Research Article
BibTex RIS Cite

Investigation of Photo-Electrial Properties in (Fe2O3-G)/n-Si Device

Year 2024, , 62 - 74, 12.12.2024
https://doi.org/10.5281/zenodo.14344182

Abstract

This study focuses on the synthesis of iron oxide-graphene (-Fe2O3-G) composite materials and the evaluation of their performance in devices constructed on n-type silicon (n-Si) semiconductors, under both dark and illuminated conditions. Key electrical parameters such as the ideality factor (n = 2.59), barrier height (Φb = 0.74 eV), and series resistance (Rs = 70 kΩ) were determined using Thermionic Emission (TE) and Norde methods from I-V measurements taken in the dark. The device's photoelectrical properties were further examined under illumination, revealing that the Fe2O3-G/n-Si device exhibits self-powered behavior, operating without an external power source. The device achieved a maximum ON/OFF ratio of 32496 and a spesific detectivity (D*) of 26.6 Jones at 0V, along with a maximum responsivity (R) of 98 mAW-1 at -2V. These results highlight the device's potential for efficient photodetection, particularly in self-powered applications.

References

  • Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
  • Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
  • Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
  • Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
  • Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
  • Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
  • Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
  • Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
  • Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
  • Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
  • Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
  • Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
  • Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
  • Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
  • Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
  • Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
  • Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
  • Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
  • Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
  • Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
  • Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
  • Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
  • Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
  • Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
  • Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
  • Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
  • Wang, S., Liu, H., Cao, Z., Wang, X., Zhang, L., Ding, J., Xue, Y., Han, T., Li, F., Shan, L., & Long, M. (2023). Highly Sensitive Long‐Wave Infrared Photodetector Based on Two‐Dimensional Hematite α‐Fe2O3. Advanced Optical Materials, 11(19). https://doi.org/10.1002/adom.202300382
  • Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
  • Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
  • Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186

(Fe2O3-G)/n-Si Cihazında Foto-Elektriksel Özelliklerin Araştırılması

Year 2024, , 62 - 74, 12.12.2024
https://doi.org/10.5281/zenodo.14344182

Abstract

Bu çalışma, demir oksit-grafen (-Fe2O3-G) kompozit malzemelerin sentezine ve bunların n-tipi silisyum (n-Si) yarıiletkeni ile oluşturulan cihazlardaki performanslarının hem karanlık hem de aydınlık koşullardaki değerlendirilmesine odaklanmaktadır. İdealite faktörü (n= 2,59) bariyer yüksekliği (Φb = 0,74 eV) ve seri direnç (Rs = 70 kΩ) gibi elektriksel parametreler karanlıkta alınan I-V ölçümlerinden Termiyonik Emisyon (TE) ve Norde yöntemleri kullanılarak belirlenmiştir. Cihazın fotoelektrik özellikleri aydınlatma altında da incelenmiş ve Fe2O3-G/n-Si cihazının harici bir güç kaynağı olmadan çalışarak kendi kendine güç sağlama davranışı sergilediği ortaya çıkmıştır. Aygıt, 0 voltta maksimum ON/OFF oranına (32496) ve spesifik dedektiviteye (D*, 26,6 Jones), -2 voltta da maximum duyarlılığa (R, 98 mAW-1) ulaşmıştır. Bu sonuçlar, cihazın özellikle kendi kendine güç sağlayan uygulamalarda verimli ışık algılama potansiyeline sahip olduğunu vurgulamaktadır.

References

  • Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
  • Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
  • Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
  • Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
  • Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
  • Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
  • Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
  • Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
  • Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
  • Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
  • Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
  • Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
  • Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
  • Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
  • Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
  • Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
  • Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
  • Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
  • Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
  • Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
  • Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
  • Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
  • Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
  • Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
  • Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
  • Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
  • Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
  • Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
  • Wang, S., Liu, H., Cao, Z., Wang, X., Zhang, L., Ding, J., Xue, Y., Han, T., Li, F., Shan, L., & Long, M. (2023). Highly Sensitive Long‐Wave Infrared Photodetector Based on Two‐Dimensional Hematite α‐Fe2O3. Advanced Optical Materials, 11(19). https://doi.org/10.1002/adom.202300382
  • Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
  • Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
  • Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186
There are 32 citations in total.

Details

Primary Language English
Subjects Photonics, Optoelectronics and Optical Communications
Journal Section Research Articles
Authors

Elif Daş 0000-0002-3149-6016

Gamze Bozkurt

Early Pub Date December 10, 2024
Publication Date December 12, 2024
Submission Date August 5, 2024
Acceptance Date October 31, 2024
Published in Issue Year 2024

Cite

APA Daş, E., & Bozkurt, G. (2024). Investigation of Photo-Electrial Properties in (Fe2O3-G)/n-Si Device. Journal of Anatolian Physics and Astronomy, 3(2), 62-74. https://doi.org/10.5281/zenodo.14344182