BibTex RIS Cite
Year 2020, Volume: 3 Issue: 1, 1 - 8, 01.01.2020

Abstract

References

  • 1. Cohen, H. (2007). Number Theory vol.1. Tools and diophantine equations, Springer.
  • 2. Dujella, A. (2002). On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132, 23-33.
  • 3. Dujella, A., (2016). What is a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 , 772-774.
  • 4. Gopalan M.A., Vidhyalaksfmi S. , Özer Ö., (2018). A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi, INDIA.
  • 5. Gopalan, M.A. Thangam, S., Özer, Ö. (2019), On the System of Double Equations with Three Unknowns , International Journal of Nonlinear Analysis and Applications, DOI: 10.22075/IJNAA.2019.14412.1757 , Articles in Press.
  • 6. Larson, D. and Cantu J., Parts I and II of the Law of Quadratic Reciprocity, Texas A&M University, Lecture Notes, 2015.
  • 7. Mollin R.A., Fundamental Number Theory with Applications, CRC Press, 2008.
  • 8. Özer Ö., (2016). A Note On The Particular Sets With Size Three, Boundary Field Problems and Computer Simulation Journal, 55: 56-59.
  • 9. Özer Ö.,(2016). On The Some Particular Sets, Kırklareli University Journal of Engineering and Science, 2: 99-108.
  • 10. Özer Ö., (2017). Some Properties of The Certain Pt Sets, International Journal of Algebra and Statistics, 6 (1-2) ;117-130.
  • 11. Özer Ö., (2018). On The Some Nonextandable Regular Sets , Malaysian Journal of Mathematical Sciences, 12(2): 255–266.
  • 12. Özer Ö., (2019). Some Results on Especial Diophantine Sets with Size-3, JAMAME, Vol:2,No:1, 1-11.
  • 13. Özer Ö., (2019), A Certain Type of Regular Diophantine Triples and Their NonExtendability, Turkish Journal of Analysis & Number Theory, 2019, 7(2), 50-55. DOI: 10.12691/tjant-7-2-4.
  • 14. Özer Ö., Gopalan M.A., (2019). On the homogeneous cone, Pioneer Journal of Mathematics and Mathematical Sciences (PJMMS), Volume 25, Issue 1, Pages 9-18.
  • 15. Rihane, E.A., Hernane, M.O., Togbe, A. (2019), On Diophantine triples of Pell numbers, Colloq. Math. 156, 273-285.
  • 16. Silverman, J. H., A Friendly Introduction to Number Theory. 4th Ed. Upper Saddle River: Pearson, 141-157, 2013.
  • 17. Vidhyalakshmi, S., Gopalan, M.A., Thangam, S., Özer, Ö., (2019). On the Ternary Biquadratic Diophantine Equation, Notes on Number Theory and Discrete Mathematics, Vol. 25, 2019, No. 3, 65–71, DOI: 10.7546/nntdm.2019.25.3.65-71.

Some Ps Diophantine Triples for Especial s Integer

Year 2020, Volume: 3 Issue: 1, 1 - 8, 01.01.2020

Abstract

The aim of this research paper is to consider some –Diophantine triples including integer numbers under the special condition for . It is demonstrated that they can not be extended to –Diophantine quadruples but they are regular. Also, several properties on the elements of this type sets are obtained. Some notations such as Modular Arithmetic, Quadratic Reciprocity or Residue Law, Legendre Symbol are used to prove our results

References

  • 1. Cohen, H. (2007). Number Theory vol.1. Tools and diophantine equations, Springer.
  • 2. Dujella, A. (2002). On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132, 23-33.
  • 3. Dujella, A., (2016). What is a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 , 772-774.
  • 4. Gopalan M.A., Vidhyalaksfmi S. , Özer Ö., (2018). A Collection of Pellian Equation (Solutions and Properties), Akinik Publications, New Delhi, INDIA.
  • 5. Gopalan, M.A. Thangam, S., Özer, Ö. (2019), On the System of Double Equations with Three Unknowns , International Journal of Nonlinear Analysis and Applications, DOI: 10.22075/IJNAA.2019.14412.1757 , Articles in Press.
  • 6. Larson, D. and Cantu J., Parts I and II of the Law of Quadratic Reciprocity, Texas A&M University, Lecture Notes, 2015.
  • 7. Mollin R.A., Fundamental Number Theory with Applications, CRC Press, 2008.
  • 8. Özer Ö., (2016). A Note On The Particular Sets With Size Three, Boundary Field Problems and Computer Simulation Journal, 55: 56-59.
  • 9. Özer Ö.,(2016). On The Some Particular Sets, Kırklareli University Journal of Engineering and Science, 2: 99-108.
  • 10. Özer Ö., (2017). Some Properties of The Certain Pt Sets, International Journal of Algebra and Statistics, 6 (1-2) ;117-130.
  • 11. Özer Ö., (2018). On The Some Nonextandable Regular Sets , Malaysian Journal of Mathematical Sciences, 12(2): 255–266.
  • 12. Özer Ö., (2019). Some Results on Especial Diophantine Sets with Size-3, JAMAME, Vol:2,No:1, 1-11.
  • 13. Özer Ö., (2019), A Certain Type of Regular Diophantine Triples and Their NonExtendability, Turkish Journal of Analysis & Number Theory, 2019, 7(2), 50-55. DOI: 10.12691/tjant-7-2-4.
  • 14. Özer Ö., Gopalan M.A., (2019). On the homogeneous cone, Pioneer Journal of Mathematics and Mathematical Sciences (PJMMS), Volume 25, Issue 1, Pages 9-18.
  • 15. Rihane, E.A., Hernane, M.O., Togbe, A. (2019), On Diophantine triples of Pell numbers, Colloq. Math. 156, 273-285.
  • 16. Silverman, J. H., A Friendly Introduction to Number Theory. 4th Ed. Upper Saddle River: Pearson, 141-157, 2013.
  • 17. Vidhyalakshmi, S., Gopalan, M.A., Thangam, S., Özer, Ö., (2019). On the Ternary Biquadratic Diophantine Equation, Notes on Number Theory and Discrete Mathematics, Vol. 25, 2019, No. 3, 65–71, DOI: 10.7546/nntdm.2019.25.3.65-71.
There are 17 citations in total.

Details

Primary Language English
Journal Section Some Notes on the Extendibility of an Especial Family of Diophantine 𝑷𝟐 Pairs
Authors

Özlem Aytekin Çelik This is me

Publication Date January 1, 2020
Published in Issue Year 2020 Volume: 3 Issue: 1

Cite

APA Aytekin Çelik, Ö. (2020). Some Ps Diophantine Triples for Especial s Integer. Journal of Advanced Mathematics and Mathematics Education, 3(1), 1-8.