Review
BibTex RIS Cite

Organoids and Artificial Intelligence in Personalized Medicine

Year 2024, Volume: 4 Issue: 3, 7 - 21, 31.12.2024

Abstract

Organoids are 3D in vitro models in which organs, tissues and cells are simulated. A new scientific era was started by organoid modeling with stem cell studies and combining them with artificial intelligence. It redefines the understanding of disease mechanisms and treatment methods with data provided from the individual's own genome. This review provides an overview of the innovations in organoid studies. It also reveals the effects of organoids, especially originating from stem cells, on personalized medicine by modeling them through artificial intelligence in cancer and drug research.

References

  • 1. Hu Y, Hu X, Luo J, ve ark. Liver organoid culture methods. Cell & Bioscience. 2023;13(1):197. https://doi.org/10.1186/s13578-023-01136-x
  • 2. Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes & Diseases. 2024;11(2):614-632. https://doi.org/https://doi.org/10.1016/j.gendis.2023.02.052
  • 3. Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. Journal of Hematology & Oncology. 2022;15(1):58. https://doi.org/10.1186/s13045-022-01278-4
  • 4. Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell & Bioscience. 2022;12(1):39. https://doi.org/10.1186/s13578-022-00775-w
  • 5. Yang C, Xiao W, Wang R, ve ark. Tumor organoid model of colorectal cancer (Review). Oncol Lett. 2023;26(2):328. https://doi.org/10.3892/ol.2023.13914
  • 6. Shi H, Kowalczewski A, Vu D, ve ark. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Medicine in Novel Technology and Devices. 2024;21:100276. https://doi.org/https://doi.org/10.1016/j.medntd.2023.100276
  • 7. Yang S, Hu H, Kung H, ve ark. Organoids: The current status and biomedical applications. MedComm. 2023;4(3):e274. https://doi.org/https://doi.org/10.1002/mco2.274
  • 8. Zhang Y, Liu M, Xie N, ve ark. Cancer research revolutionized: Unveiling the power of organoids and their therapeutic potential in oncology. hLife. 2024. https://doi.org/https://doi.org/10.1016/j.hlife.2024.05.002
  • 9. Liu L, Yu L, Li Z, Li W, Huang W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. Journal of Translational Medicine. 2021;19(1):40. https://doi.org/10.1186/s12967-020-02677-2
  • 10. Sato T, Vries RG, Snippert HJ, ve ark. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. https://doi.org/10.1038/nature07935
  • 11. Zhao Z, Chen X, Dowbaj AM, ve ark. Organoids. Nature Reviews Methods Primers. 2022;2(1):94. https://doi.org/10.1038/s43586-022-00174-y
  • 12. Soto-Gamez A, Gunawan JP, Barazzuol L, Pringle S, Coppes RP. Organoid-based personalized medicine: from tumor outcome prediction to autologous transplantation. Stem Cells. 2024;42(6):499-508. https://doi.org/10.1093/stmcls/sxae023
  • 13. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. https://doi.org/10.1016/j.cell.2006.07.024
  • 14. Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in cancer research. Experimental Hematology & Oncology. 2023;12(1):69. https://doi.org/10.1186/s40164-023-00433-y
  • 15. Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cellular Oncology. 2024. https://doi.org/10.1007/s13402-024-00960-8
  • 16. Yang Y, Kong Y, Cui J, Hou Y, Gu Z, Ma C. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Reviews and Reports. 2024;20(5):1213-1226. https://doi.org/10.1007/s12015-024-10714-6
  • 17. Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165(7):1586-1597. https://doi.org/10.1016/j.cell.2016.05.082
  • 18. Drost J, Clevers H. Organoids in cancer research. Nature Reviews Cancer. 2018;18(7):407-418. https://doi.org/10.1038/s41568-018-0007-6
  • 19. Lin Y, Jiang L, He Q, Yuan M, Cao J. Progress and perspective of organoid technology in cancer-related translational medicine. Biomedicine & Pharmacotherapy. 2022;149:112869. https://doi.org/https://doi.org/10.1016/j.biopha.2022.112869
  • 20. Yang Q, Li M, Yang X, ve ark. Flourishing tumor organoids: History, emerging technology, and application. Bioengineering & Translational Medicine. 2023;8(5):e10559. https://doi.org/https://doi.org/10.1002/btm2.10559
  • 21. Ahammed B, Kalangi SK. A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology. ACS Omega. 2024. https://doi.org/10.1021/acsomega.4c03683
  • 22. Grandori C, Kemp CJ. Personalized Cancer Models for Target Discovery and Precision Medicine. Trends in Cancer. 2018;4(9):634-642. https://doi.org/10.1016/j.trecan.2018.07.005
  • 23. Shiihara M, Furukawa T. Application of Patient-Derived Cancer Organoids to Personalized Medicine. Journal of Personalized Medicine. 2022;12(5):789. https://www.mdpi.com/2075-4426/12/5/789
  • 24. Saito Y, Muramatsu T, Kanai Y, ve ark. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Reports. 2019;27(4):1265-1276.e4. https://doi.org/10.1016/j.celrep.2019.03.088
  • 25. Chen P, Zhang X, Ding R, ve ark. Patient-Derived Organoids Can Guide Personalized-Therapies for Patients with Advanced Breast Cancer. Advanced Science. 2021;8(22):2101176. https://doi.org/https://doi.org/10.1002/advs.202101176
  • 26. Drost J, Karthaus WR, Gao D, ve ark. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols. 2016;11(2):347-358. https://doi.org/10.1038/nprot.2016.006
  • 27. Zheng W, Ye M, Wang M, Meng Y. Establishment of ovarian malignant tumor organoid biobank. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL. 2024;45:1-8. https://doi.org/10.12435/j.issn.2095-5227.2024.058
  • 28. Rao X, Qiao Z, Yang Y, ve ark. Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening. Pharmaceuticals. 2024;17(2):225. https://www.mdpi.com/1424-8247/17/2/225
  • 29. Ryu K-B, Seo J-a, Lee K, ve ark. Drug-Resistance Biomarkers in Patient-Derived Colorectal Cancer Organoid and Fibroblast Co-Culture System. Current Issues in Molecular Biology. 2024;46(6):5794-5811. https://www.mdpi.com/1467-3045/46/6/346
  • 30. Nuciforo S, Fofana I, Matter MS, ve ark. Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies. Cell Reports. 2018;24(5):1363-1376. https://doi.org/10.1016/j.celrep.2018.07.001
  • 31. Vlachogiannis G, Hedayat S, Vatsiou A, ve ark. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-926. https://doi.org/doi:10.1126/science.aao2774
  • 32. Huang L, Xu Y, Wang N, ve ark. Next-Generation Preclinical Functional Testing Models in Cancer Precision Medicine: CTC-Derived Organoids. Small Methods. 2024;8(1):2301009. https://doi.org/https://doi.org/10.1002/smtd.202301009
  • 33. Schöndorf DC, Ivanyuk D, Baden P, ve ark. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease. Cell Reports. 2018;23(10):2976-2988. https://doi.org/10.1016/j.celrep.2018.05.009
  • 34. Francis N, Yavuz S, Elnazir B. Beyond the Local Basic Panel: Full CFTR Gene Analysis Identifies Novel CF Mutation Missed on Standard Testing in an Arabic Child. Cureus. 2023;15(1):e33337. https://doi.org/10.7759/cureus.33337
  • 35. de Poel E, Spelier S, Hagemeijer MC, ve ark. FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes. Journal of Cystic Fibrosis. 2023;22(3):548-559. https://doi.org/10.1016/j.jcf.2023.03.004
  • 36. Smabers LP, Wensink E, Verissimo CS, ve ark. Organoids as a biomarker for personalized treatment in metastatic colorectal cancer: drug screen optimization and correlation with patient response. J Exp Clin Cancer Res. 2024;43(1):61. https://doi.org/10.1186/s13046-024-02980-6
  • 37. Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors. 2024;24(1):37. https://www.mdpi.com/1424-8220/24/1/37
  • 38. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783-784. https://doi.org/10.1038/nmeth.3047
  • 39. Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. Journal of Human Genetics. 2018;63(2):179-186. https://doi.org/10.1038/s10038-017-0376-9
  • 40. Pfeifer M, Brammeld JS, Price S, ve ark. Genome-wide CRISPR screens identify the YAP/TEAD axis as a driver of persister cells in EGFR mutant lung cancer. Communications Biology. 2024;7(1):497. https://doi.org/10.1038/s42003-024-06190-w
  • 41. Hendriks D, Pagliaro A, Andreatta F, ve ark. Human fetal brain self-organizes into long-term expanding organoids. Cell. 2024;187(3):712-732.e38. https://doi.org/10.1016/j.cell.2023.12.012
  • 42. Gallego Villarejo L, Gerding WM, Bachmann L, ve ark. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells. 2024;13(6):507. https://www.mdpi.com/2073-4409/13/6/507
  • 43. Du X, Chen Z, Li Q, ve ark. Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Bio-Design and Manufacturing. 2023;6(3):319-339. https://doi.org/10.1007/s42242-022-00226-y
  • 44. Kusumoto D, Seki T, Sawada H, ve ark. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun. 2021;12(1):257. https://doi.org/10.1038/s41467-020-20213-0
  • 45. Kusumoto D, Yuasa S, Fukuda K. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals. 2022;15(5):562. https://www.mdpi.com/1424-8247/15/5/562
  • 46. Park T, Kim TK, Han YD, Kim K-A, Kim H, Kim HS. Development of a deep learning based image processing tool for enhanced organoid analysis. Scientific Reports. 2023;13(1):19841. https://doi.org/10.1038/s41598-023-46485-2
  • 47. Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis. IEEE Access. 2018;6:9375-9389. https://doi.org/10.1109/ACCESS.2017.2788044
  • 48. Kegeles E, Naumov A, Karpulevich EA, Volchkov P, Baranov P. Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids. Frontiers in Cellular Neuroscience. 2020;14. https://doi.org/10.3389/fncel.2020.00171
  • 49. Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Advanced Drug Delivery Reviews. 2024;207:115202. https://doi.org/10.1016/j.addr.2024.115202
  • 50. Roberto de Barros N, Wang C, Maity S, ve ark. Engineered organoids for biomedical applications. Advanced Drug Delivery Reviews. 2023;203:115142. https://doi.org/https://doi.org/10.1016/j.addr.2023.115142
  • 51. Arganda-Carreras I, Kaynig V, Rueden C, ve ark. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017;33(15):2424-2426. https://doi.org/10.1093/bioinformatics/btx180
  • 52. Wen C, Miura T, Voleti V, ve ark. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. eLife. 2021;10:e59187. https://doi.org/10.7554/eLife.59187
  • 53. Borten MA, Bajikar SS, Sasaki N, Clevers H, Janes KA. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Scientific Reports. 2018;8(1):5319. https://doi.org/10.1038/s41598-017-18815-8
  • 54. Kassis T, Hernandez-Gordillo V, Langer R, Griffith LG. OrgaQuant: Human Intestinal Organoid Localization and Quantification Using Deep Convolutional Neural Networks. Scientific Reports. 2019;9(1):12479. https://doi.org/10.1038/s41598-019-48874-y
  • 55. Gritti N, Lim JL, Anlaş K, ve ark. MOrgAna: accessible quantitative analysis of organoids with machine learning. Development. 2021;148(18):dev199611. https://doi.org/10.1242/dev.199611
  • 56. Matthews JM, Schuster B, Kashaf SS, ve ark. OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLOS Computational Biology. 2022;18(11):e1010584. https://doi.org/10.1371/journal.pcbi.1010584
  • 57. Abdul L, Xu J, Sotra A, ve ark. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images. Lab on a Chip. 2022;22(21):4118-4128. https://doi.org/10.1039/D2LC00596D
  • 58. Smirnova L, Caffo BS, Gracias DH, ve ark. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Frontiers in Science. 2023;1. https://doi.org/10.3389/fsci.2023.1017235
  • 59. Morales Pantoja IE, Smirnova L, Muotri AR, ve ark. First Organoid Intelligence (OI) workshop to form an OI community. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1116870
  • 60. Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. Biochemistry (Mosc). 2024;89(Suppl 1):S127-s147. https://doi.org/10.1134/s0006297924140086

Bireysel Tıpta Organoidler ve Yapay Zeka

Year 2024, Volume: 4 Issue: 3, 7 - 21, 31.12.2024

Abstract

Organoidler, organların, dokuların ve hücrelerin simüle edildiği 3 boyutlu in vitro modellerdir. Organoidlerin kök hücre çalışmaları ile modellenerek yapay zeka ile birleştirilmesiyle bilimde yeni bir çağın kapıları açılmıştır. Bireyin kendi genomundan sağlanan veriler ile hastalık mekanizmaları ve tedavi yöntemlerine ilişkin anlayışı yeniden tanımlamaktadır. Bu derleme, organoid çalışmalarındaki yeniliklere genel bir bakış sağlayarak özellikle kök hücrelerden elde edilen organoidlerin kanser ve ilaç araştırmalarında yapay zeka aracılığıyla modellenmesi sonucunda bireysel tıp üzerine etkilerini ortaya koymuştur.

References

  • 1. Hu Y, Hu X, Luo J, ve ark. Liver organoid culture methods. Cell & Bioscience. 2023;13(1):197. https://doi.org/10.1186/s13578-023-01136-x
  • 2. Ma X, Wang Q, Li G, Li H, Xu S, Pang D. Cancer organoids: A platform in basic and translational research. Genes & Diseases. 2024;11(2):614-632. https://doi.org/https://doi.org/10.1016/j.gendis.2023.02.052
  • 3. Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. Journal of Hematology & Oncology. 2022;15(1):58. https://doi.org/10.1186/s13045-022-01278-4
  • 4. Suarez-Martinez E, Suazo-Sanchez I, Celis-Romero M, Carnero A. 3D and organoid culture in research: physiology, hereditary genetic diseases and cancer. Cell & Bioscience. 2022;12(1):39. https://doi.org/10.1186/s13578-022-00775-w
  • 5. Yang C, Xiao W, Wang R, ve ark. Tumor organoid model of colorectal cancer (Review). Oncol Lett. 2023;26(2):328. https://doi.org/10.3892/ol.2023.13914
  • 6. Shi H, Kowalczewski A, Vu D, ve ark. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Medicine in Novel Technology and Devices. 2024;21:100276. https://doi.org/https://doi.org/10.1016/j.medntd.2023.100276
  • 7. Yang S, Hu H, Kung H, ve ark. Organoids: The current status and biomedical applications. MedComm. 2023;4(3):e274. https://doi.org/https://doi.org/10.1002/mco2.274
  • 8. Zhang Y, Liu M, Xie N, ve ark. Cancer research revolutionized: Unveiling the power of organoids and their therapeutic potential in oncology. hLife. 2024. https://doi.org/https://doi.org/10.1016/j.hlife.2024.05.002
  • 9. Liu L, Yu L, Li Z, Li W, Huang W. Patient-derived organoid (PDO) platforms to facilitate clinical decision making. Journal of Translational Medicine. 2021;19(1):40. https://doi.org/10.1186/s12967-020-02677-2
  • 10. Sato T, Vries RG, Snippert HJ, ve ark. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature. 2009;459(7244):262-265. https://doi.org/10.1038/nature07935
  • 11. Zhao Z, Chen X, Dowbaj AM, ve ark. Organoids. Nature Reviews Methods Primers. 2022;2(1):94. https://doi.org/10.1038/s43586-022-00174-y
  • 12. Soto-Gamez A, Gunawan JP, Barazzuol L, Pringle S, Coppes RP. Organoid-based personalized medicine: from tumor outcome prediction to autologous transplantation. Stem Cells. 2024;42(6):499-508. https://doi.org/10.1093/stmcls/sxae023
  • 13. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663-676. https://doi.org/10.1016/j.cell.2006.07.024
  • 14. Fang Z, Li P, Du F, Shang L, Li L. The role of organoids in cancer research. Experimental Hematology & Oncology. 2023;12(1):69. https://doi.org/10.1186/s40164-023-00433-y
  • 15. Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cellular Oncology. 2024. https://doi.org/10.1007/s13402-024-00960-8
  • 16. Yang Y, Kong Y, Cui J, Hou Y, Gu Z, Ma C. Advances and Applications of Cancer Organoids in Drug Screening and Personalized Medicine. Stem Cell Reviews and Reports. 2024;20(5):1213-1226. https://doi.org/10.1007/s12015-024-10714-6
  • 17. Clevers H. Modeling Development and Disease with Organoids. Cell. 2016;165(7):1586-1597. https://doi.org/10.1016/j.cell.2016.05.082
  • 18. Drost J, Clevers H. Organoids in cancer research. Nature Reviews Cancer. 2018;18(7):407-418. https://doi.org/10.1038/s41568-018-0007-6
  • 19. Lin Y, Jiang L, He Q, Yuan M, Cao J. Progress and perspective of organoid technology in cancer-related translational medicine. Biomedicine & Pharmacotherapy. 2022;149:112869. https://doi.org/https://doi.org/10.1016/j.biopha.2022.112869
  • 20. Yang Q, Li M, Yang X, ve ark. Flourishing tumor organoids: History, emerging technology, and application. Bioengineering & Translational Medicine. 2023;8(5):e10559. https://doi.org/https://doi.org/10.1002/btm2.10559
  • 21. Ahammed B, Kalangi SK. A Decade of Organoid Research: Progress and Challenges in the Field of Organoid Technology. ACS Omega. 2024. https://doi.org/10.1021/acsomega.4c03683
  • 22. Grandori C, Kemp CJ. Personalized Cancer Models for Target Discovery and Precision Medicine. Trends in Cancer. 2018;4(9):634-642. https://doi.org/10.1016/j.trecan.2018.07.005
  • 23. Shiihara M, Furukawa T. Application of Patient-Derived Cancer Organoids to Personalized Medicine. Journal of Personalized Medicine. 2022;12(5):789. https://www.mdpi.com/2075-4426/12/5/789
  • 24. Saito Y, Muramatsu T, Kanai Y, ve ark. Establishment of Patient-Derived Organoids and Drug Screening for Biliary Tract Carcinoma. Cell Reports. 2019;27(4):1265-1276.e4. https://doi.org/10.1016/j.celrep.2019.03.088
  • 25. Chen P, Zhang X, Ding R, ve ark. Patient-Derived Organoids Can Guide Personalized-Therapies for Patients with Advanced Breast Cancer. Advanced Science. 2021;8(22):2101176. https://doi.org/https://doi.org/10.1002/advs.202101176
  • 26. Drost J, Karthaus WR, Gao D, ve ark. Organoid culture systems for prostate epithelial and cancer tissue. Nature Protocols. 2016;11(2):347-358. https://doi.org/10.1038/nprot.2016.006
  • 27. Zheng W, Ye M, Wang M, Meng Y. Establishment of ovarian malignant tumor organoid biobank. ACADEMIC JOURNAL OF CHINESE PLA MEDICAL SCHOOL. 2024;45:1-8. https://doi.org/10.12435/j.issn.2095-5227.2024.058
  • 28. Rao X, Qiao Z, Yang Y, ve ark. Unveiling Epigenetic Vulnerabilities in Triple-Negative Breast Cancer through 3D Organoid Drug Screening. Pharmaceuticals. 2024;17(2):225. https://www.mdpi.com/1424-8247/17/2/225
  • 29. Ryu K-B, Seo J-a, Lee K, ve ark. Drug-Resistance Biomarkers in Patient-Derived Colorectal Cancer Organoid and Fibroblast Co-Culture System. Current Issues in Molecular Biology. 2024;46(6):5794-5811. https://www.mdpi.com/1467-3045/46/6/346
  • 30. Nuciforo S, Fofana I, Matter MS, ve ark. Organoid Models of Human Liver Cancers Derived from Tumor Needle Biopsies. Cell Reports. 2018;24(5):1363-1376. https://doi.org/10.1016/j.celrep.2018.07.001
  • 31. Vlachogiannis G, Hedayat S, Vatsiou A, ve ark. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science. 2018;359(6378):920-926. https://doi.org/doi:10.1126/science.aao2774
  • 32. Huang L, Xu Y, Wang N, ve ark. Next-Generation Preclinical Functional Testing Models in Cancer Precision Medicine: CTC-Derived Organoids. Small Methods. 2024;8(1):2301009. https://doi.org/https://doi.org/10.1002/smtd.202301009
  • 33. Schöndorf DC, Ivanyuk D, Baden P, ve ark. The NAD+ Precursor Nicotinamide Riboside Rescues Mitochondrial Defects and Neuronal Loss in iPSC and Fly Models of Parkinson’s Disease. Cell Reports. 2018;23(10):2976-2988. https://doi.org/10.1016/j.celrep.2018.05.009
  • 34. Francis N, Yavuz S, Elnazir B. Beyond the Local Basic Panel: Full CFTR Gene Analysis Identifies Novel CF Mutation Missed on Standard Testing in an Arabic Child. Cureus. 2023;15(1):e33337. https://doi.org/10.7759/cureus.33337
  • 35. de Poel E, Spelier S, Hagemeijer MC, ve ark. FDA-approved drug screening in patient-derived organoids demonstrates potential of drug repurposing for rare cystic fibrosis genotypes. Journal of Cystic Fibrosis. 2023;22(3):548-559. https://doi.org/10.1016/j.jcf.2023.03.004
  • 36. Smabers LP, Wensink E, Verissimo CS, ve ark. Organoids as a biomarker for personalized treatment in metastatic colorectal cancer: drug screen optimization and correlation with patient response. J Exp Clin Cancer Res. 2024;43(1):61. https://doi.org/10.1186/s13046-024-02980-6
  • 37. Das S, Dey MK, Devireddy R, Gartia MR. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors. 2024;24(1):37. https://www.mdpi.com/1424-8220/24/1/37
  • 38. Sanjana NE, Shalem O, Zhang F. Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods. 2014;11(8):783-784. https://doi.org/10.1038/nmeth.3047
  • 39. Kurata M, Yamamoto K, Moriarity BS, Kitagawa M, Largaespada DA. CRISPR/Cas9 library screening for drug target discovery. Journal of Human Genetics. 2018;63(2):179-186. https://doi.org/10.1038/s10038-017-0376-9
  • 40. Pfeifer M, Brammeld JS, Price S, ve ark. Genome-wide CRISPR screens identify the YAP/TEAD axis as a driver of persister cells in EGFR mutant lung cancer. Communications Biology. 2024;7(1):497. https://doi.org/10.1038/s42003-024-06190-w
  • 41. Hendriks D, Pagliaro A, Andreatta F, ve ark. Human fetal brain self-organizes into long-term expanding organoids. Cell. 2024;187(3):712-732.e38. https://doi.org/10.1016/j.cell.2023.12.012
  • 42. Gallego Villarejo L, Gerding WM, Bachmann L, ve ark. Optical Genome Mapping Reveals Genomic Alterations upon Gene Editing in hiPSCs: Implications for Neural Tissue Differentiation and Brain Organoid Research. Cells. 2024;13(6):507. https://www.mdpi.com/2073-4409/13/6/507
  • 43. Du X, Chen Z, Li Q, ve ark. Organoids revealed: morphological analysis of the profound next generation in-vitro model with artificial intelligence. Bio-Design and Manufacturing. 2023;6(3):319-339. https://doi.org/10.1007/s42242-022-00226-y
  • 44. Kusumoto D, Seki T, Sawada H, ve ark. Anti-senescent drug screening by deep learning-based morphology senescence scoring. Nat Commun. 2021;12(1):257. https://doi.org/10.1038/s41467-020-20213-0
  • 45. Kusumoto D, Yuasa S, Fukuda K. Induced Pluripotent Stem Cell-Based Drug Screening by Use of Artificial Intelligence. Pharmaceuticals. 2022;15(5):562. https://www.mdpi.com/1424-8247/15/5/562
  • 46. Park T, Kim TK, Han YD, Kim K-A, Kim H, Kim HS. Development of a deep learning based image processing tool for enhanced organoid analysis. Scientific Reports. 2023;13(1):19841. https://doi.org/10.1038/s41598-023-46485-2
  • 47. Ker J, Wang L, Rao J, Lim T. Deep Learning Applications in Medical Image Analysis. IEEE Access. 2018;6:9375-9389. https://doi.org/10.1109/ACCESS.2017.2788044
  • 48. Kegeles E, Naumov A, Karpulevich EA, Volchkov P, Baranov P. Convolutional Neural Networks Can Predict Retinal Differentiation in Retinal Organoids. Frontiers in Cellular Neuroscience. 2020;14. https://doi.org/10.3389/fncel.2020.00171
  • 49. Ko J, Hyung S, Cheong S, Chung Y, Li Jeon N. Revealing the clinical potential of high-resolution organoids. Advanced Drug Delivery Reviews. 2024;207:115202. https://doi.org/10.1016/j.addr.2024.115202
  • 50. Roberto de Barros N, Wang C, Maity S, ve ark. Engineered organoids for biomedical applications. Advanced Drug Delivery Reviews. 2023;203:115142. https://doi.org/https://doi.org/10.1016/j.addr.2023.115142
  • 51. Arganda-Carreras I, Kaynig V, Rueden C, ve ark. Trainable Weka Segmentation: a machine learning tool for microscopy pixel classification. Bioinformatics. 2017;33(15):2424-2426. https://doi.org/10.1093/bioinformatics/btx180
  • 52. Wen C, Miura T, Voleti V, ve ark. 3DeeCellTracker, a deep learning-based pipeline for segmenting and tracking cells in 3D time lapse images. eLife. 2021;10:e59187. https://doi.org/10.7554/eLife.59187
  • 53. Borten MA, Bajikar SS, Sasaki N, Clevers H, Janes KA. Automated brightfield morphometry of 3D organoid populations by OrganoSeg. Scientific Reports. 2018;8(1):5319. https://doi.org/10.1038/s41598-017-18815-8
  • 54. Kassis T, Hernandez-Gordillo V, Langer R, Griffith LG. OrgaQuant: Human Intestinal Organoid Localization and Quantification Using Deep Convolutional Neural Networks. Scientific Reports. 2019;9(1):12479. https://doi.org/10.1038/s41598-019-48874-y
  • 55. Gritti N, Lim JL, Anlaş K, ve ark. MOrgAna: accessible quantitative analysis of organoids with machine learning. Development. 2021;148(18):dev199611. https://doi.org/10.1242/dev.199611
  • 56. Matthews JM, Schuster B, Kashaf SS, ve ark. OrganoID: A versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLOS Computational Biology. 2022;18(11):e1010584. https://doi.org/10.1371/journal.pcbi.1010584
  • 57. Abdul L, Xu J, Sotra A, ve ark. D-CryptO: deep learning-based analysis of colon organoid morphology from brightfield images. Lab on a Chip. 2022;22(21):4118-4128. https://doi.org/10.1039/D2LC00596D
  • 58. Smirnova L, Caffo BS, Gracias DH, ve ark. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Frontiers in Science. 2023;1. https://doi.org/10.3389/fsci.2023.1017235
  • 59. Morales Pantoja IE, Smirnova L, Muotri AR, ve ark. First Organoid Intelligence (OI) workshop to form an OI community. Frontiers in Artificial Intelligence. 2023;6. https://doi.org/10.3389/frai.2023.1116870
  • 60. Rassomakhina NV, Ryazanova AY, Likhov AR, Bruskin SA, Maloshenok LG, Zherdeva VV. Tumor Organoids: The Era of Personalized Medicine. Biochemistry (Mosc). 2024;89(Suppl 1):S127-s147. https://doi.org/10.1134/s0006297924140086
There are 60 citations in total.

Details

Primary Language Turkish
Subjects Modelling and Simulation
Journal Section Reviews
Authors

Tuba Gunel 0000-0003-3514-5210

Ece Gümüşoğlu-acar 0000-0003-3807-0330

Kaan Kara 0009-0007-0789-4077

Sude Subaşı 0009-0000-6501-8947

Dilan Kutlay 0009-0005-7535-1037

Publication Date December 31, 2024
Submission Date July 25, 2024
Acceptance Date December 16, 2024
Published in Issue Year 2024 Volume: 4 Issue: 3

Cite

Vancouver Gunel T, Gümüşoğlu-acar E, Kara K, Subaşı S, Kutlay D. Bireysel Tıpta Organoidler ve Yapay Zeka. JAIHS. 2024;4(3):7-21.