Research Article
BibTex RIS Cite

Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys

Year 2023, Volume: 4 Issue: 1, 1 - 11, 24.07.2023

Abstract

Pirinç malzemeler, yaygın Çinko elementi ile bakır alaşımları alt gruplarında sınıflandırılır. Bu malzemeler, dayanım, şekillendirilebilirlik ve korozyon direnci gibi üstün özellikleri nedeniyle içme suyu sistemlerinden otomotive kadar çok çeşitli endüstriyel uygulamalarda kullanılmaktadır. Bu çalışma, çevre dostu pirinç alaşımının mekanik ve metalografik özellikleri üzerindeki akıllı ve popüler üretim süreçlerinin etkilerini karakterize etmeyi ve analiz etmeyi amaçlamaktadır. Bu kapsamda ekstrüde, ekstrüde+tavlama, dövme ve dövme+tavlama eko-pirinç CuZn40Pb2, CuZn38AS, CuZn21Si3P numuneler üzerinde mikroyapısal, mikro sertlik, çekme ve darbe charpy testleri yapılmıştır. Deneysel sonuçlar, üretim proses tipinin malzemelerin mekanik ve metalografik özelliklerini son derece etkilediğini göstermiştir.

Supporting Institution

TÜBİTAK

Project Number

118C069

Thanks

The authors thank TUBITAK (The Scientific and Technological Research Council of Turkey) for partially supporting this work under project number 118C069.

References

  • [1] H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, H. Atsumi, Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite, Powder Technology, 2010,198, 417–421.
  • [2] G. Pantazopoulos, A. Vazdirvanidis, Characterization of the Microstructural Aspects of Machinable α-β Phase Brass, Microscopy and Analysis, 2008.
  • [3] G. Pantazopoulos, A. Vazdirvanidis, Failure analysis of a fractured leaded brass (CuZn39Pb3) extruded hexagonal rod, Journal of Failure Analysis and Prevention, 2008, 8, 218-222.
  • [4] A.I. Toulfatzis, G.J. Besseris, G.A. Pantazopoulos, C. Stergiou, Characterization and comparative machinability investigation of extruded and drawn copper alloys using non-parametric multi response optimization and orthogonal arrays, International Journal of Advanced Manufacturing Technology, 2011, 57, 811-826.
  • [5] B. D'Mellow, D. J. Thomas, M. J. Joyce, P. Kolkowski, N. J. Roberts, S. D. Monk, The replacement of cadmium as a thermal neutron filter, Nucl. Instrum. Methods Phys. Res. A 2007, 577 (3), 690–695.
  • [6] RoHS and WEEE compliant flame retardants developed for electrical connectors. Reinf Plastics, 2007, 51(8) 12.
  • [7] C. Mans, S. Hanning, C. Simons, A. Wegner, A. Janβen, M. Kreyenschmidt, Development of suitable plastic standards for X-ray fluorescence analysis, Spectrochim. Acta Part B: At. Spectrosc, 2007, 62 (2), 116–122.
  • [8] https://www.copper.org/applications/rodbar/pdf/A7038-brass-for-european-potable-water-applications.pdf
  • [9] https://rohs.exemptions.oeko.info/fileadmin/user_upload/RoHS_Pack_9/Exemption_6_c_/Exemption_6c__2015-10-mitsubishi-shindoh-rohs.pdf
  • [10] Xi. Chen, Anmin Hu, Ming Li, Dali Mao, Study on the properties of Sn–9Zn–xCr lead-free solder, J. Alloys Compd., 2008, 460, 478–484.
  • [11] S. Kuyucak, M. Sahoo, A review of the machinability of copper-base alloys, Can. Metall. Q. 1996, 35 (1), 1–15.
  • [12] K. Holler, B. Reetz, K.B. Müller, A. Pyzalla, W. Reimers, Microstructure and properties of hot extruded brass CuZn40Pb2. Materials Science Forum, 2003, 426-432: 3667-3672.
  • [13] E. Stålnacke, E. Claesson, C. Obitz, M. Lilja, J. Odqvist, J. Hagström, O. Rod, Corrosion–microstructure interrelations in new low-lead and lead-free brass alloys, Materials science and technology, 2018.
  • [14] A. I. Toulfatzis, G. A. Pantazopoulos, C. N. David, D. S. Sagris, A. S. Paipetis, Final Heat Treatment as a Possible Solution for the Improvement of Machinability of Pb-Free Brass Alloys, Metals, 2018, 8, 575.
  • [15] A. I. Toulfatzis, G. A. Pantazopoulos, A. S. Paipetis, Fracture Behavior and Characterization of Lead-Free Brass Alloys for Machining Applications, Journal of Materials Engineering and Performance, 2014.
  • [16] G. A. Pantazopoulos, A. I. Toulfatzis, Fracture Modes and Mechanical Characteristics of Machinable Brass Rods, Metallogr. Microstruct. Anal., 2012, 1, 106–114.
  • [17] G. Chunlei, Z. Nan, K. Yuehua, W. Shuncheng, Z. Kaihong, Failure analysis of lead-free brass valve bodies, Engineering Failure Analysis, 2019, 100, 536–543.
  • [18] L. Amaral, R. Quinta, T. E Silva, R. MB Soares, S. D. Castellanos, Abı´lio MP de Jesus, Effect of lead on the machinability of brass alloys using polycrystalline diamond cutting tools, J Strain Analysis, 2018, 1–14.
  • [19] https://www.sarbak.com.tr/en/documents/alloys
  • [20] F. Schultheiss, D. Johansson, V. Bushlya, J. Zhou, K. Nilsson, J. E. Ståhl, Comparative Study on the Machinability of Lead-Free Brass, Journal of Cleaner Production, 2015.
  • [21] N. Zoghipour, E. Tascioglu, G. Atay, Y. Kaynak, Machining-induced surface integrity of holes drilled in lead-free brass alloy, Procedia CIRP, 2020, 87, 148-152.
  • [22] Handbook, M., the edition Vol. 4: Heat Treating, edited by J. R. Davis, G. M. Davidson, S. R. Lampman and T. B. Zorc, ASM International, Materials Park, Ohio, 1997, 841-879.
  • [23] Doostmohammadi, H. and H. Moridshahi, Effects of Si on the microstructure, ordering transformation and properties of the Cu60Zn40 alloy. Journal of Alloys and Compounds, 2015, 640, 401-407.
  • [24] W.D. Callister. Fundamentals of Materials Science and Engineering, 2nd ed. Wiley & Sons., 252.
  • [25] C. H. Wang, Introduction to fracture mechanics. Melbourne, Vic.: DSTO Aeronautical and Maritime Research Laboratory, 1996.
  • [26] E. Şar, Tensile opening mode fracture toughness measurements and size effect investigations with Brazilian disc type rock specimens, Middle East Technical University, 2020
  • [27] A. Toulfatzis, G. Pantazopoulos, A. Paipetis, Microstructure and properties of lead-free brasses using post-processing heat treatment cycles, Materials Science and Technology, 2016, 32, 1771–1781.
Year 2023, Volume: 4 Issue: 1, 1 - 11, 24.07.2023

Abstract

Project Number

118C069

References

  • [1] H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, H. Atsumi, Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite, Powder Technology, 2010,198, 417–421.
  • [2] G. Pantazopoulos, A. Vazdirvanidis, Characterization of the Microstructural Aspects of Machinable α-β Phase Brass, Microscopy and Analysis, 2008.
  • [3] G. Pantazopoulos, A. Vazdirvanidis, Failure analysis of a fractured leaded brass (CuZn39Pb3) extruded hexagonal rod, Journal of Failure Analysis and Prevention, 2008, 8, 218-222.
  • [4] A.I. Toulfatzis, G.J. Besseris, G.A. Pantazopoulos, C. Stergiou, Characterization and comparative machinability investigation of extruded and drawn copper alloys using non-parametric multi response optimization and orthogonal arrays, International Journal of Advanced Manufacturing Technology, 2011, 57, 811-826.
  • [5] B. D'Mellow, D. J. Thomas, M. J. Joyce, P. Kolkowski, N. J. Roberts, S. D. Monk, The replacement of cadmium as a thermal neutron filter, Nucl. Instrum. Methods Phys. Res. A 2007, 577 (3), 690–695.
  • [6] RoHS and WEEE compliant flame retardants developed for electrical connectors. Reinf Plastics, 2007, 51(8) 12.
  • [7] C. Mans, S. Hanning, C. Simons, A. Wegner, A. Janβen, M. Kreyenschmidt, Development of suitable plastic standards for X-ray fluorescence analysis, Spectrochim. Acta Part B: At. Spectrosc, 2007, 62 (2), 116–122.
  • [8] https://www.copper.org/applications/rodbar/pdf/A7038-brass-for-european-potable-water-applications.pdf
  • [9] https://rohs.exemptions.oeko.info/fileadmin/user_upload/RoHS_Pack_9/Exemption_6_c_/Exemption_6c__2015-10-mitsubishi-shindoh-rohs.pdf
  • [10] Xi. Chen, Anmin Hu, Ming Li, Dali Mao, Study on the properties of Sn–9Zn–xCr lead-free solder, J. Alloys Compd., 2008, 460, 478–484.
  • [11] S. Kuyucak, M. Sahoo, A review of the machinability of copper-base alloys, Can. Metall. Q. 1996, 35 (1), 1–15.
  • [12] K. Holler, B. Reetz, K.B. Müller, A. Pyzalla, W. Reimers, Microstructure and properties of hot extruded brass CuZn40Pb2. Materials Science Forum, 2003, 426-432: 3667-3672.
  • [13] E. Stålnacke, E. Claesson, C. Obitz, M. Lilja, J. Odqvist, J. Hagström, O. Rod, Corrosion–microstructure interrelations in new low-lead and lead-free brass alloys, Materials science and technology, 2018.
  • [14] A. I. Toulfatzis, G. A. Pantazopoulos, C. N. David, D. S. Sagris, A. S. Paipetis, Final Heat Treatment as a Possible Solution for the Improvement of Machinability of Pb-Free Brass Alloys, Metals, 2018, 8, 575.
  • [15] A. I. Toulfatzis, G. A. Pantazopoulos, A. S. Paipetis, Fracture Behavior and Characterization of Lead-Free Brass Alloys for Machining Applications, Journal of Materials Engineering and Performance, 2014.
  • [16] G. A. Pantazopoulos, A. I. Toulfatzis, Fracture Modes and Mechanical Characteristics of Machinable Brass Rods, Metallogr. Microstruct. Anal., 2012, 1, 106–114.
  • [17] G. Chunlei, Z. Nan, K. Yuehua, W. Shuncheng, Z. Kaihong, Failure analysis of lead-free brass valve bodies, Engineering Failure Analysis, 2019, 100, 536–543.
  • [18] L. Amaral, R. Quinta, T. E Silva, R. MB Soares, S. D. Castellanos, Abı´lio MP de Jesus, Effect of lead on the machinability of brass alloys using polycrystalline diamond cutting tools, J Strain Analysis, 2018, 1–14.
  • [19] https://www.sarbak.com.tr/en/documents/alloys
  • [20] F. Schultheiss, D. Johansson, V. Bushlya, J. Zhou, K. Nilsson, J. E. Ståhl, Comparative Study on the Machinability of Lead-Free Brass, Journal of Cleaner Production, 2015.
  • [21] N. Zoghipour, E. Tascioglu, G. Atay, Y. Kaynak, Machining-induced surface integrity of holes drilled in lead-free brass alloy, Procedia CIRP, 2020, 87, 148-152.
  • [22] Handbook, M., the edition Vol. 4: Heat Treating, edited by J. R. Davis, G. M. Davidson, S. R. Lampman and T. B. Zorc, ASM International, Materials Park, Ohio, 1997, 841-879.
  • [23] Doostmohammadi, H. and H. Moridshahi, Effects of Si on the microstructure, ordering transformation and properties of the Cu60Zn40 alloy. Journal of Alloys and Compounds, 2015, 640, 401-407.
  • [24] W.D. Callister. Fundamentals of Materials Science and Engineering, 2nd ed. Wiley & Sons., 252.
  • [25] C. H. Wang, Introduction to fracture mechanics. Melbourne, Vic.: DSTO Aeronautical and Maritime Research Laboratory, 1996.
  • [26] E. Şar, Tensile opening mode fracture toughness measurements and size effect investigations with Brazilian disc type rock specimens, Middle East Technical University, 2020
  • [27] A. Toulfatzis, G. Pantazopoulos, A. Paipetis, Microstructure and properties of lead-free brasses using post-processing heat treatment cycles, Materials Science and Technology, 2016, 32, 1771–1781.
There are 27 citations in total.

Details

Primary Language English
Subjects Manufacturing and Industrial Engineering
Journal Section Research Articles
Authors

Nima Zoghipour 0000-0002-5374-923X

Yusuf Kaynak 0000-0003-4802-9796

Project Number 118C069
Publication Date July 24, 2023
Published in Issue Year 2023 Volume: 4 Issue: 1

Cite

APA Zoghipour, N., & Kaynak, Y. (2023). Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys. Journal of Advances in Manufacturing Engineering, 4(1), 1-11.
AMA Zoghipour N, Kaynak Y. Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys. J Adv Manuf Eng. July 2023;4(1):1-11.
Chicago Zoghipour, Nima, and Yusuf Kaynak. “Investigation of the Manufacturing Processes Type and Post Processing Effects on the Mechanical and Metallurgical Properties of Eco-Friendly Brass Alloys”. Journal of Advances in Manufacturing Engineering 4, no. 1 (July 2023): 1-11.
EndNote Zoghipour N, Kaynak Y (July 1, 2023) Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys. Journal of Advances in Manufacturing Engineering 4 1 1–11.
IEEE N. Zoghipour and Y. Kaynak, “Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys”, J Adv Manuf Eng, vol. 4, no. 1, pp. 1–11, 2023.
ISNAD Zoghipour, Nima - Kaynak, Yusuf. “Investigation of the Manufacturing Processes Type and Post Processing Effects on the Mechanical and Metallurgical Properties of Eco-Friendly Brass Alloys”. Journal of Advances in Manufacturing Engineering 4/1 (July 2023), 1-11.
JAMA Zoghipour N, Kaynak Y. Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys. J Adv Manuf Eng. 2023;4:1–11.
MLA Zoghipour, Nima and Yusuf Kaynak. “Investigation of the Manufacturing Processes Type and Post Processing Effects on the Mechanical and Metallurgical Properties of Eco-Friendly Brass Alloys”. Journal of Advances in Manufacturing Engineering, vol. 4, no. 1, 2023, pp. 1-11.
Vancouver Zoghipour N, Kaynak Y. Investigation of the manufacturing processes type and post processing effects on the mechanical and metallurgical properties of eco-friendly brass alloys. J Adv Manuf Eng. 2023;4(1):1-11.