki and A. Kavak, “Artificial Intelligence Based Customer Risk Classification for Receivables Management of Businesses”, Journal of Artificial Intelligence and Data Science, vol. 4, no. 2, pp. 97–103, 2024.

All articles published by JAIDA are licensed under a Creative Commons Attribution 4.0 International License.

88x31.png