Research Article
BibTex RIS Cite

Effects of PGPR Bacteria Applications on Soil Properties, Plant Growth and Yield Values in Karaerik and Narince Grape Varieties

Year 2023, , 128 - 137, 30.12.2023
https://doi.org/10.56430/japro.1372396

Abstract

Plant growth-promoting rhizobacteria (PGPR) are beneficial bacteria that promote plant growth by adhering to the root surfaces in the rhizosphere region of plants. In addition to improving the physical properties of soils, these bacteria increase plant growth and yield by positively affecting nitrogen fixation, phosphorus solubility, water and nutrient uptake of plants. In this study, the effects of bacteria applications on the vegetative development and yield levels of Karaerik and Narince grape varieties, which are important table varieties of Erzincan and Tokat regions, grown in greenhouses in Erzurum central conditions were investigated. In the study, 4 different bacterial combinations (Pseudomonas chlororaphis + Paenibacillus pabuli + Bacillus simplex + Pseudomonas fluorescens) that promote plant growth were applied to the plant root zone as a solution. In the study, the effects of PGPR applications on the vegetative growth of vines, some pomological characteristics, yield levels, macronutrient contents of leaves and physical and chemical properties of greenhouse soils were determined. While aggregate stability and porosity values of PGPR treated soils increased, water permeability and bulk density values decreased. Bacterial applications in both grape varieties showed a positive effect on shoot length, shoot diameter, number of nodes, berry width, berry length, cluster width, cluster length, number of seeds, number of clusters, cluster weight, number of berries, berry weight, total yield and macronutrient content of leaves. According to the control group, PGPR applied soils; organic matter content increased by 76.2%, aggregate stability values increased by 49.5% and porosity by 5.5%, while water permeability decreased by 18.3% and bulk density by 3.9%. Depending on the application, it was determined that the yield increased by 42.8% in Karaerik grape variety and 35.7% in Narince grape variety.

References

  • Abdel Aal, G. Z., Atekwana, E. A., & Atekwana, E. A. (2010). Effect of bioclogging in porous media on complex conductivity signatures. Journal of Geophysical Research: Biogeosciences, 115(G3), 1-10. https://doi.org/10.1029/2009JG001159
  • Altın, N., & Bora, T. (2005). Bitki gelişimini uyaran kök bakterilerinin genel özellikleri ve etkileri. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 15(2), 87-103. (In Turkish)
  • Annapurna, K., Ramadoss, D., Vithal, L., Bose, P., & Sajad, A. (2011). PGPR bioinoculants for ameliorating biotic and abiotic stresses in crop production. 2nd Asian PGPR Conference. Beijing.
  • Badalucco, L., & Kuikman, P. J. (2001). Mineralization and immobilization in the rhizosphere. In R. Pinton, Z. Varanini & P. Nannipieri (Eds.), The Rhizosphere; biochemistry and organic substances at the soil-plant interface (pp. 159-196). CRC Press.
  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, Part 1 -Physical and Mineralogical Methods, 2nd Edition, Agronomy Monographs 9, American Society of Agronomy-Soil Science Society of America (pp. 363-382). Madison.
  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
  • Cakmakci, R., Dönmez, F., Aydın, A., & Şahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38(6), 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  • Denis, A. A., & Caron, J. (1998). Plant-induced changes in soil structure: Processes and feedback. In N. Van Breemen (Ed.), Developments in biogeochemistry (pp. 55-72). Springer. https://doi.org/10.1007/978-94-017-2691-7_3
  • Díaz‐Zorita, M., Perfect, E., & Grove, J.H. (2002). Disruptive methods for assessing soil structure. Soil and Tillage Research, 64(1-2), 3-22. https://doi.org/10.1016/S0167-1987(01)00254-9
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., & Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Functional Plant Biology, 28(9), 871-879. https://doi.org/10.1071/PP01074
  • Dos Santos, R. M., Diaz, P. A. E., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Frontiers in Sustainable Food Systems, 4, 136. https://doi.org/10.3389/fsufs.2020.00136
  • El-Boray, M. S., Shalan, A. M., & Khouri, Z. M. (2013). Effect of different thinning techniques on fruit set, leaf area, yield and fruit quality parameters of Prunus persica L. Batsch cv. Floridaprince. Trends in Horticultural Research, 3(1), 1-13. https://doi.org/10.3923/thr.2013.1.13
  • Elliott, L. F., Lynch, J. M., & Papendick R. I. (1996). The microbial component of soil quality. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry (pp. 1-21). Marcel Dekker.
  • Elo, S., Maunuksela, L., Salkinoja-Salonen, M., Smolander, A., & Haahtela, K. (2000). Humus bacteria of Norway spruce stands: Plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiology Ecology, 31(2), 143-152. https://doi.org/10.1111/j.1574-6941.2000.tb00679.x
  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 383-411). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Gunes, A., Karagoz, K., Turan, M., Kotan, R., Yildirim, E., Cakmakci, R., & Sahin, F. (2015). Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Research Journal of Soil Biology, 7(2), 28-45. https://doi.org/10.3923/rjsb.2015.28.45
  • Gupta, S. C., & Larson, W. E. (1982). Modeling soil mechanical behavior during tillage. In P. W. Unger, D. M. Van Doren Jr., F. D. Whisler & E. L. Skidmore (Eds.), Predicting tillage effects on soil physical properties and processes (pp. 151-178). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/asaspecpub44.c10
  • Gürgün, V., & Halkman, A. K. (1988). Mikrobiyolojide sayım yöntemleri. Gıda Teknolojisi Derneği, San Matbaası. (In Turkish)
  • Gürsöz, S. (1993). GAP alanına giren Güneydoğu Anadolu Bölgesi bağcılığı ve özellikle Şanlı Urfa ilinde yetiştirilen üzüm çeşitlerinin ampelografik nitelikleri ile verim ve kalite unsurlarının belirlenmesi üzerinde bir araştırma (Doctoral dissertation, Çukurova University). (In Turkish)
  • Hacimuftuoglu, F. (2020). Farklı tekstürlü topraklara bakteri aşılamasının ve organik polimer uygulamasının toprak fiziksel özellikleri ve mısır bitkisinin (Zea mays l.) gelişimi üzerine etkileri (Doctoral dissertation, Atatürk University). (In Turkish)
  • Hacımüftüoğlu, F., & Canbolat, M. Y. (2022). Effects of bacterial inoculation on soil physical properties. Turkish Journal of Agriculture and Forestry, 46(4), 536-549. https://doi.org/10.55730/1300-011X.3024
  • Hacımüftüoğlu, F., & Küpe, M. (2022). The effects of cattle and sheep manure applications on soil physical properties and rooting and shoot development of grapevines cuttings. Erzincan University Journal of Science and Technology, 15(3), 900-915. https://doi.org/10.18185/erzifbed.1194500
  • Hamblin, A. P. (1986). The influence of soil structure on water movement, crop root growth, and water uptake. Advances in Agronomy, 38, 95-158. https://doi.org/10.1016/S0065-2113(08)60674-4
  • Hayes, C. (2010). The basics of beneficial soil microorganisms. BioWorks Technical Bulletin. Microorganisms, 7-11.
  • Hoorman, J. J. (2016). Role of soil bacteria: Update and revision. Midwest Cover Crops Council (MCCC).
  • Hynes, R. K., Leung, G. C., Hirkala, D. L., & Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258. https://doi.org/10.1139/W08-008
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E., & Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19. (In Turkish)
  • Ingham, E. R. (2009). Soil biology primer. Soil and Water Conservation Society.
  • John, C. J., Kumar S., & Ge, M. (2020). Probiotic prospects of PGPR for green and sustainable agriculture. Archives of Phytopathology and Plant Protection, 53(19-20), 1-16. https://doi.org/10.1080/03235408.2020.1805901
  • Kacar, B. (2014). Kolay uygulanabilir bitki analizleri. Nobel Yayınları. (In Turkish)
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 425-442). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  • Kızıloğlu, T., & Bilen, S. (1997). Toprak mikrobiyolojisi laboratuvar uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları. (In Turkish)
  • Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 687-734). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c28
  • Korkutal, İ., Bahar, E., & Özakın, T. T. (2020). Aşılı asma (Vitis vinifera L.) fidanlarına farklı yöntemlerle uygulanan mikorizaların fidan tutma ve gelişme özellikleri üzerine etkileri. Mediterranean Agricultural Sciences, 33(2), 149-157. https://doi.org/10.29136/mediterranean.496268 (In Turkish)
  • Kupe, M., & Kose, C. (2015). Karaerik üzüm çeşidinde kış soğuklarından sonra zarar düzeyine bağlı olarak uygun budama seviyelerinin tespit edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 46(1), 21-28. (In Turkish)
  • Lanyon, D. M., Cass, A., & Hansen, D. (2004). The effect of soil properties on vine performance. CSIRO Land and Water Technical Report No: 34-04.
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  • Mäeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694-1697. https://doi.org/10.1126/science.1071148
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6), 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 199- 224). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
  • Myburgh, P. A., Cass, A., & Clingeleffer, P. R. (1996). Root systems and soils in Australian vineyards and orchards - an assessment. 1996 Barossa Valley Rotary Foundation Fellowship Report. (CRC Soil & Land Management)
  • Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 181-197). American Society of Agronomy and Soil Science Society of America.
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 539-579). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Northcote, K. H. (1988). Soil and Australian viticulture. In P. R. Dry & B. G. Coombe (Eds.), Viticulture: Volume 1-resources (pp. 61-90). Winetitles.
  • Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. https://doi.org/10.1038/ismej.2014.196
  • Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., & Maron, P. A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7(8), 1609-1619. https://doi.org/10.1038/ismej.2013.34
  • Reis, V., Olivares, F., & Dobereiner, J. (1994). Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology & Biotechnology, 10(4), 401-405. https://doi.org/10.1007/bf00144460
  • Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 149- 157). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c8
  • Rowe, R. N. (1993). Grapevine devigoration. The Australian and New Zealand Wine Industry Journal.
  • Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134. https://doi.org/10.1016/j.scienta.2015.08.042
  • Sabir, A., Yazici M., Kara Z., & Sahin F. (2012). Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth‐promoting rhizobacteria (PGPR). Journal of the Science of Food and Agriculture, 92(10), 2148-2153. https://doi.org/10.1002/jsfa.5600
  • Şahin, F., Çakmakçi, R., & Kantar, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil, 265(1/2), 123-129.
  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3), 1042-1049. https://doi.org/10.2136/sssaj2000.6431042x
  • Smart, R. E. (1995). Two golden rules of viticulture. Australian New Zealand Wine Industry Journal.
  • Sonneveld, C., & Voogt, W. (2009). Nutrient management in substrate systems. In C. Sonneveld & W. Voogt (Eds.), Plant nutrition of greenhouse crops (pp. 277-312). Springer. https://doi.org/10.1007/978-90-481-2532-6_13
  • Southey, J. M. (1992). Root distribution of different grapevine rootstocks on a relatively saline soil. South African Journal of Enology and Viticulture, 13(1), 1-9. https://doi.org/10.21548/13-1-2189
  • Tangolar, S. (2022). The role of biostimulants in viticulture. In S. Cantürk & İ. S. Gökçen (Eds.), Current agricultural studies in Türkiye: Research and reviews (pp. 203-239). İKSAD Yayınevi.
  • Ülgen, N., & Yurtsever, N., (1995). Türkiye gübre ve gübreleme rehberi. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları. (In Turkish)
  • USDA. (1999). Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys, second edition. United States Department of Agriculture. https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf
  • Vandevivere, P., & Baveye, P. (1992). Relationship between transport of bacteria and their clogging efficiency in sand columns. Applied and Environmental Microbiology, 58(8), 2523-2530. https://doi.org/10.1128/aem.58.8.2523-2530.1992
  • Wang, S., Okamoto, G., Hirano, K., Lu, J., & Zhang, C. (2001). Effects of restricted rooting volume on vine growth and berry development of Kyoho grapevines. American Journal of Enology and Viticulture, 52, 248-253. https://doi.org/10.5344/ajev.2001.52.3.248
  • Yadav, A., Theivasanthi, T., Paul, P. K., & Upadhyay, K. C. (2015). Extracellular biosynthesis of silver nanoparticles from plant growth promoting rhizobacteria Pseudomonas sp. arXiv:1511.03130. https://doi.org/10.48550/arXiv.1511.03130
  • Yildirim, E., Turan, M., Ekinci, M., Dursun, A., & Cakmakci, R. (2011). Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific Research and Essays, 6(20), 4389-4396. https://doi.org/10.5897/SRE11.219
  • Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97-168. https://doi.org/10.1016/S0065-2113(03)81003-9
Year 2023, , 128 - 137, 30.12.2023
https://doi.org/10.56430/japro.1372396

Abstract

References

  • Abdel Aal, G. Z., Atekwana, E. A., & Atekwana, E. A. (2010). Effect of bioclogging in porous media on complex conductivity signatures. Journal of Geophysical Research: Biogeosciences, 115(G3), 1-10. https://doi.org/10.1029/2009JG001159
  • Altın, N., & Bora, T. (2005). Bitki gelişimini uyaran kök bakterilerinin genel özellikleri ve etkileri. Anadolu Ege Tarımsal Araştırma Enstitüsü Dergisi, 15(2), 87-103. (In Turkish)
  • Annapurna, K., Ramadoss, D., Vithal, L., Bose, P., & Sajad, A. (2011). PGPR bioinoculants for ameliorating biotic and abiotic stresses in crop production. 2nd Asian PGPR Conference. Beijing.
  • Badalucco, L., & Kuikman, P. J. (2001). Mineralization and immobilization in the rhizosphere. In R. Pinton, Z. Varanini & P. Nannipieri (Eds.), The Rhizosphere; biochemistry and organic substances at the soil-plant interface (pp. 159-196). CRC Press.
  • Berg, G., & Smalla, K. (2009). Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiology Ecology, 68(1), 1-13. https://doi.org/10.1111/j.1574-6941.2009.00654.x
  • Blake, G. R., & Hartge, K. H. (1986). Bulk density. In A. Klute (Ed.), Methods of soil analysis, Part 1 -Physical and Mineralogical Methods, 2nd Edition, Agronomy Monographs 9, American Society of Agronomy-Soil Science Society of America (pp. 363-382). Madison.
  • Bronick, C. J., & Lal, R. (2005). Soil structure and management: A review. Geoderma, 124(1-2), 3-22. https://doi.org/10.1016/j.geoderma.2004.03.005
  • Cakmakci, R., Dönmez, F., Aydın, A., & Şahin, F. (2006). Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biology and Biochemistry, 38(6), 1482-1487. https://doi.org/10.1016/j.soilbio.2005.09.019
  • Denis, A. A., & Caron, J. (1998). Plant-induced changes in soil structure: Processes and feedback. In N. Van Breemen (Ed.), Developments in biogeochemistry (pp. 55-72). Springer. https://doi.org/10.1007/978-94-017-2691-7_3
  • Díaz‐Zorita, M., Perfect, E., & Grove, J.H. (2002). Disruptive methods for assessing soil structure. Soil and Tillage Research, 64(1-2), 3-22. https://doi.org/10.1016/S0167-1987(01)00254-9
  • Dobbelaere, S., Croonenborghs, A., Thys, A., Ptacek, D., Vanderleyden, J., Dutto, P., & Okon, Y. (2001). Responses of agronomically important crops to inoculation with Azospirillum. Functional Plant Biology, 28(9), 871-879. https://doi.org/10.1071/PP01074
  • Dos Santos, R. M., Diaz, P. A. E., Lobo, L. L. B., & Rigobelo, E. C. (2020). Use of plant growth-promoting rhizobacteria in maize and sugarcane: Characteristics and applications. Frontiers in Sustainable Food Systems, 4, 136. https://doi.org/10.3389/fsufs.2020.00136
  • El-Boray, M. S., Shalan, A. M., & Khouri, Z. M. (2013). Effect of different thinning techniques on fruit set, leaf area, yield and fruit quality parameters of Prunus persica L. Batsch cv. Floridaprince. Trends in Horticultural Research, 3(1), 1-13. https://doi.org/10.3923/thr.2013.1.13
  • Elliott, L. F., Lynch, J. M., & Papendick R. I. (1996). The microbial component of soil quality. In G. Stotzky & J. M. Bollag (Eds.), Soil biochemistry (pp. 1-21). Marcel Dekker.
  • Elo, S., Maunuksela, L., Salkinoja-Salonen, M., Smolander, A., & Haahtela, K. (2000). Humus bacteria of Norway spruce stands: Plant growth promoting properties and birch, red fescue and alder colonizing capacity. FEMS Microbiology Ecology, 31(2), 143-152. https://doi.org/10.1111/j.1574-6941.2000.tb00679.x
  • Gee, G. W., & Bauder, J. W. (1986). Particle-size analysis. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 383-411). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c15
  • Gunes, A., Karagoz, K., Turan, M., Kotan, R., Yildirim, E., Cakmakci, R., & Sahin, F. (2015). Fertilizer efficiency of some plant growth promoting rhizobacteria for plant growth. Research Journal of Soil Biology, 7(2), 28-45. https://doi.org/10.3923/rjsb.2015.28.45
  • Gupta, S. C., & Larson, W. E. (1982). Modeling soil mechanical behavior during tillage. In P. W. Unger, D. M. Van Doren Jr., F. D. Whisler & E. L. Skidmore (Eds.), Predicting tillage effects on soil physical properties and processes (pp. 151-178). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/asaspecpub44.c10
  • Gürgün, V., & Halkman, A. K. (1988). Mikrobiyolojide sayım yöntemleri. Gıda Teknolojisi Derneği, San Matbaası. (In Turkish)
  • Gürsöz, S. (1993). GAP alanına giren Güneydoğu Anadolu Bölgesi bağcılığı ve özellikle Şanlı Urfa ilinde yetiştirilen üzüm çeşitlerinin ampelografik nitelikleri ile verim ve kalite unsurlarının belirlenmesi üzerinde bir araştırma (Doctoral dissertation, Çukurova University). (In Turkish)
  • Hacimuftuoglu, F. (2020). Farklı tekstürlü topraklara bakteri aşılamasının ve organik polimer uygulamasının toprak fiziksel özellikleri ve mısır bitkisinin (Zea mays l.) gelişimi üzerine etkileri (Doctoral dissertation, Atatürk University). (In Turkish)
  • Hacımüftüoğlu, F., & Canbolat, M. Y. (2022). Effects of bacterial inoculation on soil physical properties. Turkish Journal of Agriculture and Forestry, 46(4), 536-549. https://doi.org/10.55730/1300-011X.3024
  • Hacımüftüoğlu, F., & Küpe, M. (2022). The effects of cattle and sheep manure applications on soil physical properties and rooting and shoot development of grapevines cuttings. Erzincan University Journal of Science and Technology, 15(3), 900-915. https://doi.org/10.18185/erzifbed.1194500
  • Hamblin, A. P. (1986). The influence of soil structure on water movement, crop root growth, and water uptake. Advances in Agronomy, 38, 95-158. https://doi.org/10.1016/S0065-2113(08)60674-4
  • Hayes, C. (2010). The basics of beneficial soil microorganisms. BioWorks Technical Bulletin. Microorganisms, 7-11.
  • Hoorman, J. J. (2016). Role of soil bacteria: Update and revision. Midwest Cover Crops Council (MCCC).
  • Hynes, R. K., Leung, G. C., Hirkala, D. L., & Nelson, L. M. (2008). Isolation, selection, and characterization of beneficial rhizobacteria from pea, lentil and chickpea grown in western Canada. Canadian Journal of Microbiology, 54(4), 248-258. https://doi.org/10.1139/W08-008
  • İmriz, G., Özdemir, F., Topal, İ., Ercan, B., Taş, M. N., Yakışır, E., & Okur, O. (2014). Bitkisel üretimde bitki gelişimini teşvik eden rizobakteri (PGPR)'ler ve etki mekanizmaları. Elektronik Mikrobiyoloji Dergisi, 12(2), 1-19. (In Turkish)
  • Ingham, E. R. (2009). Soil biology primer. Soil and Water Conservation Society.
  • John, C. J., Kumar S., & Ge, M. (2020). Probiotic prospects of PGPR for green and sustainable agriculture. Archives of Phytopathology and Plant Protection, 53(19-20), 1-16. https://doi.org/10.1080/03235408.2020.1805901
  • Kacar, B. (2014). Kolay uygulanabilir bitki analizleri. Nobel Yayınları. (In Turkish)
  • Kemper, W. D., & Rosenau, R. C. (1986). Aggregate stability and size distribution. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 425-442). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c17
  • Kızıloğlu, T., & Bilen, S. (1997). Toprak mikrobiyolojisi laboratuvar uygulamaları. Atatürk Üniversitesi Ziraat Fakültesi Ders Yayınları. (In Turkish)
  • Klute, A., & Dirksen, C. (1986). Hydraulic conductivity and diffusivity: Laboratory methods. In A. Klute (Ed.), Methods of soil analysis: Part 1 physical and mineralogical methods, 5.1, 2nd edition (pp. 687-734). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssabookser5.1.2ed.c28
  • Korkutal, İ., Bahar, E., & Özakın, T. T. (2020). Aşılı asma (Vitis vinifera L.) fidanlarına farklı yöntemlerle uygulanan mikorizaların fidan tutma ve gelişme özellikleri üzerine etkileri. Mediterranean Agricultural Sciences, 33(2), 149-157. https://doi.org/10.29136/mediterranean.496268 (In Turkish)
  • Kupe, M., & Kose, C. (2015). Karaerik üzüm çeşidinde kış soğuklarından sonra zarar düzeyine bağlı olarak uygun budama seviyelerinin tespit edilmesi. Atatürk Üniversitesi Ziraat Fakültesi Dergisi, 46(1), 21-28. (In Turkish)
  • Lanyon, D. M., Cass, A., & Hansen, D. (2004). The effect of soil properties on vine performance. CSIRO Land and Water Technical Report No: 34-04.
  • Lugtenberg, B., & Kamilova, F. (2009). Plant-growth-promoting rhizobacteria. Annual Review of Microbiology, 63, 541-556. https://doi.org/10.1146/annurev.micro.62.081307.162918
  • Mäeder, P., Fliessbach, A., Dubois, D., Gunst, L., Fried, P., & Niggli, U. (2002). Soil fertility and biodiversity in organic farming. Science, 296(5573), 1694-1697. https://doi.org/10.1126/science.1071148
  • Mayak, S., Tirosh, T., & Glick, B. R. (2004). Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiology and Biochemistry, 42(6), 565-572. https://doi.org/10.1016/j.plaphy.2004.05.009
  • McLean, E. O. (1982). Soil pH and lime requirement. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 199- 224). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c12
  • Myburgh, P. A., Cass, A., & Clingeleffer, P. R. (1996). Root systems and soils in Australian vineyards and orchards - an assessment. 1996 Barossa Valley Rotary Foundation Fellowship Report. (CRC Soil & Land Management)
  • Nelson, R. E. (1982). Carbonate and gypsum. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 181-197). American Society of Agronomy and Soil Science Society of America.
  • Nelson, D. W., & Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 539-579). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c29
  • Northcote, K. H. (1988). Soil and Australian viticulture. In P. R. Dry & B. G. Coombe (Eds.), Viticulture: Volume 1-resources (pp. 61-90). Winetitles.
  • Panke-Buisse, K., Poole, A. C., Goodrich, J. K., Ley, R. E., & Kao-Kniffin, J. (2015). Selection on soil microbiomes reveals reproducible impacts on plant function. The ISME Journal, 9(4), 980-989. https://doi.org/10.1038/ismej.2014.196
  • Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., & Maron, P. A. (2013). Loss in microbial diversity affects nitrogen cycling in soil. The ISME Journal, 7(8), 1609-1619. https://doi.org/10.1038/ismej.2013.34
  • Reis, V., Olivares, F., & Dobereiner, J. (1994). Improved methodology for isolation of Acetobacter diazotrophicus and confirmation of its endophytic habitat. World Journal of Microbiology & Biotechnology, 10(4), 401-405. https://doi.org/10.1007/bf00144460
  • Rhoades, J. D. (1982). Cation exchange capacity. In A. L. Page (Ed.), Methods of soil analysis: Part 2 chemical and microbiological properties, 9.2.2, 2nd edition (pp. 149- 157). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2134/agronmonogr9.2.2ed.c8
  • Rowe, R. N. (1993). Grapevine devigoration. The Australian and New Zealand Wine Industry Journal.
  • Ruzzi, M., & Aroca, R. (2015). Plant growth-promoting rhizobacteria act as biostimulants in horticulture. Scientia Horticulturae, 196, 124-134. https://doi.org/10.1016/j.scienta.2015.08.042
  • Sabir, A., Yazici M., Kara Z., & Sahin F. (2012). Growth and mineral acquisition response of grapevine rootstocks (Vitis spp.) to inoculation with different strains of plant growth‐promoting rhizobacteria (PGPR). Journal of the Science of Food and Agriculture, 92(10), 2148-2153. https://doi.org/10.1002/jsfa.5600
  • Şahin, F., Çakmakçi, R., & Kantar, F. (2004). Sugar beet and barley yields in relation to inoculation with N2-fixing and phosphate solubilizing bacteria. Plant and Soil, 265(1/2), 123-129.
  • Six, J., Elliott, E. T., & Paustian, K. (2000). Soil structure and soil organic matter: II. A normalized stability index and the effect of mineralogy. Soil Science Society of America Journal, 64(3), 1042-1049. https://doi.org/10.2136/sssaj2000.6431042x
  • Smart, R. E. (1995). Two golden rules of viticulture. Australian New Zealand Wine Industry Journal.
  • Sonneveld, C., & Voogt, W. (2009). Nutrient management in substrate systems. In C. Sonneveld & W. Voogt (Eds.), Plant nutrition of greenhouse crops (pp. 277-312). Springer. https://doi.org/10.1007/978-90-481-2532-6_13
  • Southey, J. M. (1992). Root distribution of different grapevine rootstocks on a relatively saline soil. South African Journal of Enology and Viticulture, 13(1), 1-9. https://doi.org/10.21548/13-1-2189
  • Tangolar, S. (2022). The role of biostimulants in viticulture. In S. Cantürk & İ. S. Gökçen (Eds.), Current agricultural studies in Türkiye: Research and reviews (pp. 203-239). İKSAD Yayınevi.
  • Ülgen, N., & Yurtsever, N., (1995). Türkiye gübre ve gübreleme rehberi. Başbakanlık Köy Hizmetleri Genel Müdürlüğü Toprak ve Gübre Araştırma Enstitüsü Müdürlüğü Yayınları. (In Turkish)
  • USDA. (1999). Soil taxonomy, a basic system of soil classification for making and interpreting soil surveys, second edition. United States Department of Agriculture. https://www.nrcs.usda.gov/sites/default/files/2022-06/Soil%20Taxonomy.pdf
  • Vandevivere, P., & Baveye, P. (1992). Relationship between transport of bacteria and their clogging efficiency in sand columns. Applied and Environmental Microbiology, 58(8), 2523-2530. https://doi.org/10.1128/aem.58.8.2523-2530.1992
  • Wang, S., Okamoto, G., Hirano, K., Lu, J., & Zhang, C. (2001). Effects of restricted rooting volume on vine growth and berry development of Kyoho grapevines. American Journal of Enology and Viticulture, 52, 248-253. https://doi.org/10.5344/ajev.2001.52.3.248
  • Yadav, A., Theivasanthi, T., Paul, P. K., & Upadhyay, K. C. (2015). Extracellular biosynthesis of silver nanoparticles from plant growth promoting rhizobacteria Pseudomonas sp. arXiv:1511.03130. https://doi.org/10.48550/arXiv.1511.03130
  • Yildirim, E., Turan, M., Ekinci, M., Dursun, A., & Cakmakci, R. (2011). Plant growth promoting rhizobacteria ameliorate deleterious effect of salt stress on lettuce. Scientific Research and Essays, 6(20), 4389-4396. https://doi.org/10.5897/SRE11.219
  • Zahir, Z. A., Arshad, M., & Frankenberger, W. T. (2004). Plant growth promoting rhizobacteria: Applications and perspectives in agriculture. Advances in Agronomy, 81, 97-168. https://doi.org/10.1016/S0065-2113(03)81003-9
There are 65 citations in total.

Details

Primary Language English
Subjects Post Harvest Horticultural Technologies (Incl. Transportation and Storage), Soil Physics
Journal Section Research Articles
Authors

Muhammed Küpe 0000-0002-7225-8065

Fazıl Hacımüftüoğlu 0000-0002-2897-8559

Elif Yağanoğlu 0000-0001-5963-3871

Early Pub Date December 30, 2023
Publication Date December 30, 2023
Submission Date October 6, 2023
Published in Issue Year 2023

Cite

APA Küpe, M., Hacımüftüoğlu, F., & Yağanoğlu, E. (2023). Effects of PGPR Bacteria Applications on Soil Properties, Plant Growth and Yield Values in Karaerik and Narince Grape Varieties. Journal of Agricultural Production, 4(2), 128-137. https://doi.org/10.56430/japro.1372396