Research Article
BibTex RIS Cite

Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights

Year 2024, Volume: 5 Issue: 1, 1 - 8, 30.06.2024

Abstract

In this study, magnesium powder and anhydrous borax (Na2B4O7) particulates sintered in a Hot Press (HP) machine by widely preferred space holder technique in three different weight ratios; to obtain the best ratio for a homogenous magnesium foam for specific usage in multi-disciplinary applications. Metallic foams are industrial products manufactured from porous metal materials. Although it is much lighter than other metal materials, it is gaining importance due to its high resistance, absorbing shocks, and vibrations, providing thermal insulation, gain biodegradable implant solutions in orthopaedics, chemical filtration, and battery production, many more for trying to increase its research to be used in practice. Anhydrous borax (ANB) used in thesis study was blended with commercial pure magnesium powder at the rates of 20%, 40% and 60% by weight and sintered to produce metal foams. The anhydrous borax particle sizes used are T1 (250 ̴ 400 µm), T2 (400 ̴ 500 µm) and T3 (over 500 µm). Magnesium foam was prepared via HP sintering machine at various sintering temperatures 550 to 600˚C. The produced biodegradable Mg foams evaluated in terms of density, porosity, and mechanical strength in general. Compression and three-point bending tests were performed to evaluate the usability of the samples as bone fixing implants. This study represents a novel implementation of anhydrous borax in metal foaming due to the lack of information on the use of anhydrous borax mineral in this specific space-holder metal foaming academic field.

Supporting Institution

The authors declare no conflict of interest.

Project Number

Proje çalışmasında herhangi bir maddi destek alınmamıştır.

References

  • REFERENCES
  • [1] Temiz, A., Yaşar, M., & Koç, E. (2022). Fabrication of open-pore biodegradable magnesium alloy scaffold via infiltration technique. International Journal of Metalcasting, 16, 317328.
  • [2] May, H., Kati, Y. A., Gumussuyu, G., Emre, T. Y., Unal, M., & Kose, O. (2020). Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. Journal of Orthopaedics and Traumatology, 21, Article 9.
  • [3] Seitz, J.-M., Lucas, A., & Kirschner, M. (2016). Magnesium-based compression screws: A novelty in the clinical use of implants. JOM, 68, 11771182.
  • [4] Abbasi, N., Hamlet, S., Love, R. M., & Nguyen, N. T. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5, 19.
  • [5] Biber, R., Pauser, J., Brem, M., & Bail, H. J. (2017). Bioabsorbable metal screws in traumatology: A promising innovation. Trauma Case Rep, 8, 1115.
  • [6] Baldini, M., Coppa, V., Falcioni, D., Senigagliesi, E., Marinelli, M., & Gigante, A. P. (2021). Use of resorbable magnesium screws in children: Systematic review of the literature and short-term follow-up from our series. Journal of Children's Orthopaedics, 15, 194203.
  • [7] Espiritu, J., Meier, M., & Seitz, J.-M. (2021). The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: A review. Bioactive Materials, 6, 43604367.
  • [8] Polat, O., Toy, S., & Kibar, B. (2021). Surgical outcomes of scaphoid fracture osteosynthesis with magnesium screws. Joint Diseases and Related Surgery, 32, 721728.
  • [9] Sonnow, L., Ziegler, A., Pöhler, G. H., Kirschner, M. H., Richter, M., Cetin, M., Unal, M., & Kose, O. (2022). Alterations in magnetic resonance imaging characteristics of bioabsorbable magnesium screws over time in humans: a
  • retrospective single center study. Innovative Surgical Sciences, 6, 105113.
  • [10] Ünal, M., Demirayak, E., Ertan, M. B., Kilicaslan, O. F., & Kose, O. (2022). Bioabsorbable magnesium screw fixation for tibial tubercle osteotomy; a preliminary study. Acta Biomedica, 92, Article e2021263.
  • [11] Kose, O., Turan, A., Unal, M., Acar, B., & Guler, F. (2018). Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Archives of Orthopaedic and Trauma Surgery, 138, 10691075.
  • [12] Yazdimamaghani, M., Razavi, M., Vashaee, D., Moharamzadeh, K., Boccaccini, A. R. & Tayebi, L. (2017). Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering: C, 71, 12531266.
  • [13] Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24, 2737.
  • [14] Capek, J. V. D. (2011). 20th International Conference on Metallurgy and Materials. In Different Authors (Ed.), 20th Anniversary International Conference on Metallurgy and Materials (p. 903-908). Brno: TANGER, Ltd.
  • [15] Čapek, J., & Vojtěch, D. (2014). Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Materials Science and Engineering: C, 35, 2128.
  • [16] Bi, Y., Zheng, Y., & Li, Y. (2015). Microstructure and mechanical properties of sintered porous magnesium using polymethyl methacrylate as the space holder. Materials Letters, 161, 583586.
  • [17] Aida, S. F., Zuhailawati, H., & Anasyida, A. S. (2017). The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder. Procedia Engineering, 184, 290297.
  • [18] Guo, H., Tian, X., Fan, J., et al. (2021). The compressive behavior and energy absorption performance of nano- crystalline porous magnesium fabricated by hydrogenation-dehydrogenation and spark plasma sintering technique. Journal of Alloys and Compounds, 862, Article 158698.
  • [19] İpek Nakaş, G., Dericioglu, A. F., & Bor, Ş. (2011). Fatigue behavior of TiNi foams processed by the magnesium space holder technique. Journal of the Mechanical Behavior of Biomedical Materials, 4, 20172023.
  • [20] Pongsavee, M. (2009). Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes. Journal of Occupational Medicine and Toxicology, 4, 27.
  • [21] Abdel Aliem, R., Khaled, H. E., Soliman, B. A., Mourad, M., & Dighiesh, H. S. (2023). Boron, the forgotten element. Frontiers in Scientific Research and Technology, 6, 2028.

  • [22] Korkmaz, M. (2011). Boron: Environmental exposure and human health. In J. Nriagu (Ed.), Encyclopedia of Environmental Health (2nd ed., pp. 456-459). Elsevier.

  • [23] SOLGAR. (2023). Calcium magnesium plus boron tablets. https://www.solgar.com/products/calcium-magnesium-plus-boron-tablets/
Accessed on Mar 20, 2024.
  • [24] Jia, G., Hou, Y., Chen, C., et al. (2018). Precise fabrication of open porous Mg scaffolds using NaCl templates: Relationship between space holder particles, pore characteristics and mechanical behavior. Materials and Design, 140, 106113.

  • [25] Lu, X. Z., Lai, C. P., & Chan, L. C. (2020). Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application. Materials and Design, 188, Article 108474.

  • [26] Zhuang, H., Han, Y., & Feng, A. (2008). Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Materials Science and Engineering: C, 28, 14621466
Year 2024, Volume: 5 Issue: 1, 1 - 8, 30.06.2024

Abstract

Ethical Statement

Çalışmada kobay kullanılmamıştır. Herhangi bir canlı üzerinde test yapılmamıştır. Yapılan çalışmanın ham dataları talep edildiğinde sunulabilir.

Supporting Institution

Yazarlar çıkar çatışması olmadığını beyan etmektedir.

Project Number

Proje çalışmasında herhangi bir maddi destek alınmamıştır.

Thanks

Teşekkürler.

References

  • REFERENCES
  • [1] Temiz, A., Yaşar, M., & Koç, E. (2022). Fabrication of open-pore biodegradable magnesium alloy scaffold via infiltration technique. International Journal of Metalcasting, 16, 317328.
  • [2] May, H., Kati, Y. A., Gumussuyu, G., Emre, T. Y., Unal, M., & Kose, O. (2020). Bioabsorbable magnesium screw versus conventional titanium screw fixation for medial malleolar fractures. Journal of Orthopaedics and Traumatology, 21, Article 9.
  • [3] Seitz, J.-M., Lucas, A., & Kirschner, M. (2016). Magnesium-based compression screws: A novelty in the clinical use of implants. JOM, 68, 11771182.
  • [4] Abbasi, N., Hamlet, S., Love, R. M., & Nguyen, N. T. (2020). Porous scaffolds for bone regeneration. Journal of Science: Advanced Materials and Devices, 5, 19.
  • [5] Biber, R., Pauser, J., Brem, M., & Bail, H. J. (2017). Bioabsorbable metal screws in traumatology: A promising innovation. Trauma Case Rep, 8, 1115.
  • [6] Baldini, M., Coppa, V., Falcioni, D., Senigagliesi, E., Marinelli, M., & Gigante, A. P. (2021). Use of resorbable magnesium screws in children: Systematic review of the literature and short-term follow-up from our series. Journal of Children's Orthopaedics, 15, 194203.
  • [7] Espiritu, J., Meier, M., & Seitz, J.-M. (2021). The current performance of biodegradable magnesium-based implants in magnetic resonance imaging: A review. Bioactive Materials, 6, 43604367.
  • [8] Polat, O., Toy, S., & Kibar, B. (2021). Surgical outcomes of scaphoid fracture osteosynthesis with magnesium screws. Joint Diseases and Related Surgery, 32, 721728.
  • [9] Sonnow, L., Ziegler, A., Pöhler, G. H., Kirschner, M. H., Richter, M., Cetin, M., Unal, M., & Kose, O. (2022). Alterations in magnetic resonance imaging characteristics of bioabsorbable magnesium screws over time in humans: a
  • retrospective single center study. Innovative Surgical Sciences, 6, 105113.
  • [10] Ünal, M., Demirayak, E., Ertan, M. B., Kilicaslan, O. F., & Kose, O. (2022). Bioabsorbable magnesium screw fixation for tibial tubercle osteotomy; a preliminary study. Acta Biomedica, 92, Article e2021263.
  • [11] Kose, O., Turan, A., Unal, M., Acar, B., & Guler, F. (2018). Fixation of medial malleolar fractures with magnesium bioabsorbable headless compression screws: short-term clinical and radiological outcomes in eleven patients. Archives of Orthopaedic and Trauma Surgery, 138, 10691075.
  • [12] Yazdimamaghani, M., Razavi, M., Vashaee, D., Moharamzadeh, K., Boccaccini, A. R. & Tayebi, L. (2017). Porous magnesium-based scaffolds for tissue engineering. Materials Science and Engineering: C, 71, 12531266.
  • [13] Vormann, J. (2003). Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 24, 2737.
  • [14] Capek, J. V. D. (2011). 20th International Conference on Metallurgy and Materials. In Different Authors (Ed.), 20th Anniversary International Conference on Metallurgy and Materials (p. 903-908). Brno: TANGER, Ltd.
  • [15] Čapek, J., & Vojtěch, D. (2014). Effect of sintering conditions on the microstructural and mechanical characteristics of porous magnesium materials prepared by powder metallurgy. Materials Science and Engineering: C, 35, 2128.
  • [16] Bi, Y., Zheng, Y., & Li, Y. (2015). Microstructure and mechanical properties of sintered porous magnesium using polymethyl methacrylate as the space holder. Materials Letters, 161, 583586.
  • [17] Aida, S. F., Zuhailawati, H., & Anasyida, A. S. (2017). The effect of space holder content and sintering temperature of magnesium foam on microstructural and properties prepared by sintering dissolution process (SDP) using carbamide space holder. Procedia Engineering, 184, 290297.
  • [18] Guo, H., Tian, X., Fan, J., et al. (2021). The compressive behavior and energy absorption performance of nano- crystalline porous magnesium fabricated by hydrogenation-dehydrogenation and spark plasma sintering technique. Journal of Alloys and Compounds, 862, Article 158698.
  • [19] İpek Nakaş, G., Dericioglu, A. F., & Bor, Ş. (2011). Fatigue behavior of TiNi foams processed by the magnesium space holder technique. Journal of the Mechanical Behavior of Biomedical Materials, 4, 20172023.
  • [20] Pongsavee, M. (2009). Effect of borax on immune cell proliferation and sister chromatid exchange in human chromosomes. Journal of Occupational Medicine and Toxicology, 4, 27.
  • [21] Abdel Aliem, R., Khaled, H. E., Soliman, B. A., Mourad, M., & Dighiesh, H. S. (2023). Boron, the forgotten element. Frontiers in Scientific Research and Technology, 6, 2028.

  • [22] Korkmaz, M. (2011). Boron: Environmental exposure and human health. In J. Nriagu (Ed.), Encyclopedia of Environmental Health (2nd ed., pp. 456-459). Elsevier.

  • [23] SOLGAR. (2023). Calcium magnesium plus boron tablets. https://www.solgar.com/products/calcium-magnesium-plus-boron-tablets/
Accessed on Mar 20, 2024.
  • [24] Jia, G., Hou, Y., Chen, C., et al. (2018). Precise fabrication of open porous Mg scaffolds using NaCl templates: Relationship between space holder particles, pore characteristics and mechanical behavior. Materials and Design, 140, 106113.

  • [25] Lu, X. Z., Lai, C. P., & Chan, L. C. (2020). Novel design of a coral-like open-cell porous degradable magnesium implant for orthopaedic application. Materials and Design, 188, Article 108474.

  • [26] Zhuang, H., Han, Y., & Feng, A. (2008). Preparation, mechanical properties and in vitro biodegradation of porous magnesium scaffolds. Materials Science and Engineering: C, 28, 14621466
There are 28 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Articles
Authors

Erkut Fındık 0000-0001-8173-1582

Tülin Şahin 0000-0001-7676-2093

Project Number Proje çalışmasında herhangi bir maddi destek alınmamıştır.
Publication Date June 30, 2024
Submission Date February 5, 2024
Acceptance Date March 12, 2024
Published in Issue Year 2024 Volume: 5 Issue: 1

Cite

APA Fındık, E., & Şahin, T. (2024). Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights. Journal of Advances in Manufacturing Engineering, 5(1), 1-8.
AMA Fındık E, Şahin T. Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights. J Adv Manuf Eng. June 2024;5(1):1-8.
Chicago Fındık, Erkut, and Tülin Şahin. “Anhydrous Borax Usage As a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights”. Journal of Advances in Manufacturing Engineering 5, no. 1 (June 2024): 1-8.
EndNote Fındık E, Şahin T (June 1, 2024) Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights. Journal of Advances in Manufacturing Engineering 5 1 1–8.
IEEE E. Fındık and T. Şahin, “Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights”, J Adv Manuf Eng, vol. 5, no. 1, pp. 1–8, 2024.
ISNAD Fındık, Erkut - Şahin, Tülin. “Anhydrous Borax Usage As a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights”. Journal of Advances in Manufacturing Engineering 5/1 (June 2024), 1-8.
JAMA Fındık E, Şahin T. Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights. J Adv Manuf Eng. 2024;5:1–8.
MLA Fındık, Erkut and Tülin Şahin. “Anhydrous Borax Usage As a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights”. Journal of Advances in Manufacturing Engineering, vol. 5, no. 1, 2024, pp. 1-8.
Vancouver Fındık E, Şahin T. Anhydrous Borax Usage as a Space Holder for Vacuum Sintered Porous Magnesium: Microstructural and Mechanical Insights. J Adv Manuf Eng. 2024;5(1):1-8.