Research Article
BibTex RIS Cite

Hassas eğitim için makine öğrenimi yaklaşımlarından yararlanma

Year 2025, Volume: 5 Issue: 1, 35 - 43, 27.06.2025

Abstract

Bu çalışma, yapay zeka odaklı uyarlanabilir öğrenme stratejilerini ve bunların öğrenci katılımı ve eğitimci verimliliği üzerindeki etkilerini analiz ederek hassas eğitimdeki makine öğreniminin (ML) dönüştürücü etkisini araştırıyor. Farklı eğitim geçmişlerine sahip 400 katılımcıdan ChatGPT aracılığıyla üretilen simüle edilmiş anket verilerini kullanan çalışma, öğrenci başarısı için tahmin modelleri geliştirmek için denetimli öğrenme tekniklerini kullanmaktadır. Sonuçlar, yapay zeka tabanlı müdahaleler ile gelişmiş akademik performans arasında güçlü bir korelasyon olduğunu göstermektedir (Cronbach'ın alfası: 0.996, Öngörülü Doğruluk: %85). Veri gizliliği, adalet ve yapay zeka modellerinin yorumlanabilirliği dahil olmak üzere etik hususlar, sorumlu uygulamayı sağlamak için ele alınır. Çalışma, politika yapıcılar ve eğitimciler için ölçeklenebilir, sürdürülebilir eğitim iyileştirmeleri için yapay zeka araçlarından yararlanmaları için eyleme geçirilebilir içgörüler sağlar. Bulgular, hem öğrenci performansını hem de eğitimci verimliliğini önemli ölçüde artırmak için erken tanımlama ve özel müdahalelerin potansiyelini vurgulamaktadır. Makale ayrıca, sorumlu veri yönetimini ve önyargı önlemeyi vurgulayarak, eğitimde yapay zeka odaklı araçları kullanmanın etik zorluklarını ve sonuçlarını da ele almaktadır. Makine öğrenimi, kişiselleştirilmiş öğrenme deneyimleri sağlayarak hassas eğitimde merkezi bir rol oynamaktadır [1], [3]. Çalışma, ölçeklenebilir yapay zeka odaklı eğitim iyileştirmeleri uygulamak isteyen eğitimciler ve politika yapıcılar için eyleme geçirilebilir içgörüler sunuyor.

References

  • M. Tavakol and R. Dennick, “Making sense of Cronbach’s alpha,” Int. J. Med. Educ., vol. 2, pp. 53–55, 2011.
  • A. Peña-Ayala, “Educational data mining: A survey,” Expert Systems with Applications, vol. 41, no. 1, pp. 1432–1462, 2014.
  • M. Hussain, W. Zhu, W. Zhang, and S. Abidi, “AI‑based learning analytics: Predicting student success,” J. Educ. Technol., vol. 45, no. 3, pp. 345–362, 2021.
  • C. Fischer, J. Hilton, and D. Wiley, “Balancing AI and human decision‑making in education,” Educational Review, vol. 67, no. 4, pp. 211–230, 2022.
  • Y. Lu, H. Huang, and X. Li, “A machine learning approach to precision education,” Computers & Education, vol. 197, p. 104562, 2023
  • R. Chen, H. Kim, and S. Patel, “Supervised learning models for adaptive education,” IEEE Trans. Educ., vol. 66, no. 2, pp. 178–190, 2023.
  • R. S. Baker and G. Siemens, “Educational data mining and learning analytics,” in Cambridge Handbook of the Learning Sciences, Cambridge University Press, 2014.
  • S. Slade and P. Prinsloo, “Learning analytics: Ethical issues and dilemmas,” American Behavioral Scientist, vol. 57, no. 10, pp. 1510–1529, 2013.
  • JASP Team, “JASP (Version 0.17.2) [Computer software],” 2024. [Online]. Available: https://jasp‑stats.org/.
  • A. Field, Discovering Statistics Using SPSS, 5th ed., SAGE Publications, 2018
  • S. Ng, W. Lau, and R. Chan, “Predicting student dropout rates using ML algorithms,” Learning Analytics Review, vol. 25, no. 2, pp. 67–89, 2021.
  • K. Sharma and A. Mavroudi, “Exploring predictive analytics for academic performance,” Int. J. Educ. Res., vol. 88, p. 108126, 2022.
  • C. Romero and S. Ventura, “Educational data mining: A review,” IEEE Trans. Syst., Man, Cybernetics, vol. 40, no. 6, pp. 601–618, 2010.
  • K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark, “Intelligent tutoring goes to school in the big city,” Int. J. Artif. Intell. Educ., vol. 8, pp. 30–43, 2008.
  • P. Garcia, C. Romero, and S. Ventura, “A review of AI applications in educational settings,” Expert Systems with Applications, vol. 140, p. 112135, 2020.
  • F. Wang and Y. Tan, “Ethical considerations in AI‑driven educational systems,” AI & Society, vol. 38, no. 1, pp. 99–115, 2023.

Leveraging Machine Learning Approaches for Precision Education

Year 2025, Volume: 5 Issue: 1, 35 - 43, 27.06.2025

Abstract

This study explores the transformative impact of machine learning (ML) in precision education by analyzing AI-driven adaptive learning strategies and their influence on student engagement and educator efficiency. Utilizing simulated survey data generated through ChatGPT from 400 participants across diverse educational backgrounds, the study employs supervised learning techniques to develop predictive models for student success. Results indicate a strong correlation between AI-based interventions and improved academic performance (Cronbach’s alpha: 0.996, Predictive Accuracy: 85%). Ethical considerations, including data privacy, fairness, and interpretability of AI models, are addressed to ensure responsible implementation. The study provides actionable insights for policymakers and educators to leverage AI tools for scalable, sustainable educational improvements.
The findings highlight the potential of early identification and tailored interventions to significantly enhance both student performance and educator efficiency. The article also addresses the ethical challenges and implications of using AI-driven tools in education, emphasizing responsible data management and bias prevention. Machine learning plays a central role in precision education by enabling personalized learning experiences [1], [3].
The study offers actionable insights for educators and policymakers seeking to implement scalable AI-driven educational improvements.

Ethical Statement

This study does not require ethics committee approval.

References

  • M. Tavakol and R. Dennick, “Making sense of Cronbach’s alpha,” Int. J. Med. Educ., vol. 2, pp. 53–55, 2011.
  • A. Peña-Ayala, “Educational data mining: A survey,” Expert Systems with Applications, vol. 41, no. 1, pp. 1432–1462, 2014.
  • M. Hussain, W. Zhu, W. Zhang, and S. Abidi, “AI‑based learning analytics: Predicting student success,” J. Educ. Technol., vol. 45, no. 3, pp. 345–362, 2021.
  • C. Fischer, J. Hilton, and D. Wiley, “Balancing AI and human decision‑making in education,” Educational Review, vol. 67, no. 4, pp. 211–230, 2022.
  • Y. Lu, H. Huang, and X. Li, “A machine learning approach to precision education,” Computers & Education, vol. 197, p. 104562, 2023
  • R. Chen, H. Kim, and S. Patel, “Supervised learning models for adaptive education,” IEEE Trans. Educ., vol. 66, no. 2, pp. 178–190, 2023.
  • R. S. Baker and G. Siemens, “Educational data mining and learning analytics,” in Cambridge Handbook of the Learning Sciences, Cambridge University Press, 2014.
  • S. Slade and P. Prinsloo, “Learning analytics: Ethical issues and dilemmas,” American Behavioral Scientist, vol. 57, no. 10, pp. 1510–1529, 2013.
  • JASP Team, “JASP (Version 0.17.2) [Computer software],” 2024. [Online]. Available: https://jasp‑stats.org/.
  • A. Field, Discovering Statistics Using SPSS, 5th ed., SAGE Publications, 2018
  • S. Ng, W. Lau, and R. Chan, “Predicting student dropout rates using ML algorithms,” Learning Analytics Review, vol. 25, no. 2, pp. 67–89, 2021.
  • K. Sharma and A. Mavroudi, “Exploring predictive analytics for academic performance,” Int. J. Educ. Res., vol. 88, p. 108126, 2022.
  • C. Romero and S. Ventura, “Educational data mining: A review,” IEEE Trans. Syst., Man, Cybernetics, vol. 40, no. 6, pp. 601–618, 2010.
  • K. R. Koedinger, J. R. Anderson, W. H. Hadley, and M. A. Mark, “Intelligent tutoring goes to school in the big city,” Int. J. Artif. Intell. Educ., vol. 8, pp. 30–43, 2008.
  • P. Garcia, C. Romero, and S. Ventura, “A review of AI applications in educational settings,” Expert Systems with Applications, vol. 140, p. 112135, 2020.
  • F. Wang and Y. Tan, “Ethical considerations in AI‑driven educational systems,” AI & Society, vol. 38, no. 1, pp. 99–115, 2023.
There are 16 citations in total.

Details

Primary Language English
Subjects Semi- and Unsupervised Learning, Planning and Decision Making
Journal Section Research Articles
Authors

Favour Akintola 0009-0009-0090-2948

İzzet Paruğ Duru 0000-0002-9227-2497

Publication Date June 27, 2025
Submission Date February 18, 2025
Acceptance Date June 10, 2025
Published in Issue Year 2025 Volume: 5 Issue: 1

Cite

IEEE F. Akintola and İ. P. Duru, “Leveraging Machine Learning Approaches for Precision Education”, Journal of Artificial Intelligence and Data Science, vol. 5, no. 1, pp. 35–43, 2025.

All articles published by JAIDA are licensed under a Creative Commons Attribution 4.0 International License.

88x31.png