This study focuses on the synthesis of iron oxide-graphene (-Fe2O3-G) composite materials and the evaluation of their performance in devices constructed on n-type silicon (n-Si) semiconductors, under both dark and illuminated conditions. Key electrical parameters such as the ideality factor (n = 2.59), barrier height (Φb = 0.74 eV), and series resistance (Rs = 70 kΩ) were determined using Thermionic Emission (TE) and Norde methods from I-V measurements taken in the dark. The device's photoelectrical properties were further examined under illumination, revealing that the Fe2O3-G/n-Si device exhibits self-powered behavior, operating without an external power source. The device achieved a maximum ON/OFF ratio of 32496 and a spesific detectivity (D*) of 26.6 Jones at 0V, along with a maximum responsivity (R) of 98 mAW-1 at -2V. These results highlight the device's potential for efficient photodetection, particularly in self-powered applications.
Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186
Bu çalışma, demir oksit-grafen (-Fe2O3-G) kompozit malzemelerin sentezine ve bunların n-tipi silisyum (n-Si) yarıiletkeni ile oluşturulan cihazlardaki performanslarının hem karanlık hem de aydınlık koşullardaki değerlendirilmesine odaklanmaktadır. İdealite faktörü (n= 2,59) bariyer yüksekliği (Φb = 0,74 eV) ve seri direnç (Rs = 70 kΩ) gibi elektriksel parametreler karanlıkta alınan I-V ölçümlerinden Termiyonik Emisyon (TE) ve Norde yöntemleri kullanılarak belirlenmiştir. Cihazın fotoelektrik özellikleri aydınlatma altında da incelenmiş ve Fe2O3-G/n-Si cihazının harici bir güç kaynağı olmadan çalışarak kendi kendine güç sağlama davranışı sergilediği ortaya çıkmıştır. Aygıt, 0 voltta maksimum ON/OFF oranına (32496) ve spesifik dedektiviteye (D*, 26,6 Jones), -2 voltta da maximum duyarlılığa (R, 98 mAW-1) ulaşmıştır. Bu sonuçlar, cihazın özellikle kendi kendine güç sağlayan uygulamalarda verimli ışık algılama potansiyeline sahip olduğunu vurgulamaktadır.
Abdel-Salam, A. I., Gomaa, I., Khalid, A., & Soliman, T. S. (2022). Investigation of raman spectrum, structural, morphological, and optical features of Fe2O3 and Fe2O3/reduced graphene oxide hybrid nanocomposites. Physica Scripta, 97(12), 125807. https://doi.org/10.1088/1402-4896/ac9c38
Alam, N., Ullah, A., Khan, Y., Oh, W. C., & Ullah, K. (2018). Fabrication and enhancement in photoconductive response of α -Fe2O3/graphene nanocomposites as anode material. Journal of Materials Science Materials in Electronics, 29(20), 17786–17794. https://doi.org/10.1007/s10854-018-9886-2
Alshareefi, S. J. A., & Al-Nafiey, A. (2024). Graphene and ZnO NPs-enhanced photodetectors based on SiO NWs: Synthesis, characterization, and applications. Results in Optics, 16, 100690. https://doi.org/10.1016/j.rio.2024.100690
Aydoğan, A., İncekara, M., & Türüt, A. (2010). Determination of contact parameters of Au/Carmine/n-Si Schottky device. Thin Solid Films, 518(23), 7156–7160. https://doi.org/10.1016/j.tsf.2010.06.019
Bozkurt, G. (2020). Synthesis and Characterization of α-Fe2O3 Nanoparticles by Microemulsion Method. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 13(2), 890–897. https://doi.org/10.18185/erzifbed.742160
Can, M. M., Coşkun, M., & Fırat, T. (2012). A comparative study of nanosized iron oxide particles; magnetite (Fe3O4), maghemite (γ-Fe2O3) and hematite (α-Fe2O3), using ferromagnetic resonance. Journal of Alloys and Compounds, 542, 241–247. https://doi.org/10.1016/j.jallcom.2012.07.091
Daş, E. (2022). Some Electrical and Photoelectrical Properties of Conducting Polymer Graphene Composite /n-Silicon Heterojunction Diode. Sakarya University Journal of Science, 26(5), 1000–1009. https://doi.org/10.16984/saufenbilder.1129742
Daş, E., Incekara, U., & Aydoğan, A. (2021). A comparative study on electrical characteristics of Ni/n-Si and Ni/p-Si Schottky diodes with Pinus Sylvestris Resin interfacial layer in dark and under illumination at room temperature. Optical Materials, 119, 111380. https://doi.org/10.1016/j.optmat.2021.111380
Daş, E., & Yurtcan, A. B. (2022). Synthesis of Reduced Graphene Oxide (rGO) Supported Pt Nanoparticles via Supercritical Carbon Dioxide Deposition Technique for PEM Fuel Cell Electrodes. Journal of Anatolian Physics and Astronomy, 1(2), 1–17.
Erdoğan, M., Orhan, Z., & Daş, E. (2022). Synthesis of electron-rich thiophene triphenylamine based organic material for photodiode applications. Optical Materials, 128, 112446. https://doi.org/10.1016/j.optmat.2022.112446
Gao, W., Li, Y., Zhao, J., Zhang, Z., Tang, W., Wang, J., Wu, Z., & Li, Z. (2022). Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chemical Research in Chinese Universities, 38(4), 1097–1104. https://doi.org/10.1007/s40242-022-1442-1
Ghobadi, A., Ghobadi, T. G. U., Karadas, F., & Ozbay, E. (2019). Semiconductor Thin Film Based Metasurfaces and Metamaterials for Photovoltaic and Photoelectrochemical Water Splitting Applications. Advanced Optical Materials, 7(14). https://doi.org/10.1002/adom.201900028
Güllü, Ö., Aydoğan, Ş., & Türüt, A. (2008). Fabrication and electrical properties of Al/Safranin T/n-Si/AuSb structure. Semiconductor Science and Technology, 23(7), 075005. https://doi.org/10.1088/0268-1242/23/7/075005
Gupta, R., Ghosh, K., & Kahol, P. (2009). Fabrication and electrical characterization of Au/p-Si/STO/Au contact. Current Applied Physics, 9(5), 933–936. https://doi.org/10.1016/j.cap.2008.09.007
Han, L. H., Liu, H., & Wei, Y. (2011). In situ synthesis of hematite nanoparticles using a low-temperature microemulsion method. Powder Technology, 207(1–3), 42–46. https://doi.org/10.1016/j.powtec.2010.10.008
Idisi, D. O., Ahia, C. C., Meyer, E. L., Bodunrin, J. O., & Benecha, E. M. (2023). Graphene oxide:Fe2O3 nanocomposites for photodetector applications: experimental and ab initio density functional theory study. RSC Advances, 13(9), 6038–6050. https://doi.org/10.1039/d3ra00174a
Kim, S., Kim, M., & Kim, H. (2024). Self-powered photodetectors based on two-dimensional van der Waals semiconductors. Nano Energy, 109725. https://doi.org/10.1016/j.nanoen.2024.109725
Li, Y., & Park, C. W. (1998). Particle Size Distribution in the Synthesis of Nanoparticles Using Microemulsions. Langmuir, 15(4), 952–956. https://doi.org/10.1021/la980550z
Lu, W., Guo, X., Yang, B., Wang, S., Liu, Y., Yao, H., Liu, C., & Pang, H. (2019). Synthesis and Applications of Graphene/Iron(III) Oxide Composites. ChemElectroChem, 6(19), 4922–4948. https://doi.org/10.1002/celc.201901006
Middya, S., Layek, A., Dey, A., Datta, J., Das, M., Banerjee, C., & Ray, P. P. (2014). Role of zinc oxide nanomorphology on Schottky diode properties. Chemical Physics Letters, 610–611, 39–44. https://doi.org/10.1016/j.cplett.2014.07.003
Muhajir, M., Puspitasari, P., & Razak, J. A. (2019). Synthesis and Applications of Hematite α-Fe2O3 : a Review. Journal of Mechanical Engineering Science and Technology (JMEST), 3(2), 51–58. https://doi.org/10.17977/um016v3i22019p051
Norde, H. (1979). A modified forward I-V plot for Schottky diodes with high series resistance. Journal of Applied Physics, 50(7), 5052–5053. https://doi.org/10.1063/1.325607
Orhan, Z., Cinan, E., Çaldıran, Z., Kurucu, Y., & Daş, E. (2020). Synthesis of CuO–graphene nanocomposite material and the effect of gamma radiation on CuO–graphene/p-Si junction diode. Journal of Materials Science Materials in Electronics, 31(15), 12715–12724. https://doi.org/10.1007/s10854-020-03823-8
Ramakrishnan, K., Ajitha, B., & Reddy, Y. a. K. (2023). Review on metal sulfide-based nanostructures for photodetectors: From ultraviolet to infrared regions. Sensors and Actuators. A, Physical, 349, 114051. https://doi.org/10.1016/j.sna.2022.114051
Saleem, S., Ashiq, M. N., Manzoor, S., Ali, U., Liaqat, R., Algahtani, A., Mujtaba, S., Tirth, V., Alsuhaibani, A. M., Refat, M. S., Ali, A., Aslam, M., & Zaman, A. (2023). Analysis and characterization of opto-electronic properties of iron oxide (Fe2O3) with transition metals (Co, Ni) for the use in the photodetector application. Journal of Materials Research and Technology, 25, 6150–6166. https://doi.org/10.1016/j.jmrt.2023.07.065
Sarkar, K., & Kumar, P. (2024). Nanostructured carbon heterojunctions for broadband photodetection: Development roadmap, emerging technologies, and future perspectives. Carbon, 219, 118842. https://doi.org/10.1016/j.carbon.2024.118842
Sun, M., Liu, H., Liu, Y., Qu, J., & Li, J. (2015). Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction. Nanoscale, 7(4), 1250–1269. https://doi.org/10.1039/c4nr05838k
Talebi, S., & Eshghi, H. (2023). Achievement of high infrared photoresponse in n-MoO3/p-Si heterostructure photodiode prepared via the thermal oxidation method, the influence of oxygen flow rate. Materials Chemistry and Physics, 303, 127792. https://doi.org/10.1016/j.matchemphys.2023.127792
Xiong, G., Zhang, G., & Feng, W. (2024). High performance photodetectors by integrating CsPbBr3 perovskite directly on the germanium wafer. Materials Research Bulletin, 179, 112959. https://doi.org/10.1016/j.materresbull.2024.112959
Yildirim, G. B., & Daş, E. (2023). The synthesis of MgO and MgO-graphene nanocomposite materials and their diode and photodiode applications. Physica Scripta, 98(8), 085911. https://doi.org/10.1088/1402-4896/ace249
Yurtcan, A. B., & Daş, E. (2018). Chemically synthesized reduced graphene oxide-carbon black based hybrid catalysts for PEM fuel cells. International Journal of Hydrogen Energy, 43(40), 18691–18701. https://doi.org/10.1016/j.ijhydene.2018.06.186
There are 32 citations in total.
Details
Primary Language
English
Subjects
Photonics, Optoelectronics and Optical Communications
Daş, E., & Bozkurt, G. (2024). Investigation of Photo-Electrial Properties in (Fe2O3-G)/n-Si Device. Journal of Anatolian Physics and Astronomy, 3(2), 62-74. https://doi.org/10.5281/zenodo.14344182