The Effects of Failure Types on Cold Forging Dies
Year 2021,
Volume: 2 Issue: 2, 53 - 60, 30.12.2021
Talha Çakmak
,
Şevki Alp Adaçağlar
Abstract
Fastener preferences are also changing in parallel with the development of the automotive industry. During these periods, when light-weightings and carbon emissions have great importance; each part used is forced to be lighter, carbon footprints are calculated and more strength parts are designed. Therefore, the designs, sizes and even raw materials of the fasteners used in the connections of the parts must be re-considered. This reconsideration along with the manufacturers of fasteners supports scientific knowledge using advanced technologies, unique products, on behalf of the design of the production steps and the tool dies are of great importance. According to the complex geometry and strength quality of the bolt, product design and accordingly die designs are carried out. The machining steps used in the production of the dies are vital in terms of their lifetime. In the production of fasteners, the cold forging method is preferred because of its many advantages such as mass production flow, precise geometric tolerance and no need for external heat energy. One of the most required part of the cold forging dies are precision tolerance production. The production and design of cold forging dies play an active role in terms of quality and production performance since they directly affect the final product. In this article, the importance and effects of the manufacturing steps in cold forging dies used in bolt manufacturing will be discussed.
Thanks
First of all, we would like to thank the Çetin Cıvata Ticaret ve Sanayi A.Ş, İstanbul family for providing opportunities and providing continuous support. I would also like to thank all the employees of the company, especially Faik GÖKÇÜL, for their willingness to inform me about their help and experience in order to determine the problems.
I also wish to express my gratitude to Doc. Dr. Orhan ÇAKIR for their helpful comments and suggestions for developing our paper.
References
- M. Shirgaokar, “Technology To Improve Competitiveness in Warm and -Increasing Die Life and Material Utilization-,” Lubrication, p. 271, 2008.
- K. Fisher, H. Schweiger, J. Hasenberger, and H. Dremel, “New Tool Steel for Warm and Hot Forging,” 6th Int. Tool. Conf., pp. 129–139, 2002.
- R. Rajiev, P. Sadagopan, and R. Shanmuga Prakash, “Study on investigation of hot forging die wear analysis-An industrial case study,” Mater. Today Proc., vol. 27, no. xxxx, pp. 2752–2757, 2019, doi: 10.1016/j.matpr.2019.11.330.
- S. Sheljaskov, “Current level of development of warm forging technology,” J. Mater. Process. Tech., vol. 46, no. 1–2, pp. 3–18, 1994, doi: 10.1016/0924-0136(94)90099-X.
- H. Berns, A. Melander, D. Weichert, N. Asnafi, and C. Broeckmann, “Science(19)Новый Материал Инструмента Для Холодной Ковки.Pdf,” vol. 0256, no. 98, pp. 166–180, 1998.
- C.- Author, “Numerical Investigation of Cold Forging and Failure Evolution of DIN 1 . 5535 Alloy M5x40 Bolts,” no. September, pp. 1–10, 2016.
- J. Groenbaak and T. Birker, “Innovations in cold forging die design,” J. Mater. Process. Technol., vol. 98, no. 2, pp. 155–161, 2000, doi: 10.1016/s0924-0136(99)00192-2.
- Y. Lee, J. Lee, Y. Kwon, and T. Ishikawa, “Modeling approach to estimate the elastic characteristics of workpiece and shrink-fitted die for cold forging,” J. Mater. Process. Technol., vol. 147, no. 1, pp. 102–110, 2004, doi: 10.1016/j.jmatprotec.2003.12.008.
- C. KILIÇASLAN, “Ø12x60,5 Rotilin Çok Aşamalı Soğuk Dövme İşleminde Meydana Gelen Çatlak Oluşumunun İncelenmesi,” Deu Muhendis. Fak. Fen ve Muhendis., vol. 22, no. 64, pp. 137–145, 2020, doi: 10.21205/deufmd.2020226413.
- F. Kocatürk, D. Zeren, S. Yurtdaş, M. B. Toparli, and C. Kılıçaslan, “Soğuk Dövmede Kullanılan Yüzey İşlem Metotları Surface Preparation Methods Used in Cold Forging,” Mühendis ve Makina, vol. 61, no. 699, pp. 116–131, 2020, doi: 10.46399/muhendismakina.767234.
- C. Kılıçaslan and U. İnce, “Numerical Simulation Coupled Die Design for Improving Wire Drawing Process of Polymer Coated Cold Forging Steels,” no. September, pp. 15–18, 2019.
- V. Leshchynsky, M. Ignatiev, H. Wiśniewska-Weinert, J. Borowski, T. Rybak, and I. Dobrovnik, “Forging tools modification with graphene-like solid lubricant nanoparticles,” J. Achiev. Mater. Manuf. Eng., vol. 43, no. 1, pp. 341–348, 2010, [Online]. Available: http://www.w.journalamme.org/papers_vol43_1/43137.pdf.
- C. Müller, L. Rudel, D. Yalcin, and P. Groche, “Cold forging with lubricated tools,” Key Eng. Mater., vol. 611–612, pp. 971–980, 2014, doi: 10.4028/www.scientific.net/KEM.611-612.971.
- M. Gariety, G. Ngaile, and T. Altan, “Evaluation of new cold forging lubricants without zinc phosphate precoat,” Int. J. Mach. Tools Manuf., vol. 47, no. 3–4, pp. 673–681, 2007, doi: 10.1016/j.ijmachtools.2006.04.016.
- Y. G. Jin, H. M. Baek, S. K. Hwang, Y. T. Im, and B. C. Jeon, “Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system,” J. Mater. Process. Technol., vol. 212, no. 4, pp. 848–855, 2012, doi: 10.1016/j.jmatprotec.2011.11.010.
- M. Guden, “The effect of coating type on bolt fatigue life,” no. December, 2015.
- U. Popp and U. Engel, “Microtexturing of cold-forging tools - Influence on tool life,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 220, no. 1, pp. 27–33, 2006, doi: 10.1243/095440505X32968.
- J. Larsson, A. Jansson, and P. Karlsson, “Monitoring and evaluation of the wire drawing process using thermal imaging,” Int. J. Adv. Manuf. Technol., vol. 101, no. 5–8, pp. 2121–2134, 2019, doi: 10.1007/s00170-018-3021-7.
- J. P. Domblesky and F. Feng, “A parametric study of process parameters in external thread rolling,” J. Mater. Process. Technol., vol. 121, no. 2–3, pp. 341–349, 2002, doi: 10.1016/S0924-0136(01)01223-7.
- Z. Pater, A. Gontarz, and W. Weroñski, “New method of thread rolling,” J. Mater. Process. Technol., vol. 153–154, no. 1–3, pp. 722–728, 2004, doi: 10.1016/j.jmatprotec.2004.04.154.
- H. C. Lee, M. A. Saroosh, J. H. Song, and Y. T. Im, “The effect of shrink fitting ratios on tool life in bolt forming processes,” J. Mater. Process. Technol., vol. 209, no. 8, pp. 3766–3775, 2009, doi: 10.1016/j.jmatprotec.2008.08.032.
- S. Yurtdaş, U. İnce, C. Kılıçaslan, and H. Yıldız, “A case study for improving tool life in cold forging: Carbon fiber composite reinforced dies,” Res. Eng. Struct. Mater., no. February 2017, 2016, doi: 10.17515/resm2016.24me2902.
- N. Asnafi, “On tool stresses in cold heading of fasteners,” Eng. Fail. Anal., vol. 6, no. 5, pp. 321–335, 1999, doi: 10.1016/S1350-6307(98)00050-8.
- N. Karunathilaka et al., “Effect of lubrication and forging load on surface roughness, residual stress, and deformation of cold forging tools,” Metals (Basel)., vol. 9, no. 7, 2019, doi: 10.3390/met9070783.
- A. F. Rousseau et al., “Microstructural and tribological characterisation of a nitriding/TiAlN PVD coating duplex treatment applied to M2 High Speed Steel tools,” Surf. Coatings Technol., vol. 272, pp. 403–408, 2015, doi: 10.1016/j.surfcoat.2015.03.034.
- J. A. Arsecularatne, L. C. Zhang, C. Montross, and P. Mathew, “On machining of hardened AISI D2 steel with PCBN tools,” J. Mater. Process. Technol., vol. 171, no. 2, pp. 244–252, 2006, doi: 10.1016/j.jmatprotec.2005.06.079.
- H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, and D. Aspinwall, “Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools,” J. Mater. Process. Technol., vol. 135, no. 2–3, pp. 301–311, 2003, doi: 10.1016/S0924-0136(02)00861-0.
- N. Karunathilaka, N. Tada, T. Uemori, R. Hanamitsu, and M. Kawano, “Effect of contact pressure applied on tool surface during cold forging on fatigue life of tool steel,” Procedia Manuf., vol. 15, pp. 488–495, 2018, doi: 10.1016/j.promfg.2018.07.258.
- A. Kelimeler, “Cıvata Soğuk Dövme İşleminde Kalıp Ömrünün Arttırılması : Dövme Kademe Tasarımının Etkisi TOOL LIFE ENHACEMENT IN COLD BOLT FORGING PROCESS : EFFECT OF FORGING STAGE DESIGN,” no. 1, pp. 2–8, 2017.
A. Jarfors, S. Castagne, A. Danno, and X. Zhang, “Tool Wear and Life Span Variations in Cold Forming Operations and Their Implications in Microforming,” Technologies, vol. 5, no. 1, p. 3, 2016, doi: 10.3390/technologies5010003.
- B. Tanrıkulu and R. Karakuzu, “Fatigue life prediction model of WC-Co cold forging dies based on experimental and numerical studies,” Eng. Fail. Anal., vol. 118, p. 104910, 2020, doi: 10.1016/j.engfailanal.2020.104910.
- H. C. Lee, Y. Lee, S. Y. Lee, S. Choi, D. L. Lee, and Y. T. Im, “Tool life prediction for the bolt forming process based on high-cycle fatigue and wear,” J. Mater. Process. Technol., vol. 201, no. 1–3, pp. 348–353, 2008, doi: 10.1016/j.jmatprotec.2007.11.166.
- A. Sonsöz and A. E. Tekkaya, “Service life estimation of extrusion dies by numerical simulation of fatigue-crack-growth,” Int. J. Mech. Sci., vol. 38, no. 5, pp. 527–538, 1996, doi: 10.1016/0020-7403(95)00064-X.
- K. Lange, L. Cser, M. Geiger, and J. A. G. Kals, “Tool Life and Tool Quality in Bulk Metal Forming,” CIRP Ann. - Manuf. Technol., vol. 41, no. 2, pp. 667–675, 1992, doi: 10.1016/S0007-8506(07)63253-3.
- P. D. H. Rende and A. G. F. Güven, “Sıkı geçme bağlantılarında malzemeye bağlı yüzey pürüzlülüğü kayıp katsayısının belı̇rlenmesı̇,” Mühendis ve Makina, vol. 665, pp. 46–52, 2015.
- Z. Z. Fang, “Correlation of transverse rupture strength of WC-Co with hardness,” Int. J. Refract. Met. Hard Mater., vol. 23, no. 2, pp. 119–127, 2005, doi: 10.1016/j.ijrmhm.2004.11.005.
- X. Chen, R. Balendra, and Y. Qin, “A new approach for the optimisation of the shrink-fitting of cold-forging dies,” J. Mater. Process. Technol., vol. 145, no. 2, pp. 215–223, 2004, doi: 10.1016/S0924-0136(03)00672-1.
- E. S. Reshetnikova, D. U. Usatiy, and T. V. Usataya, “Bolts manufacturing technology,” Solid State Phenom., vol. 265 SSP, pp. 79–85, 2017, doi: 10.4028/www.scientific.net/SSP.265.79.
- K. Lange, A. Hettig, and M. Knoerr, “Increasing tool life in cold forging through advanced design and tool manufacturing techniques,” J. Mater. Process. Tech., vol. 35, no. 3–4, pp. 495–513, 1992, doi: 10.1016/0924-0136(92)90337-R.
- M. A. Arslan, “Coupled thermal/structural contact analyses of shrink-fit tool holder,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 228, no. 5, pp. 715–724, 2014, doi: 10.1177/0954405413506418.
- P. Pedersen, “On shrink fit analysis and design,” Comput. Mech., vol. 37, no. 2, pp. 121–130, 2006, doi: 10.1007/s00466-005-0664-7.
- C. McCormack and J. Monaghan, “A finite element analysis of cold-forging dies using two- and three-dimensional models,” J. Mater. Process. Technol., vol. 118, no. 1–3, pp. 286–292, 2001, doi: 10.1016/S0924-0136(01)00960-8.
- C. MacCormack and J. Monaghan, “Failure analysis of cold forging dies using FEA,” J. Mater. Process. Technol., vol. 117, no. 1–2, pp. 209–215, 2001, doi: 10.1016/S0924-0136(01)01139-6.
- K. Wagner, R. Völkl, and U. Engel, “Tool life enhancement in cold forging by locally optimized surfaces,” J. Mater. Process. Technol., vol. 201, no. 1–3, pp. 2–8, 2008, doi: 10.1016/j.jmatprotec.2007.11.152.
- M. Aygen, “Die stress and friction behaviour analysis in bolt farming,” M.S. - Master of Science, Middle East Technical University, 2006.
- T. H. C. Childs, “Persistence of Roughness Between Surfaces in Static Contact.,” Proc R Soc London Ser A, vol. 353, no. 1672, pp. 35–53, 1977, doi: 10.1098/rspa.1977.0020.
- M. Aygen, “Die stress and friction behaviour analysis in bolt farming,” M.S. - Master of Science, Middle East Technical University, 2006.
Year 2021,
Volume: 2 Issue: 2, 53 - 60, 30.12.2021
Talha Çakmak
,
Şevki Alp Adaçağlar
References
- M. Shirgaokar, “Technology To Improve Competitiveness in Warm and -Increasing Die Life and Material Utilization-,” Lubrication, p. 271, 2008.
- K. Fisher, H. Schweiger, J. Hasenberger, and H. Dremel, “New Tool Steel for Warm and Hot Forging,” 6th Int. Tool. Conf., pp. 129–139, 2002.
- R. Rajiev, P. Sadagopan, and R. Shanmuga Prakash, “Study on investigation of hot forging die wear analysis-An industrial case study,” Mater. Today Proc., vol. 27, no. xxxx, pp. 2752–2757, 2019, doi: 10.1016/j.matpr.2019.11.330.
- S. Sheljaskov, “Current level of development of warm forging technology,” J. Mater. Process. Tech., vol. 46, no. 1–2, pp. 3–18, 1994, doi: 10.1016/0924-0136(94)90099-X.
- H. Berns, A. Melander, D. Weichert, N. Asnafi, and C. Broeckmann, “Science(19)Новый Материал Инструмента Для Холодной Ковки.Pdf,” vol. 0256, no. 98, pp. 166–180, 1998.
- C.- Author, “Numerical Investigation of Cold Forging and Failure Evolution of DIN 1 . 5535 Alloy M5x40 Bolts,” no. September, pp. 1–10, 2016.
- J. Groenbaak and T. Birker, “Innovations in cold forging die design,” J. Mater. Process. Technol., vol. 98, no. 2, pp. 155–161, 2000, doi: 10.1016/s0924-0136(99)00192-2.
- Y. Lee, J. Lee, Y. Kwon, and T. Ishikawa, “Modeling approach to estimate the elastic characteristics of workpiece and shrink-fitted die for cold forging,” J. Mater. Process. Technol., vol. 147, no. 1, pp. 102–110, 2004, doi: 10.1016/j.jmatprotec.2003.12.008.
- C. KILIÇASLAN, “Ø12x60,5 Rotilin Çok Aşamalı Soğuk Dövme İşleminde Meydana Gelen Çatlak Oluşumunun İncelenmesi,” Deu Muhendis. Fak. Fen ve Muhendis., vol. 22, no. 64, pp. 137–145, 2020, doi: 10.21205/deufmd.2020226413.
- F. Kocatürk, D. Zeren, S. Yurtdaş, M. B. Toparli, and C. Kılıçaslan, “Soğuk Dövmede Kullanılan Yüzey İşlem Metotları Surface Preparation Methods Used in Cold Forging,” Mühendis ve Makina, vol. 61, no. 699, pp. 116–131, 2020, doi: 10.46399/muhendismakina.767234.
- C. Kılıçaslan and U. İnce, “Numerical Simulation Coupled Die Design for Improving Wire Drawing Process of Polymer Coated Cold Forging Steels,” no. September, pp. 15–18, 2019.
- V. Leshchynsky, M. Ignatiev, H. Wiśniewska-Weinert, J. Borowski, T. Rybak, and I. Dobrovnik, “Forging tools modification with graphene-like solid lubricant nanoparticles,” J. Achiev. Mater. Manuf. Eng., vol. 43, no. 1, pp. 341–348, 2010, [Online]. Available: http://www.w.journalamme.org/papers_vol43_1/43137.pdf.
- C. Müller, L. Rudel, D. Yalcin, and P. Groche, “Cold forging with lubricated tools,” Key Eng. Mater., vol. 611–612, pp. 971–980, 2014, doi: 10.4028/www.scientific.net/KEM.611-612.971.
- M. Gariety, G. Ngaile, and T. Altan, “Evaluation of new cold forging lubricants without zinc phosphate precoat,” Int. J. Mach. Tools Manuf., vol. 47, no. 3–4, pp. 673–681, 2007, doi: 10.1016/j.ijmachtools.2006.04.016.
- Y. G. Jin, H. M. Baek, S. K. Hwang, Y. T. Im, and B. C. Jeon, “Continuous high strength aluminum bolt manufacturing by the spring-loaded ECAP system,” J. Mater. Process. Technol., vol. 212, no. 4, pp. 848–855, 2012, doi: 10.1016/j.jmatprotec.2011.11.010.
- M. Guden, “The effect of coating type on bolt fatigue life,” no. December, 2015.
- U. Popp and U. Engel, “Microtexturing of cold-forging tools - Influence on tool life,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 220, no. 1, pp. 27–33, 2006, doi: 10.1243/095440505X32968.
- J. Larsson, A. Jansson, and P. Karlsson, “Monitoring and evaluation of the wire drawing process using thermal imaging,” Int. J. Adv. Manuf. Technol., vol. 101, no. 5–8, pp. 2121–2134, 2019, doi: 10.1007/s00170-018-3021-7.
- J. P. Domblesky and F. Feng, “A parametric study of process parameters in external thread rolling,” J. Mater. Process. Technol., vol. 121, no. 2–3, pp. 341–349, 2002, doi: 10.1016/S0924-0136(01)01223-7.
- Z. Pater, A. Gontarz, and W. Weroñski, “New method of thread rolling,” J. Mater. Process. Technol., vol. 153–154, no. 1–3, pp. 722–728, 2004, doi: 10.1016/j.jmatprotec.2004.04.154.
- H. C. Lee, M. A. Saroosh, J. H. Song, and Y. T. Im, “The effect of shrink fitting ratios on tool life in bolt forming processes,” J. Mater. Process. Technol., vol. 209, no. 8, pp. 3766–3775, 2009, doi: 10.1016/j.jmatprotec.2008.08.032.
- S. Yurtdaş, U. İnce, C. Kılıçaslan, and H. Yıldız, “A case study for improving tool life in cold forging: Carbon fiber composite reinforced dies,” Res. Eng. Struct. Mater., no. February 2017, 2016, doi: 10.17515/resm2016.24me2902.
- N. Asnafi, “On tool stresses in cold heading of fasteners,” Eng. Fail. Anal., vol. 6, no. 5, pp. 321–335, 1999, doi: 10.1016/S1350-6307(98)00050-8.
- N. Karunathilaka et al., “Effect of lubrication and forging load on surface roughness, residual stress, and deformation of cold forging tools,” Metals (Basel)., vol. 9, no. 7, 2019, doi: 10.3390/met9070783.
- A. F. Rousseau et al., “Microstructural and tribological characterisation of a nitriding/TiAlN PVD coating duplex treatment applied to M2 High Speed Steel tools,” Surf. Coatings Technol., vol. 272, pp. 403–408, 2015, doi: 10.1016/j.surfcoat.2015.03.034.
- J. A. Arsecularatne, L. C. Zhang, C. Montross, and P. Mathew, “On machining of hardened AISI D2 steel with PCBN tools,” J. Mater. Process. Technol., vol. 171, no. 2, pp. 244–252, 2006, doi: 10.1016/j.jmatprotec.2005.06.079.
- H. Coldwell, R. Woods, M. Paul, P. Koshy, R. Dewes, and D. Aspinwall, “Rapid machining of hardened AISI H13 and D2 moulds, dies and press tools,” J. Mater. Process. Technol., vol. 135, no. 2–3, pp. 301–311, 2003, doi: 10.1016/S0924-0136(02)00861-0.
- N. Karunathilaka, N. Tada, T. Uemori, R. Hanamitsu, and M. Kawano, “Effect of contact pressure applied on tool surface during cold forging on fatigue life of tool steel,” Procedia Manuf., vol. 15, pp. 488–495, 2018, doi: 10.1016/j.promfg.2018.07.258.
- A. Kelimeler, “Cıvata Soğuk Dövme İşleminde Kalıp Ömrünün Arttırılması : Dövme Kademe Tasarımının Etkisi TOOL LIFE ENHACEMENT IN COLD BOLT FORGING PROCESS : EFFECT OF FORGING STAGE DESIGN,” no. 1, pp. 2–8, 2017.
A. Jarfors, S. Castagne, A. Danno, and X. Zhang, “Tool Wear and Life Span Variations in Cold Forming Operations and Their Implications in Microforming,” Technologies, vol. 5, no. 1, p. 3, 2016, doi: 10.3390/technologies5010003.
- B. Tanrıkulu and R. Karakuzu, “Fatigue life prediction model of WC-Co cold forging dies based on experimental and numerical studies,” Eng. Fail. Anal., vol. 118, p. 104910, 2020, doi: 10.1016/j.engfailanal.2020.104910.
- H. C. Lee, Y. Lee, S. Y. Lee, S. Choi, D. L. Lee, and Y. T. Im, “Tool life prediction for the bolt forming process based on high-cycle fatigue and wear,” J. Mater. Process. Technol., vol. 201, no. 1–3, pp. 348–353, 2008, doi: 10.1016/j.jmatprotec.2007.11.166.
- A. Sonsöz and A. E. Tekkaya, “Service life estimation of extrusion dies by numerical simulation of fatigue-crack-growth,” Int. J. Mech. Sci., vol. 38, no. 5, pp. 527–538, 1996, doi: 10.1016/0020-7403(95)00064-X.
- K. Lange, L. Cser, M. Geiger, and J. A. G. Kals, “Tool Life and Tool Quality in Bulk Metal Forming,” CIRP Ann. - Manuf. Technol., vol. 41, no. 2, pp. 667–675, 1992, doi: 10.1016/S0007-8506(07)63253-3.
- P. D. H. Rende and A. G. F. Güven, “Sıkı geçme bağlantılarında malzemeye bağlı yüzey pürüzlülüğü kayıp katsayısının belı̇rlenmesı̇,” Mühendis ve Makina, vol. 665, pp. 46–52, 2015.
- Z. Z. Fang, “Correlation of transverse rupture strength of WC-Co with hardness,” Int. J. Refract. Met. Hard Mater., vol. 23, no. 2, pp. 119–127, 2005, doi: 10.1016/j.ijrmhm.2004.11.005.
- X. Chen, R. Balendra, and Y. Qin, “A new approach for the optimisation of the shrink-fitting of cold-forging dies,” J. Mater. Process. Technol., vol. 145, no. 2, pp. 215–223, 2004, doi: 10.1016/S0924-0136(03)00672-1.
- E. S. Reshetnikova, D. U. Usatiy, and T. V. Usataya, “Bolts manufacturing technology,” Solid State Phenom., vol. 265 SSP, pp. 79–85, 2017, doi: 10.4028/www.scientific.net/SSP.265.79.
- K. Lange, A. Hettig, and M. Knoerr, “Increasing tool life in cold forging through advanced design and tool manufacturing techniques,” J. Mater. Process. Tech., vol. 35, no. 3–4, pp. 495–513, 1992, doi: 10.1016/0924-0136(92)90337-R.
- M. A. Arslan, “Coupled thermal/structural contact analyses of shrink-fit tool holder,” Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., vol. 228, no. 5, pp. 715–724, 2014, doi: 10.1177/0954405413506418.
- P. Pedersen, “On shrink fit analysis and design,” Comput. Mech., vol. 37, no. 2, pp. 121–130, 2006, doi: 10.1007/s00466-005-0664-7.
- C. McCormack and J. Monaghan, “A finite element analysis of cold-forging dies using two- and three-dimensional models,” J. Mater. Process. Technol., vol. 118, no. 1–3, pp. 286–292, 2001, doi: 10.1016/S0924-0136(01)00960-8.
- C. MacCormack and J. Monaghan, “Failure analysis of cold forging dies using FEA,” J. Mater. Process. Technol., vol. 117, no. 1–2, pp. 209–215, 2001, doi: 10.1016/S0924-0136(01)01139-6.
- K. Wagner, R. Völkl, and U. Engel, “Tool life enhancement in cold forging by locally optimized surfaces,” J. Mater. Process. Technol., vol. 201, no. 1–3, pp. 2–8, 2008, doi: 10.1016/j.jmatprotec.2007.11.152.
- M. Aygen, “Die stress and friction behaviour analysis in bolt farming,” M.S. - Master of Science, Middle East Technical University, 2006.
- T. H. C. Childs, “Persistence of Roughness Between Surfaces in Static Contact.,” Proc R Soc London Ser A, vol. 353, no. 1672, pp. 35–53, 1977, doi: 10.1098/rspa.1977.0020.
- M. Aygen, “Die stress and friction behaviour analysis in bolt farming,” M.S. - Master of Science, Middle East Technical University, 2006.