Research Article
BibTex RIS Cite
Year 2023, Volume: 4 Issue: 2, 46 - 54, 22.12.2023

Abstract

References

  • [1] Alves, A. C., Oliveira, F., Wenger, F., Ponthiaux, P., Celis, J. P., & Rocha, L. A. (2013). Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants. Journal of Physics D: Applied Physics, 46(40). [CrossRef]
  • [2] Yuan, Z., He, Y., Lin, C., Liu, P., & Cai, K. (2021). Antibacterial surface design of biomedical titanium materials for orthopedic applications. Journal of Materials Science & Technology, 78, 51–67. [CrossRef]
  • [3] Baldin, E. K., Santos, P. B., de Castro, V. V., Aguzzoli, C., Maurmann, N., Girón, J., ... Malfatti, C. d. F. (2021). Plasma Electrolytic Oxidation (PEO) Coated CP-Ti: Wear Performance on Reciprocating Mode and Chondrogenic–Osteogenic Differentiation. Journal of Bio- and Tribo-Corrosion, 8(1). [CrossRef]
  • [4] Rajabi, M., Miresmaeili, R., & Aliofkhazraei, M. (2019). Hardness and wear behavior of surface mechanical attrition treated titanium. Materials Research Express, 6(6). [CrossRef]
  • [5] Avcu, Y. Y., Iakovakis, E., Guney, M., Çalım, E., Özkılınç, A., Abakay, E., ... Avcu, E. (2023). Surface and Tribological Properties of Powder Metallurgical Cp-Ti Titanium Alloy Modified by Shot Peening. Coatings, 13(1). [CrossRef]
  • [6] Aniolek, K., Barylski, A., & Kupka, M. (2021). Friction and Wear of Oxide Scale Obtained on Pure Titanium after High-Temperature Oxidation. Materials (Basel), 14(13). [CrossRef]
  • [7] Keddam, M., Makuch, N., Boumaali, B., Piasecki, A., Miklaszewski, A., & Kulka, M. (2020). Liquid Boriding of Cp-Ti and Ti6Al4V Alloy: Characterization of Boride Layers and Tribological Properties. Surface Engineering and Applied Electrochemistry, 56(3), 348–357. [CrossRef]
  • [8] Jin, J., Zhou, S., Zhao, Y., Zhang, Q., Wang, X., Li, W., ... Zhang, L.-C. (2021). Refined microstructure and enhanced wear resistance of titanium matrix composites produced by selective laser melting. Optics & Laser Technology, 134. [CrossRef]
  • [9] Avcu, E., Abakay, E., Yıldıran Avcu, Y., Çalım, E., Gökalp, İ., Iakovakis, E., ... Guney, M. (2023). Corrosion Behavior of Shot-Peened Ti6Al4V Alloy Produced via Pressure-Assisted Sintering. Coatings, 13(12). [CrossRef]
  • [10] Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. [CrossRef]
  • [11] Vishnoi, M., Kumar, P., & Murtaza, Q. (2021). Surface texturing techniques to enhance tribological performance: A review. Surfaces and Interfaces, 27, Article 101463. [CrossRef]
  • [12] Paterlini, T. T., Nogueira, L. F. B., Tovani, C. B., Cruz, M. A. E., Derradi, R., & Ramos, A. P. (2017). The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophysical Reviews, 9(5), 683–698.
  • [13] Priyanka, C. P., Keerthi Krishnan, K., Sudeep, U., & Ramachandran, K. K. (2023). Osteogenic and antibacterial properties of TiN-Ag coated Ti-6Al-4V bioimplants with polished and laser textured surface topography. Surface and Coatings Technology, 474. [CrossRef]
  • [14] Huang, M.-S., Wu, C.-Y., Ou, K.-L., Huang, B.- H., Chang, T.-H., Endo, K., . . . Liu, C.-M. (2020). Preparation of a Biofunctionalized Surface on Titanium for Biomedical Applications: Surface Properties, Wettability Variations, and Biocompatibility Characteristics. Applied Sciences, 10(4). [CrossRef]
  • [15] Shivakoti, I., Kibria, G., Cep, R., Pradhan, B. B., & Sharma, A. (2021). Laser Surface Texturing for Biomedical Applications: A Review. Coatings, 11(2). [CrossRef]
  • [16] Zhao, W., Zhang, J., Yu, Z., & Hu, J. (2023). Effects of bioinspired leaf vein structure on biological properties of UV laser patterned titanium alloy. Surfaces and Interfaces, 38. Article 102785. [CrossRef]
  • [17] Kim, H. S., Kumbar, S. G., & Nukavarapu, S. P. (2021). Biomaterial-directed cell behavior for tissue engineering. Current Opinion in Biomedical Engineering, 17, Article 100260. [CrossRef]
  • [18] Zhao, D., Han, C., Li, Y., Li, J., Zhou, K., Wei, Q., . .. Shi, Y. (2019). Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. Journal of Alloys and Compounds, 804, 288–298. [CrossRef]
  • [19] Wang, C., Huang, H., Wu, H., Hong, J., Zhang, L., & Yan, J. (2023). Ultra-low wear of titanium alloy surface under lubricated conditions achieved by laser texturing and simultaneous nitriding. Surface and Coatings Technology, 474. [CrossRef]
  • [20] Wu, Z., Xing, Y., Huang, P., & Liu, L. (2017). Tribological properties of dimple-textured titanium alloys under dry sliding contact. Surface and Coatings Technology, 309, 21–28. [CrossRef]
  • [21] Peng, Z., Zhang, X., Liu, L., Xu, G., Wang, G., & Zhao, M. (2023). Effect of high-speed ultrasonic vibration cutting on the microstructure, surface integrity, and wear behavior of titanium alloy. Journal of Materials Research and Technology, 24, 3870–3888. [CrossRef]
  • [22] Niu, Y., Pang, X., Song, C., Shangguan, B., Zhang, Y., & Wang, S. (2023). Tailoring tribological properties of Ti-Zr alloys via process design of laser surface texturing and thermal oxidation. Surfaces and Interfaces, 37. [CrossRef]
  • [23] Avcu, Y. Y., Gönül, B., Yetik, O., Sönmez, F., Cengiz, A., Guney, M., & Avcu, E. (2021). Modification of Surface and Subsurface Properties of AA1050 Alloy by Shot Peening. Materials, 14(21). [CrossRef]
  • [24] Kleiman, J., Kudryavtsev, Y., & Luhovskyi, O. (2017). Effectiveness of ultrasonic peening in fatigue improvement of welded elements and structures. Mechanics and Advanced Technologies, 3. [CrossRef]
  • [25] Mao, B., Siddaiah, A., Liao, Y., & Menezes, P. (2020). Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. Journal of Manufacturing Processes, 53, 153–173. [CrossRef]
  • [26] Yao, C., & Webster, T. (2006). Anodization: A Promising Nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology, 6, 2682–2692. [CrossRef]
  • [27] Kumar, A. (2013). Optimization of Process Parameters in Surface Grinding Using Response Surface Methodology. International Journal of Research in Mechanical Engineering & Technology, 3, 245–252.
  • [28] Hacking, S., Zuraw, M., Harvey, E., Tanzer, M., Krygier, J. J., & Bobyn, J. (2007). A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. Journal of Biomedical Materials Research Part A, 82, 179–187. [CrossRef]
  • [29] Mughal, M. P., Farooq, M. U., Mumtaz, J., Mia, M., Shareef, M., Javed, M., ... Pruncu, C. I. (2021). Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. Journal of the Mechanical Behavior of Biomedical Materials, 113, Article 104145. [CrossRef]
  • [30] Kim, M.-H., Park, K., Choi, K.-H., Kim, S.-H., Kim, S. E., Jeong, C.-M., & Huh, J.-B. (2015). Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants. International Journal of Molecular Sciences, 16(5), 10324–10336. [CrossRef]
  • [31] Park, Y. J., Ha, J., Ali, G., Kim, H., Addad, Y., & Cho, S. O. (2015). Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization. Nanoscale Research Letters, 377, Article 10. [CrossRef]
  • [32] Kensy, J., Dobrzyński, M., Wiench, R., Grzech- Leśniak, K., & Matys, J. (2021). Fibroblasts adhesion to laser-modified titanium surfaces-a systematic review. Materials (Basel), 14(23). [CrossRef]
  • [33] Harcuba, P., Bačáková, L., Stráský, J., Bačáková, M., Novotná, K., & Janeček, M. (2012). Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. Journal of the Mechanical Behavior of Biomedical Materials, 7, 96–105.
  • [34] Prakash, C., & Uddin, M. S. (2017). Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surface and Coatings Technology, 326, 134–145. [CrossRef]
  • [35] Karmiris-Obratański, P., Zagórski, K., Cieślik, J., Papazoglou, E. L., & Markopoulos, A. (2020). Surface Topography of Ti 6Al 4V ELI after High Power EDM. Procedia Manufacturing, 47, 788–794. [CrossRef]
  • [36] Hasçalık, A., & Çaydaş, U. (2007). Electrical discharge machining of titanium alloy (Ti–6Al–4V). Applied Surface Science, 253(22), 9007–9016. [CrossRef]
  • [37] Wang, Y., Hu, J., Zhang, X., Chu, Z., Ren, B., Yue, C.,. . . Xian Li, L. (2023). Influence of femtosecond lase pulse sequence on the morphology and roughness of titanium surface micro-patterns. Journal of Manufacturing Processes, 97. [CrossRef]
  • [38] Etinosa, P. O., & Soboyejo, W. O. (2023). Cell/Surface Interactions and the Integrity of Ti-6AI-4V Structures: Effects of Surface Texture and RGD Coatings. In Comprehensive Structural Integrity (pp. 35–54). [CrossRef]
  • [39] Liu, C., Xin, Z., Tong, Z., Ye, Y., Ren, Y., Yu, Z., & Ren, X. (2023). Microstructure, mechanical properties and wear behaviors of TiN/Ti composite coating on laser surface textured Ti6Al4V alloy fabricated by MHz picosecond laser surface alloying. Materials Today Communications. [CrossRef]
  • [40] Tiwari, T., Dvivedi, A., & Kumar, P. (2023). Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach. Tribology International, 185.
  • [41] Shanbhog, N., Arunachalam, N., & Bakshi, S. R. (2022). Surface integrity studies on ZrB2 and graphene reinforced ZrB2 ceramic matrix composite in EDM process. CIRP Journal of Manufacturing Science and Technology, 38, 401–413. [CrossRef]
  • [42] Lee, H. T., & Tai, T. Y. (2003). Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology, 142(3), 676–683. [CrossRef]
  • [43] Ntasi, A., Mueller, W.-D., Eliades, G., & Zinelis, S. (2010). The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys. Dental materials: official publication of the Academy of Dental Materials, 26, e237–245. [CrossRef]
  • [44] Tai, T. Y., & Lu, S. J. (2009). Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks. International Journal of Fatigue, 31(3), 433–438. [CrossRef]
  • [45] Otsuka, F., Kataoka, Y., & Miyazaki, T. (2012). Enhanced osteoblast response to electrical discharge machining surface. Dental Materials Journal, 31(2), 309–315. [CrossRef]
  • [46] Stráský, J., Havlíková, J., Bačáková, L., Harcuba, P., Mhaede, M., & Janeček, M. (2013). Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Applied Surface Science, 281, 73–78. [CrossRef]
  • [47] Maressa, P., Anodio, L., Bernasconi, A., Demir, A. G., & Previtali, B. (2015). Effect of Surface Texture on the Adhesion Performance of Laser Treated Ti6Al4V Alloy. The Journal of Adhesion, 91(7), 518–537. [CrossRef]
  • [48] Klocke, F., Schwade, M., Welling, D., & Kopp, A. (2013). Multi-scale directed surface topography machined by electro discharge machining in combination with plasma electrolytic conversion for improved osseointegration. International Journal of Mechatronics and Manufacturing Systems, 6, 254– 269. [CrossRef]
  • [49] Moon, I. Y., Lee, H. W., Kim, S.-J., Oh, Y.-S., Jung, J., & Kang, S.-H. (2021). Analysis of the Region of Interest According to CNN Structure in Hierarchical Pattern Surface Inspection Using CAM. Materials, 14(9). [CrossRef]

Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining

Year 2023, Volume: 4 Issue: 2, 46 - 54, 22.12.2023

Abstract

The process of machining micro surface patterns on a workpiece to improve various performance aspects of engineering materials, including wear resistance, corrosion resistance, and biocompatibility, has been a hot topic of research in recent years. Due to the restricted machinability of titanium and its alloys, it is very challenging to process micro surface patterns with exact surface geometries using traditional machining methods. Consequently, non-traditional processing techniques, such as laser, electro-erosion, and chemical etching, may overcome these obstacles. In the present study, electrical discharge machining (EDM) is used to form micro surface patterns on Cp-Ti alloy samples. First, graphite electrodes with several channels were manufactured, and then square shape surface patterns were processed onto Cp-Ti samples using EDM. To evaluate the machining performance of the process and surface features of the obtained micro surface patterns, the surface morphology and topography of the processed samples were investigated by scanning electron microscopy (SEM) and three-dimensional (3D) optical profilometry, respectively. The average widths of the square-shaped surface patterns along the X and Y axes were 663.7±8 µm and 609.5±4 µm, respectively. For microsurface designs with square geometry, dimensional consistency was obtained with exceedingly small amounts of variation. However, a limited number of microcracks were observed due to rapid cooling during the processing of the surface patterns. The 3D surface topographies were revealed that square-shaped micro surface patterns were successfully processed on the samples, indicating that micro surface patterns can be processed on Cp-Ti samples by using the proposed methodology, which has the potential for obtaining tailor-designed surface features, particularly for biomedical and tribological applications.

Ethical Statement

There are no ethical issues with the publication of this manuscript.

References

  • [1] Alves, A. C., Oliveira, F., Wenger, F., Ponthiaux, P., Celis, J. P., & Rocha, L. A. (2013). Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants. Journal of Physics D: Applied Physics, 46(40). [CrossRef]
  • [2] Yuan, Z., He, Y., Lin, C., Liu, P., & Cai, K. (2021). Antibacterial surface design of biomedical titanium materials for orthopedic applications. Journal of Materials Science & Technology, 78, 51–67. [CrossRef]
  • [3] Baldin, E. K., Santos, P. B., de Castro, V. V., Aguzzoli, C., Maurmann, N., Girón, J., ... Malfatti, C. d. F. (2021). Plasma Electrolytic Oxidation (PEO) Coated CP-Ti: Wear Performance on Reciprocating Mode and Chondrogenic–Osteogenic Differentiation. Journal of Bio- and Tribo-Corrosion, 8(1). [CrossRef]
  • [4] Rajabi, M., Miresmaeili, R., & Aliofkhazraei, M. (2019). Hardness and wear behavior of surface mechanical attrition treated titanium. Materials Research Express, 6(6). [CrossRef]
  • [5] Avcu, Y. Y., Iakovakis, E., Guney, M., Çalım, E., Özkılınç, A., Abakay, E., ... Avcu, E. (2023). Surface and Tribological Properties of Powder Metallurgical Cp-Ti Titanium Alloy Modified by Shot Peening. Coatings, 13(1). [CrossRef]
  • [6] Aniolek, K., Barylski, A., & Kupka, M. (2021). Friction and Wear of Oxide Scale Obtained on Pure Titanium after High-Temperature Oxidation. Materials (Basel), 14(13). [CrossRef]
  • [7] Keddam, M., Makuch, N., Boumaali, B., Piasecki, A., Miklaszewski, A., & Kulka, M. (2020). Liquid Boriding of Cp-Ti and Ti6Al4V Alloy: Characterization of Boride Layers and Tribological Properties. Surface Engineering and Applied Electrochemistry, 56(3), 348–357. [CrossRef]
  • [8] Jin, J., Zhou, S., Zhao, Y., Zhang, Q., Wang, X., Li, W., ... Zhang, L.-C. (2021). Refined microstructure and enhanced wear resistance of titanium matrix composites produced by selective laser melting. Optics & Laser Technology, 134. [CrossRef]
  • [9] Avcu, E., Abakay, E., Yıldıran Avcu, Y., Çalım, E., Gökalp, İ., Iakovakis, E., ... Guney, M. (2023). Corrosion Behavior of Shot-Peened Ti6Al4V Alloy Produced via Pressure-Assisted Sintering. Coatings, 13(12). [CrossRef]
  • [10] Long, M., & Rack, H. J. (1998). Titanium alloys in total joint replacement—a materials science perspective. Biomaterials, 19(18), 1621–1639. [CrossRef]
  • [11] Vishnoi, M., Kumar, P., & Murtaza, Q. (2021). Surface texturing techniques to enhance tribological performance: A review. Surfaces and Interfaces, 27, Article 101463. [CrossRef]
  • [12] Paterlini, T. T., Nogueira, L. F. B., Tovani, C. B., Cruz, M. A. E., Derradi, R., & Ramos, A. P. (2017). The role played by modified bioinspired surfaces in interfacial properties of biomaterials. Biophysical Reviews, 9(5), 683–698.
  • [13] Priyanka, C. P., Keerthi Krishnan, K., Sudeep, U., & Ramachandran, K. K. (2023). Osteogenic and antibacterial properties of TiN-Ag coated Ti-6Al-4V bioimplants with polished and laser textured surface topography. Surface and Coatings Technology, 474. [CrossRef]
  • [14] Huang, M.-S., Wu, C.-Y., Ou, K.-L., Huang, B.- H., Chang, T.-H., Endo, K., . . . Liu, C.-M. (2020). Preparation of a Biofunctionalized Surface on Titanium for Biomedical Applications: Surface Properties, Wettability Variations, and Biocompatibility Characteristics. Applied Sciences, 10(4). [CrossRef]
  • [15] Shivakoti, I., Kibria, G., Cep, R., Pradhan, B. B., & Sharma, A. (2021). Laser Surface Texturing for Biomedical Applications: A Review. Coatings, 11(2). [CrossRef]
  • [16] Zhao, W., Zhang, J., Yu, Z., & Hu, J. (2023). Effects of bioinspired leaf vein structure on biological properties of UV laser patterned titanium alloy. Surfaces and Interfaces, 38. Article 102785. [CrossRef]
  • [17] Kim, H. S., Kumbar, S. G., & Nukavarapu, S. P. (2021). Biomaterial-directed cell behavior for tissue engineering. Current Opinion in Biomedical Engineering, 17, Article 100260. [CrossRef]
  • [18] Zhao, D., Han, C., Li, Y., Li, J., Zhou, K., Wei, Q., . .. Shi, Y. (2019). Improvement on mechanical properties and corrosion resistance of titanium-tantalum alloys in-situ fabricated via selective laser melting. Journal of Alloys and Compounds, 804, 288–298. [CrossRef]
  • [19] Wang, C., Huang, H., Wu, H., Hong, J., Zhang, L., & Yan, J. (2023). Ultra-low wear of titanium alloy surface under lubricated conditions achieved by laser texturing and simultaneous nitriding. Surface and Coatings Technology, 474. [CrossRef]
  • [20] Wu, Z., Xing, Y., Huang, P., & Liu, L. (2017). Tribological properties of dimple-textured titanium alloys under dry sliding contact. Surface and Coatings Technology, 309, 21–28. [CrossRef]
  • [21] Peng, Z., Zhang, X., Liu, L., Xu, G., Wang, G., & Zhao, M. (2023). Effect of high-speed ultrasonic vibration cutting on the microstructure, surface integrity, and wear behavior of titanium alloy. Journal of Materials Research and Technology, 24, 3870–3888. [CrossRef]
  • [22] Niu, Y., Pang, X., Song, C., Shangguan, B., Zhang, Y., & Wang, S. (2023). Tailoring tribological properties of Ti-Zr alloys via process design of laser surface texturing and thermal oxidation. Surfaces and Interfaces, 37. [CrossRef]
  • [23] Avcu, Y. Y., Gönül, B., Yetik, O., Sönmez, F., Cengiz, A., Guney, M., & Avcu, E. (2021). Modification of Surface and Subsurface Properties of AA1050 Alloy by Shot Peening. Materials, 14(21). [CrossRef]
  • [24] Kleiman, J., Kudryavtsev, Y., & Luhovskyi, O. (2017). Effectiveness of ultrasonic peening in fatigue improvement of welded elements and structures. Mechanics and Advanced Technologies, 3. [CrossRef]
  • [25] Mao, B., Siddaiah, A., Liao, Y., & Menezes, P. (2020). Laser surface texturing and related techniques for enhancing tribological performance of engineering materials: A review. Journal of Manufacturing Processes, 53, 153–173. [CrossRef]
  • [26] Yao, C., & Webster, T. (2006). Anodization: A Promising Nano-modification technique of titanium implants for orthopedic applications. Journal of Nanoscience and Nanotechnology, 6, 2682–2692. [CrossRef]
  • [27] Kumar, A. (2013). Optimization of Process Parameters in Surface Grinding Using Response Surface Methodology. International Journal of Research in Mechanical Engineering & Technology, 3, 245–252.
  • [28] Hacking, S., Zuraw, M., Harvey, E., Tanzer, M., Krygier, J. J., & Bobyn, J. (2007). A physical vapor deposition method for controlled evaluation of biological response to biomaterial chemistry and topography. Journal of Biomedical Materials Research Part A, 82, 179–187. [CrossRef]
  • [29] Mughal, M. P., Farooq, M. U., Mumtaz, J., Mia, M., Shareef, M., Javed, M., ... Pruncu, C. I. (2021). Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. Journal of the Mechanical Behavior of Biomedical Materials, 113, Article 104145. [CrossRef]
  • [30] Kim, M.-H., Park, K., Choi, K.-H., Kim, S.-H., Kim, S. E., Jeong, C.-M., & Huh, J.-B. (2015). Cell Adhesion and in Vivo Osseointegration of Sandblasted/Acid Etched/Anodized Dental Implants. International Journal of Molecular Sciences, 16(5), 10324–10336. [CrossRef]
  • [31] Park, Y. J., Ha, J., Ali, G., Kim, H., Addad, Y., & Cho, S. O. (2015). Controlled Fabrication of Nanoporous Oxide Layers on Zircaloy by Anodization. Nanoscale Research Letters, 377, Article 10. [CrossRef]
  • [32] Kensy, J., Dobrzyński, M., Wiench, R., Grzech- Leśniak, K., & Matys, J. (2021). Fibroblasts adhesion to laser-modified titanium surfaces-a systematic review. Materials (Basel), 14(23). [CrossRef]
  • [33] Harcuba, P., Bačáková, L., Stráský, J., Bačáková, M., Novotná, K., & Janeček, M. (2012). Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. Journal of the Mechanical Behavior of Biomedical Materials, 7, 96–105.
  • [34] Prakash, C., & Uddin, M. S. (2017). Surface modification of β-phase Ti implant by hydroaxyapatite mixed electric discharge machining to enhance the corrosion resistance and in-vitro bioactivity. Surface and Coatings Technology, 326, 134–145. [CrossRef]
  • [35] Karmiris-Obratański, P., Zagórski, K., Cieślik, J., Papazoglou, E. L., & Markopoulos, A. (2020). Surface Topography of Ti 6Al 4V ELI after High Power EDM. Procedia Manufacturing, 47, 788–794. [CrossRef]
  • [36] Hasçalık, A., & Çaydaş, U. (2007). Electrical discharge machining of titanium alloy (Ti–6Al–4V). Applied Surface Science, 253(22), 9007–9016. [CrossRef]
  • [37] Wang, Y., Hu, J., Zhang, X., Chu, Z., Ren, B., Yue, C.,. . . Xian Li, L. (2023). Influence of femtosecond lase pulse sequence on the morphology and roughness of titanium surface micro-patterns. Journal of Manufacturing Processes, 97. [CrossRef]
  • [38] Etinosa, P. O., & Soboyejo, W. O. (2023). Cell/Surface Interactions and the Integrity of Ti-6AI-4V Structures: Effects of Surface Texture and RGD Coatings. In Comprehensive Structural Integrity (pp. 35–54). [CrossRef]
  • [39] Liu, C., Xin, Z., Tong, Z., Ye, Y., Ren, Y., Yu, Z., & Ren, X. (2023). Microstructure, mechanical properties and wear behaviors of TiN/Ti composite coating on laser surface textured Ti6Al4V alloy fabricated by MHz picosecond laser surface alloying. Materials Today Communications. [CrossRef]
  • [40] Tiwari, T., Dvivedi, A., & Kumar, P. (2023). Analysis of tribological behavior of dual-textured Ti-6Al-4 V alloy surfaces fabricated using a tool-mimic approach. Tribology International, 185.
  • [41] Shanbhog, N., Arunachalam, N., & Bakshi, S. R. (2022). Surface integrity studies on ZrB2 and graphene reinforced ZrB2 ceramic matrix composite in EDM process. CIRP Journal of Manufacturing Science and Technology, 38, 401–413. [CrossRef]
  • [42] Lee, H. T., & Tai, T. Y. (2003). Relationship between EDM parameters and surface crack formation. Journal of Materials Processing Technology, 142(3), 676–683. [CrossRef]
  • [43] Ntasi, A., Mueller, W.-D., Eliades, G., & Zinelis, S. (2010). The effect of Electro Discharge Machining (EDM) on the corrosion resistance of dental alloys. Dental materials: official publication of the Academy of Dental Materials, 26, e237–245. [CrossRef]
  • [44] Tai, T. Y., & Lu, S. J. (2009). Improving the fatigue life of electro-discharge-machined SDK11 tool steel via the suppression of surface cracks. International Journal of Fatigue, 31(3), 433–438. [CrossRef]
  • [45] Otsuka, F., Kataoka, Y., & Miyazaki, T. (2012). Enhanced osteoblast response to electrical discharge machining surface. Dental Materials Journal, 31(2), 309–315. [CrossRef]
  • [46] Stráský, J., Havlíková, J., Bačáková, L., Harcuba, P., Mhaede, M., & Janeček, M. (2013). Characterization of electric discharge machining, subsequent etching and shot-peening as a surface treatment for orthopedic implants. Applied Surface Science, 281, 73–78. [CrossRef]
  • [47] Maressa, P., Anodio, L., Bernasconi, A., Demir, A. G., & Previtali, B. (2015). Effect of Surface Texture on the Adhesion Performance of Laser Treated Ti6Al4V Alloy. The Journal of Adhesion, 91(7), 518–537. [CrossRef]
  • [48] Klocke, F., Schwade, M., Welling, D., & Kopp, A. (2013). Multi-scale directed surface topography machined by electro discharge machining in combination with plasma electrolytic conversion for improved osseointegration. International Journal of Mechatronics and Manufacturing Systems, 6, 254– 269. [CrossRef]
  • [49] Moon, I. Y., Lee, H. W., Kim, S.-J., Oh, Y.-S., Jung, J., & Kang, S.-H. (2021). Analysis of the Region of Interest According to CNN Structure in Hierarchical Pattern Surface Inspection Using CAM. Materials, 14(9). [CrossRef]
There are 49 citations in total.

Details

Primary Language English
Subjects Mechanical Engineering (Other), Manufacturing Processes and Technologies (Excl. Textiles), Manufacturing and Industrial Engineering (Other)
Journal Section Research Articles
Authors

Alperen Kürşat Balta 0000-0002-5524-0293

Mustafa Armağan 0000-0003-0429-0351

Yasemin Yıldıran Avcu 0000-0003-3293-4257

Eray Abakay 0000-0003-2058-339X

Egemen Avcu 0000-0002-3244-1316

Publication Date December 22, 2023
Submission Date November 1, 2023
Acceptance Date December 12, 2023
Published in Issue Year 2023 Volume: 4 Issue: 2

Cite

APA Balta, A. K., Armağan, M., Yıldıran Avcu, Y., Abakay, E., et al. (2023). Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining. Journal of Advances in Manufacturing Engineering, 4(2), 46-54.
AMA Balta AK, Armağan M, Yıldıran Avcu Y, Abakay E, Avcu E. Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining. J Adv Manuf Eng. December 2023;4(2):46-54.
Chicago Balta, Alperen Kürşat, Mustafa Armağan, Yasemin Yıldıran Avcu, Eray Abakay, and Egemen Avcu. “Surface Properties of Micro Surface Patterned Cp-Ti Alloy via Electrical Discharge Machining”. Journal of Advances in Manufacturing Engineering 4, no. 2 (December 2023): 46-54.
EndNote Balta AK, Armağan M, Yıldıran Avcu Y, Abakay E, Avcu E (December 1, 2023) Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining. Journal of Advances in Manufacturing Engineering 4 2 46–54.
IEEE A. K. Balta, M. Armağan, Y. Yıldıran Avcu, E. Abakay, and E. Avcu, “Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining”, J Adv Manuf Eng, vol. 4, no. 2, pp. 46–54, 2023.
ISNAD Balta, Alperen Kürşat et al. “Surface Properties of Micro Surface Patterned Cp-Ti Alloy via Electrical Discharge Machining”. Journal of Advances in Manufacturing Engineering 4/2 (December 2023), 46-54.
JAMA Balta AK, Armağan M, Yıldıran Avcu Y, Abakay E, Avcu E. Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining. J Adv Manuf Eng. 2023;4:46–54.
MLA Balta, Alperen Kürşat et al. “Surface Properties of Micro Surface Patterned Cp-Ti Alloy via Electrical Discharge Machining”. Journal of Advances in Manufacturing Engineering, vol. 4, no. 2, 2023, pp. 46-54.
Vancouver Balta AK, Armağan M, Yıldıran Avcu Y, Abakay E, Avcu E. Surface properties of micro surface patterned Cp-Ti alloy via electrical discharge machining. J Adv Manuf Eng. 2023;4(2):46-54.