Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 1, 15 - 31, 26.03.2025
https://doi.org/10.56430/japro.1593604

Abstract

References

  • Aizaz, M., Khan, I., Lubna, Asaf, S., Bilal, S., Jan, R., Khan, A. L., Kim, K. M., & AL-Harrasi, A. (2023). Enhanced physiological and biochemical performance of mung bean and maize under saline and heavy metal stress through application of endophytic fungal strain SL3 and exogenous IAA. Cells, 12(15), 1960. https://doi.org/10.3390/cells12151960
  • Aygören, A. S., Güneş, E., Muslu, S., Kasapoğlu, A. G., Yiğider, E., Aydın, M., Büyük I., & İlhan, E. (2023). Genome-wide analysis and characterization of SABATH gene family in Phaseolus vulgaris genotypes subject to melatonin under drought and salinity stresses. Plant Molecular Biology Reporter, 41, 242-259. https://doi.org/10.1007/s11105-022-01363-5
  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(suppl_2), W202-W208. https://doi.org/10.1093/nar/gkp335
  • Bano, Y., Khan, R., Sharma, J., & Shrivastav, A. (2019). Changes in activities of nitrogen metabolism enzymes in arsenic stressed Phaseolus vulgaris. International Journal of Scientific Research and Review, 8(4), 336-341.
  • Buttanri, A., Kasapoğlu, A. G., Öner, B. M., Aygören, A. S., Muslu, S., İlhan, E., Yildirim, E., & Aydin, M. (2024). Predicting the role of β-GAL genes in bean under abiotic stress and genome-wide characterization of β-GAL gene family members. Protoplasma, 262, 365-383. https://doi.org/10.1007/s00709-024-01998-z
  • Cao, J. (2019). Molecular evolution of the Vacuolar Iron Transporter (VIT) family genes in 14 plant species. Genes, 10(2), 144. https://doi.org/10.3390/genes10020144
  • Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., & He, Y., (2023). TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11), 1733-1742. https://doi.org/10.1016/j.molp.2023.09.010
  • Chen, X., Zhao, Y., Zhong, Y., Chen, J., & Qi, X. (2023). Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. Planta, 258, 17. https://doi.org/10.1007/s00425-023-04170-8
  • Connorton, J. M., Jones, E. R., Rodríguez-Ramiro, I., Fairweather-Tait, S., Uauy, C., & Balk, J. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology, 174(4), 2434-2444. https://doi.org/10.1104/pp.17.00672
  • Cui, Y., Zhao, Q., Hu, S., & Jiang, L. (2020). Vacuole biogenesis in plants: How many vacuoles, how many models? Trends in Plant Science, 25(6), 538-548. https://doi.org/10.1016/j.tplants.2020.01.008
  • Daszkiewicz, T. (2022). Food production in the context of global developmental challenges. Agriculture, 12(6), 832. https://doi.org/10.3390/agriculture12060832
  • Dey, S., Malviya, R., Pandey, A., Banavath, H. N., Muthamilarasan, M., & Gayen, D. (2023). Identification and expression analysis of the FtsH protein family in chickpea in response to drought stress. ResearchSquare, 1-34. https://doi.org/10.21203/rs.3.rs-3505392/v1
  • Fang, P., Hu, Y., Xia, W., Wu, X., Sun, T., Pandey, A. K., Ning, K., Zhu, C., & Xu, P. (2022). Transcriptome dynamics of common bean roots exposed to various heavy metals reveal valuable target genes and promoters for genetic engineering. Journal of Agricultural and Food Chemistry, 71(1), 223-233. https://doi.org/10.1021/acs.jafc.2c06301
  • Gollhofer, J., Schläwicke, C., Jungnick, N., Schmidt, W., & Buckhout, T. J. (2011). Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Plant Physiology and Biochemistry, 49(5), 557-564. https://doi.org/10.1016/j.plaphy.2011.02.011
  • Gu, D., Andreev, K., & Dupre, M. E. (2021). Major trends in population growth around the world. China CDC Weekly, 3(28), 604-613. https://doi.org/10.46234/ccdcw2021.160
  • Hall, C., Dawson, T. P., Macdiarmid, J. I., Matthews, R. B., & Smith, P. (2017). The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. International Journal of Agricultural Sustainability, 15(2), 124-135. https://doi.org/10.1080/14735903.2017.1293929
  • Hammami, H., Parsa, M., Bayat, H., & Aminifard, M. H. (2022). The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environmental and Experimental Botany, 193, 104670. https://doi.org/10.1016/j.envexpbot.2021.104670
  • Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35(suppl_2), W585-W587. https://doi.org/10.1093/nar/gkm259
  • Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. https://doi.org/10.1093/bioinformatics/btu817
  • Inal, B., Muslu, S., Yigider, E., Kasapoglu, A., Ilhan, E., Ciltas, A., Yildirim, E., & Aydin, M., (2024). In silico analysis of Phaseolus vulgaris L. metalloprotease FtsH gene: Characterization and expression in drought and salt stress. Genetic Resources and Crop Evolution, 72, 1065-1088. https://doi.org/10.1007/s10722-024-02031-1
  • Isıyel, M., İlhan, E., Kasapoğlu, A. G., Muslu, S., Öner, B. M., Aygören, A. S., Yigider, E., Aydin, M., & Yıldırım, E. (2024). Identification and characterization of Phaseolus vulgaris CHS genes in response to salt and drought stress. Genetic Resources and Crop Evolution, 72, 271-293. https://doi.org/10.1007/s10722-024-01980-x
  • Kaur, R., Das, S., Bansal, S., Singh, G., Sardar, S., Dhar, H., & Ram, H. (2021). Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiologia Plantarum, 173(1), 430-448. https://doi.org/10.1111/ppl.13491
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  • Khalil, R., Haroun, S., Bassyoini, F., Nagah, A., & Yusuf, M. (2021). Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant. Journal of Agriculture and Food Research, 5, 100182. https://doi.org/10.1016/j.jafr.2021.100182
  • Khoudi, H. (2021). Significance of vacuolar proton pumps and metal/H+ antiporters in plant heavy metal tolerance. Physiologia Plantarum, 173(1), 384-393. https://doi.org/10.1111/ppl.13447
  • Kim, S. A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J. M., Ecker, J. R., Kaplan, J., & Guerinot, M. L. (2006). Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 314(5803), 1295-1298. https://doi.org/10.1126/science.1132563
  • Kosakivska, I. V., Babenko, L. M., Romanenko, K. O., Korotka, I. Y., & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biology International, 45(2), 258-272. https://doi.org/10.1002/cbin.11503
  • Krishna, T. P. A., Ceasar, S. A., & Maharajan, T. (2023). Biofortification of crops to fight anemia: Role of vacuolar iron transporters. Journal of Agricultural and Food Chemistry, 71(8), 3583-3598. https://doi.org/10.1021/acs.jafc.2c07727
  • Kumar, N., Sharma, V., Kaur, G., Lata, C., Dasila, H., Perveen, K., Khan, F., Gupta, V. K., & Khanam, M. N. (2023). Brassinosteroids as promoters of seedling growth and antioxidant activity under heavy metal zinc stress in mung bean (Vigna radiata L.). Frontiers in Microbiology, 14, 1259103. https://doi.org/10.3389/fmicb.2023.1259103
  • Lapinskas, P. J., Lin, S. J., & Culotta, V. C. (1996). The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Molecular Microbiology, 21(3), 519-528. https://doi.org/10.1111/j.1365-2958.1996.tb02561.x
  • Letunic, I., & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1), W78-W82. https://doi.org/10.1093/nar/gkae268
  • Li, J., Zhang, M., Sun, J., Mao, X., Wang, J., Liu, H., Zheng, H., Li, X., & Zou, D. (2020). Heavy metal stress-associated proteins in rice and Arabidopsis: Genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Frontiers in Genetics, 11, 477. https://doi.org/10.3389/fgene.2020.00477
  • Li, T., Zhang, X. M., Gao, J. L., Wang, L., Si, L., Shu, Y. J., Guo, C. H., Lai, Y. C., Bi, Y. D., & Guo, D. L. (2023). Soybean GmVIT1 gene confers plant tolerance to excess Fe/Mn stress. Agronomy, 13(2), 384. https://doi.org/10.3390/agronomy13020384
  • Lisciani, S., Marconi, S., Le Donne, C., Camilli, E., Aguzzi, A., Gabrielli, P., Gambelli, L., Kunert, K., Marais, D., Vorster, B. J., Alvarado-Ramos, K., Reboul, E., Cominelli, E., Preite, C., Sparvoli, S., Losa, A., Sala, T., Botha, A. M., & Ferrari, M. (2024). Legumes and common beans in sustainable diets: Nutritional quality, environmental benefits, spread and use in food preparations. Frontiers in Nutrition, 11, 1385232. https://doi.org/10.3389/fnut.2024.1385232
  • Mansour, M. M. F. (2023). Role of vacuolar membrane transport systems in plant salinity tolerance. Journal of Plant Growth Regulation, 42, 1364-1401. https://doi.org/10.1007/s00344-022-10655-9
  • Noor, I., Sohail, H., Sun, J., Nawaz, M. A., Li, G., Hasanuzzaman, M., & Liu, J. (2022). Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 303(Part 3), 135196. https://doi.org/10.1016/j.chemosphere.2022.135196
  • Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739-745. https://doi.org/10.1126/science.289.5480.739
  • Peng, X., Wang, J., Peng, W., Wu, F. X., & Pan, Y. (2017). Protein–protein interactions: Detection, reliability assessment and applications. Briefings in Bioinformatics, 18(5), 798-819. https://doi.org/10.1093/bib/bbw066
  • Qi, M., Wang, S., Li, N., Li, L., Zhang, Y., Xue, J., Wang, J., Wu, R., & Lian, N. (2023). Genome-wide analysis of TPX2 gene family in Populus trichocarpa and its specific response genes under various abiotic stresses. Frontier Plant Science, 14, 1159181. https://doi.org/10.3389/fpls.2023.1159181
  • Ram, H., Sardar, S., & Gandass, N. (2021). Vacuolar Iron Transporter (Like) proteins: Regulators of cellular iron accumulation in plants. Physiologia Plantarum, 171(4), 823-832. https://doi.org/10.1111/ppl.13363
  • Rasool, A., Azeem, F., Ur-Rahman, M., Rizwan, M., Hussnain Siddique, M., Bay, D. H., Binothman, N., Al Kashgry, N. A.T., & Qari, S. H. (2023). Omics-assisted characterization of two-component system genes from Gossypium raimondii in response to salinity and molecular interaction with abscisic acid. Frontiers in Plant Science, 14, 1138048. https://doi.org/10.3389/fpls.2023.1138048
  • Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 27(1), 295-296. https://doi.org/10.1093/nar/27.1.295
  • Salam, A., Afridi, M. S., Khan, A. R., Azhar, W., Shuaiqi, Y., Ulhassan, Z., Qi J., Xuo N., Chunyan Y., Chen N., & Gan, Y. (2023). Cobalt induced toxicity and tolerance in plants: Insights from omics approaches. In M. A. Hossain, AKM. Z. Hossain, S. Bourgerie, M. Fujita, O. P. Dhankher & P. Haris (Eds.), Heavy metal toxicity and tolerance in plants: A biological, omics, and genetic engineering approach (pp. 207-229). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119906506.ch10
  • Shahid, M., Shamshad, S., Farooq, A. B. U., Rafiq, M., Khalid, S., Dumat, C., Zhang, Y., Hussain, I., & Niazi, N. K. (2019). Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: a multivariate analysis. Environmental Science and Pollution Research, 26, 11579-11590. https://doi.org/10.1007/s11356-018-2689-4
  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), 1112-1126. https://doi.org/10.1111/pce.12706
  • Sharma, S., Kaur, G., Kumar, A., Meena, V., Ram, H., Kaur, J., & Pandey, A. K. (2020). Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants, 9(2), 229. https://doi.org/10.1101/863084
  • Shekhawat, P. K., Sardar, S., Yadav, B., Salvi, P., Soni, P., & Ram, H. (2023). Meta-analysis of transcriptomics studies identifies novel attributes and set of genes involved in iron homeostasis in rice. Functional & Integrative Genomics, 23, 336. https://doi.org/10.1007/s10142-023-01265-z
  • Silva-Gigante, M., Hinojosa-Reyes, L., Rosas-Castor, J. M., Quero-Jiménez, P. C., Pino-Sandoval, D. A., & Guzmán-Mar, J. L. (2023). Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): A review. Chemosphere, 335, 139010. https://doi.org/10.1016/j.chemosphere.2023.139010
  • Singh, P., & Mukhopadhyay, K. (2021). Comprehensive molecular dissection of TIFY Transcription factors reveal their dynamic responses to biotic and abiotic stress in wheat (Triticum aestivum L.). Scientific Reports, 11, 9739. https://doi.org/10.1038/s41598-021-87722-w
  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., & Pyysalo, S., (2023). The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), 638-646. https://doi.org/10.1093/nar/gkac1000
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Wainaina, I., Wafula, E., Sila, D., Kyomugasho, C., Grauwet, T., Van Loey, A., & Hendrickx, M. (2021). Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3690-3718. https://doi.org/10.1111/1541-4337.12770
  • White, S. H., & Wimley, W. C. (1999). Membrane protein folding and stability: physical principles. Annual Review of Biophysics and Biomolecular Structure, 28, 319-365. https://doi.org/10.1146/annurev.biophys.28.1.319
  • Zhang, Y., Xu, Y. H., Yi, H. Y., & Gong, J. M. (2012). Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. The Plant Journal, 72(3), 400-410. https://doi.org/10.1111/j.1365-313x.2012.05088.x
  • Zhu, W., Zuo, R., Zhou, R., Huang, J., Tang, M., Cheng, X., Liu, Y., Tong, C., Xiang, Y., Dong, C., & Liu, S. (2016). Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus. Frontiers in Plant Science, 7, 1353. https://doi.org/10.3389/fpls.2016.01353

Genome-Wide Analysis of Vacuolar Iron Transporter (VIT) Gene Family in Phaseolus vulgaris L.: Functional Roles in Heavy Metal Stress

Year 2025, Volume: 6 Issue: 1, 15 - 31, 26.03.2025
https://doi.org/10.56430/japro.1593604

Abstract

Vacuolar Iron Transporter (VIT) genes have been characterized and indicated to play critical roles in iron homeostasis in various plants. Heavy metals pose a significant challenge to bean cultivation, necessitating the development of heavy metal-resistant cultivars as a key strategy to mitigate their impacts. Vacuolar detoxification is a crucial strategy for plants to survive and adapt to the adverse environment caused by heavy metal stress. The current study used various bioinformatic tools to characterize the VIT gene in the bean, a significant member of the legume family and an important agricultural product, for the first time. The study identified and characterized 11 VIT genes (PhvulVIT-1–PhvulVIT-11) in the bean's genome. These genes displayed molecular weights (MW) ranging from 16.48 to 28.92 kDa and comprised 155–269 amino acid residues. The distribution of the 11 PhvulVIT genes on the four chromosomes was not homogeneous, and eight genes were observed to be located on chromosome 2. Gene duplication events suggested purifying selection as the primary evolutionary force, ensuring functional stability of duplicated genes. Phylogenetic analysis classified PhvulVIT genes into three clades, reflecting evolutionary relationships with orthologs in Arabidopsis thaliana and Glycine max. Cis-regulatory element analysis of promoter regions revealed key stress-responsive motifs like MYB, MYC, and ABRE, which are essential for plant responses to environmental stresses and phytohormone signaling. Additionally, the expression patterns of PhvulVIT under heavy metal conditions were examined using RNAseq. This study enhances our understanding of the functional roles of VIT genes in nutrient homeostasis and environmental stress adaptation, offering valuable insights for crop improvement strategies, including biofortification and the development of stress-tolerant cultivars.

References

  • Aizaz, M., Khan, I., Lubna, Asaf, S., Bilal, S., Jan, R., Khan, A. L., Kim, K. M., & AL-Harrasi, A. (2023). Enhanced physiological and biochemical performance of mung bean and maize under saline and heavy metal stress through application of endophytic fungal strain SL3 and exogenous IAA. Cells, 12(15), 1960. https://doi.org/10.3390/cells12151960
  • Aygören, A. S., Güneş, E., Muslu, S., Kasapoğlu, A. G., Yiğider, E., Aydın, M., Büyük I., & İlhan, E. (2023). Genome-wide analysis and characterization of SABATH gene family in Phaseolus vulgaris genotypes subject to melatonin under drought and salinity stresses. Plant Molecular Biology Reporter, 41, 242-259. https://doi.org/10.1007/s11105-022-01363-5
  • Bailey, T. L., Boden, M., Buske, F. A., Frith, M., Grant, C. E., Clementi, L., Ren, J., Li, W. W., & Noble, W. S. (2009). MEME SUITE: Tools for motif discovery and searching. Nucleic Acids Research, 37(suppl_2), W202-W208. https://doi.org/10.1093/nar/gkp335
  • Bano, Y., Khan, R., Sharma, J., & Shrivastav, A. (2019). Changes in activities of nitrogen metabolism enzymes in arsenic stressed Phaseolus vulgaris. International Journal of Scientific Research and Review, 8(4), 336-341.
  • Buttanri, A., Kasapoğlu, A. G., Öner, B. M., Aygören, A. S., Muslu, S., İlhan, E., Yildirim, E., & Aydin, M. (2024). Predicting the role of β-GAL genes in bean under abiotic stress and genome-wide characterization of β-GAL gene family members. Protoplasma, 262, 365-383. https://doi.org/10.1007/s00709-024-01998-z
  • Cao, J. (2019). Molecular evolution of the Vacuolar Iron Transporter (VIT) family genes in 14 plant species. Genes, 10(2), 144. https://doi.org/10.3390/genes10020144
  • Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., Liu, Y., Feng, J., Chen, H., & He, Y., (2023). TBtools-II: A “one for all, all for one” bioinformatics platform for biological big-data mining. Molecular Plant, 16(11), 1733-1742. https://doi.org/10.1016/j.molp.2023.09.010
  • Chen, X., Zhao, Y., Zhong, Y., Chen, J., & Qi, X. (2023). Deciphering the functional roles of transporter proteins in subcellular metal transportation of plants. Planta, 258, 17. https://doi.org/10.1007/s00425-023-04170-8
  • Connorton, J. M., Jones, E. R., Rodríguez-Ramiro, I., Fairweather-Tait, S., Uauy, C., & Balk, J. (2017). Wheat vacuolar iron transporter TaVIT2 transports Fe and Mn and is effective for biofortification. Plant Physiology, 174(4), 2434-2444. https://doi.org/10.1104/pp.17.00672
  • Cui, Y., Zhao, Q., Hu, S., & Jiang, L. (2020). Vacuole biogenesis in plants: How many vacuoles, how many models? Trends in Plant Science, 25(6), 538-548. https://doi.org/10.1016/j.tplants.2020.01.008
  • Daszkiewicz, T. (2022). Food production in the context of global developmental challenges. Agriculture, 12(6), 832. https://doi.org/10.3390/agriculture12060832
  • Dey, S., Malviya, R., Pandey, A., Banavath, H. N., Muthamilarasan, M., & Gayen, D. (2023). Identification and expression analysis of the FtsH protein family in chickpea in response to drought stress. ResearchSquare, 1-34. https://doi.org/10.21203/rs.3.rs-3505392/v1
  • Fang, P., Hu, Y., Xia, W., Wu, X., Sun, T., Pandey, A. K., Ning, K., Zhu, C., & Xu, P. (2022). Transcriptome dynamics of common bean roots exposed to various heavy metals reveal valuable target genes and promoters for genetic engineering. Journal of Agricultural and Food Chemistry, 71(1), 223-233. https://doi.org/10.1021/acs.jafc.2c06301
  • Gollhofer, J., Schläwicke, C., Jungnick, N., Schmidt, W., & Buckhout, T. J. (2011). Members of a small family of nodulin-like genes are regulated under iron deficiency in roots of Arabidopsis thaliana. Plant Physiology and Biochemistry, 49(5), 557-564. https://doi.org/10.1016/j.plaphy.2011.02.011
  • Gu, D., Andreev, K., & Dupre, M. E. (2021). Major trends in population growth around the world. China CDC Weekly, 3(28), 604-613. https://doi.org/10.46234/ccdcw2021.160
  • Hall, C., Dawson, T. P., Macdiarmid, J. I., Matthews, R. B., & Smith, P. (2017). The impact of population growth and climate change on food security in Africa: Looking ahead to 2050. International Journal of Agricultural Sustainability, 15(2), 124-135. https://doi.org/10.1080/14735903.2017.1293929
  • Hammami, H., Parsa, M., Bayat, H., & Aminifard, M. H. (2022). The behavior of heavy metals in relation to their influence on the common bean (Phaseolus vulgaris) symbiosis. Environmental and Experimental Botany, 193, 104670. https://doi.org/10.1016/j.envexpbot.2021.104670
  • Horton, P., Park, K. J., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C. J., & Nakai, K. (2007). WoLF PSORT: Protein localization predictor. Nucleic Acids Research, 35(suppl_2), W585-W587. https://doi.org/10.1093/nar/gkm259
  • Hu, B., Jin, J., Guo, A. Y., Zhang, H., Luo, J., & Gao, G. (2015). GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics, 31(8), 1296-1297. https://doi.org/10.1093/bioinformatics/btu817
  • Inal, B., Muslu, S., Yigider, E., Kasapoglu, A., Ilhan, E., Ciltas, A., Yildirim, E., & Aydin, M., (2024). In silico analysis of Phaseolus vulgaris L. metalloprotease FtsH gene: Characterization and expression in drought and salt stress. Genetic Resources and Crop Evolution, 72, 1065-1088. https://doi.org/10.1007/s10722-024-02031-1
  • Isıyel, M., İlhan, E., Kasapoğlu, A. G., Muslu, S., Öner, B. M., Aygören, A. S., Yigider, E., Aydin, M., & Yıldırım, E. (2024). Identification and characterization of Phaseolus vulgaris CHS genes in response to salt and drought stress. Genetic Resources and Crop Evolution, 72, 271-293. https://doi.org/10.1007/s10722-024-01980-x
  • Kaur, R., Das, S., Bansal, S., Singh, G., Sardar, S., Dhar, H., & Ram, H. (2021). Heavy metal stress in rice: Uptake, transport, signaling, and tolerance mechanisms. Physiologia Plantarum, 173(1), 430-448. https://doi.org/10.1111/ppl.13491
  • Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature Protocols, 10, 845-858. https://doi.org/10.1038/nprot.2015.053
  • Khalil, R., Haroun, S., Bassyoini, F., Nagah, A., & Yusuf, M. (2021). Salicylic acid in combination with kinetin or calcium ameliorates heavy metal stress in Phaseolus vulgaris plant. Journal of Agriculture and Food Research, 5, 100182. https://doi.org/10.1016/j.jafr.2021.100182
  • Khoudi, H. (2021). Significance of vacuolar proton pumps and metal/H+ antiporters in plant heavy metal tolerance. Physiologia Plantarum, 173(1), 384-393. https://doi.org/10.1111/ppl.13447
  • Kim, S. A., Punshon, T., Lanzirotti, A., Li, L., Alonso, J. M., Ecker, J. R., Kaplan, J., & Guerinot, M. L. (2006). Localization of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science, 314(5803), 1295-1298. https://doi.org/10.1126/science.1132563
  • Kosakivska, I. V., Babenko, L. M., Romanenko, K. O., Korotka, I. Y., & Potters, G. (2021). Molecular mechanisms of plant adaptive responses to heavy metals stress. Cell Biology International, 45(2), 258-272. https://doi.org/10.1002/cbin.11503
  • Krishna, T. P. A., Ceasar, S. A., & Maharajan, T. (2023). Biofortification of crops to fight anemia: Role of vacuolar iron transporters. Journal of Agricultural and Food Chemistry, 71(8), 3583-3598. https://doi.org/10.1021/acs.jafc.2c07727
  • Kumar, N., Sharma, V., Kaur, G., Lata, C., Dasila, H., Perveen, K., Khan, F., Gupta, V. K., & Khanam, M. N. (2023). Brassinosteroids as promoters of seedling growth and antioxidant activity under heavy metal zinc stress in mung bean (Vigna radiata L.). Frontiers in Microbiology, 14, 1259103. https://doi.org/10.3389/fmicb.2023.1259103
  • Lapinskas, P. J., Lin, S. J., & Culotta, V. C. (1996). The role of the Saccharomyces cerevisiae CCC1 gene in the homeostasis of manganese ions. Molecular Microbiology, 21(3), 519-528. https://doi.org/10.1111/j.1365-2958.1996.tb02561.x
  • Letunic, I., & Bork, P. (2024). Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Research, 52(W1), W78-W82. https://doi.org/10.1093/nar/gkae268
  • Li, J., Zhang, M., Sun, J., Mao, X., Wang, J., Liu, H., Zheng, H., Li, X., & Zou, D. (2020). Heavy metal stress-associated proteins in rice and Arabidopsis: Genome-wide identification, phylogenetics, duplication, and expression profiles analysis. Frontiers in Genetics, 11, 477. https://doi.org/10.3389/fgene.2020.00477
  • Li, T., Zhang, X. M., Gao, J. L., Wang, L., Si, L., Shu, Y. J., Guo, C. H., Lai, Y. C., Bi, Y. D., & Guo, D. L. (2023). Soybean GmVIT1 gene confers plant tolerance to excess Fe/Mn stress. Agronomy, 13(2), 384. https://doi.org/10.3390/agronomy13020384
  • Lisciani, S., Marconi, S., Le Donne, C., Camilli, E., Aguzzi, A., Gabrielli, P., Gambelli, L., Kunert, K., Marais, D., Vorster, B. J., Alvarado-Ramos, K., Reboul, E., Cominelli, E., Preite, C., Sparvoli, S., Losa, A., Sala, T., Botha, A. M., & Ferrari, M. (2024). Legumes and common beans in sustainable diets: Nutritional quality, environmental benefits, spread and use in food preparations. Frontiers in Nutrition, 11, 1385232. https://doi.org/10.3389/fnut.2024.1385232
  • Mansour, M. M. F. (2023). Role of vacuolar membrane transport systems in plant salinity tolerance. Journal of Plant Growth Regulation, 42, 1364-1401. https://doi.org/10.1007/s00344-022-10655-9
  • Noor, I., Sohail, H., Sun, J., Nawaz, M. A., Li, G., Hasanuzzaman, M., & Liu, J. (2022). Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. Chemosphere, 303(Part 3), 135196. https://doi.org/10.1016/j.chemosphere.2022.135196
  • Palczewski, K., Kumasaka, T., Hori, T., Behnke, C. A., Motoshima, H., Fox, B. A., Trong, I. L., Teller, D. C., Okada, T., Stenkamp, R. E., Yamamoto, M., & Miyano, M. (2000). Crystal structure of rhodopsin: A G protein-coupled receptor. Science, 289(5480), 739-745. https://doi.org/10.1126/science.289.5480.739
  • Peng, X., Wang, J., Peng, W., Wu, F. X., & Pan, Y. (2017). Protein–protein interactions: Detection, reliability assessment and applications. Briefings in Bioinformatics, 18(5), 798-819. https://doi.org/10.1093/bib/bbw066
  • Qi, M., Wang, S., Li, N., Li, L., Zhang, Y., Xue, J., Wang, J., Wu, R., & Lian, N. (2023). Genome-wide analysis of TPX2 gene family in Populus trichocarpa and its specific response genes under various abiotic stresses. Frontier Plant Science, 14, 1159181. https://doi.org/10.3389/fpls.2023.1159181
  • Ram, H., Sardar, S., & Gandass, N. (2021). Vacuolar Iron Transporter (Like) proteins: Regulators of cellular iron accumulation in plants. Physiologia Plantarum, 171(4), 823-832. https://doi.org/10.1111/ppl.13363
  • Rasool, A., Azeem, F., Ur-Rahman, M., Rizwan, M., Hussnain Siddique, M., Bay, D. H., Binothman, N., Al Kashgry, N. A.T., & Qari, S. H. (2023). Omics-assisted characterization of two-component system genes from Gossypium raimondii in response to salinity and molecular interaction with abscisic acid. Frontiers in Plant Science, 14, 1138048. https://doi.org/10.3389/fpls.2023.1138048
  • Rombauts, S., Déhais, P., Van Montagu, M., & Rouzé, P. (1999). PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Research, 27(1), 295-296. https://doi.org/10.1093/nar/27.1.295
  • Salam, A., Afridi, M. S., Khan, A. R., Azhar, W., Shuaiqi, Y., Ulhassan, Z., Qi J., Xuo N., Chunyan Y., Chen N., & Gan, Y. (2023). Cobalt induced toxicity and tolerance in plants: Insights from omics approaches. In M. A. Hossain, AKM. Z. Hossain, S. Bourgerie, M. Fujita, O. P. Dhankher & P. Haris (Eds.), Heavy metal toxicity and tolerance in plants: A biological, omics, and genetic engineering approach (pp. 207-229). John Wiley & Sons Ltd. https://doi.org/10.1002/9781119906506.ch10
  • Shahid, M., Shamshad, S., Farooq, A. B. U., Rafiq, M., Khalid, S., Dumat, C., Zhang, Y., Hussain, I., & Niazi, N. K. (2019). Comparative effect of organic amendments on physio-biochemical traits of young and old bean leaves grown under cadmium stress: a multivariate analysis. Environmental Science and Pollution Research, 26, 11579-11590. https://doi.org/10.1007/s11356-018-2689-4
  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell & Environment, 39(5), 1112-1126. https://doi.org/10.1111/pce.12706
  • Sharma, S., Kaur, G., Kumar, A., Meena, V., Ram, H., Kaur, J., & Pandey, A. K. (2020). Gene expression pattern of vacuolar-iron transporter-like (VTL) genes in hexaploid wheat during metal stress. Plants, 9(2), 229. https://doi.org/10.1101/863084
  • Shekhawat, P. K., Sardar, S., Yadav, B., Salvi, P., Soni, P., & Ram, H. (2023). Meta-analysis of transcriptomics studies identifies novel attributes and set of genes involved in iron homeostasis in rice. Functional & Integrative Genomics, 23, 336. https://doi.org/10.1007/s10142-023-01265-z
  • Silva-Gigante, M., Hinojosa-Reyes, L., Rosas-Castor, J. M., Quero-Jiménez, P. C., Pino-Sandoval, D. A., & Guzmán-Mar, J. L. (2023). Heavy metals and metalloids accumulation in common beans (Phaseolus vulgaris L.): A review. Chemosphere, 335, 139010. https://doi.org/10.1016/j.chemosphere.2023.139010
  • Singh, P., & Mukhopadhyay, K. (2021). Comprehensive molecular dissection of TIFY Transcription factors reveal their dynamic responses to biotic and abiotic stress in wheat (Triticum aestivum L.). Scientific Reports, 11, 9739. https://doi.org/10.1038/s41598-021-87722-w
  • Szklarczyk, D., Kirsch, R., Koutrouli, M., Nastou, K., Mehryary, F., Hachilif, R., Gable, A. L., Fang, T., Doncheva, N. T., & Pyysalo, S., (2023). The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research, 51(D1), 638-646. https://doi.org/10.1093/nar/gkac1000
  • Tamura, K., Stecher, G., & Kumar, S. (2021). MEGA11: Molecular evolutionary genetics analysis version 11. Molecular Biology and Evolution, 38(7), 3022-3027. https://doi.org/10.1093/molbev/msab120
  • Voorrips, R. (2002). MapChart: Software for the graphical presentation of linkage maps and QTLs. Journal of Heredity, 93(1), 77-78. https://doi.org/10.1093/jhered/93.1.77
  • Wainaina, I., Wafula, E., Sila, D., Kyomugasho, C., Grauwet, T., Van Loey, A., & Hendrickx, M. (2021). Thermal treatment of common beans (Phaseolus vulgaris L.): Factors determining cooking time and its consequences for sensory and nutritional quality. Comprehensive Reviews in Food Science and Food Safety, 20(4), 3690-3718. https://doi.org/10.1111/1541-4337.12770
  • White, S. H., & Wimley, W. C. (1999). Membrane protein folding and stability: physical principles. Annual Review of Biophysics and Biomolecular Structure, 28, 319-365. https://doi.org/10.1146/annurev.biophys.28.1.319
  • Zhang, Y., Xu, Y. H., Yi, H. Y., & Gong, J. M. (2012). Vacuolar membrane transporters OsVIT1 and OsVIT2 modulate iron translocation between flag leaves and seeds in rice. The Plant Journal, 72(3), 400-410. https://doi.org/10.1111/j.1365-313x.2012.05088.x
  • Zhu, W., Zuo, R., Zhou, R., Huang, J., Tang, M., Cheng, X., Liu, Y., Tong, C., Xiang, Y., Dong, C., & Liu, S. (2016). Vacuolar iron transporter BnMEB2 is involved in enhancing iron tolerance of Brassica napus. Frontiers in Plant Science, 7, 1353. https://doi.org/10.3389/fpls.2016.01353
There are 56 citations in total.

Details

Primary Language English
Subjects Plant Biotechnology in Agriculture
Journal Section Research Articles
Authors

Esma Yigider 0000-0002-6896-0193

Publication Date March 26, 2025
Submission Date November 29, 2024
Acceptance Date February 3, 2025
Published in Issue Year 2025 Volume: 6 Issue: 1

Cite

APA Yigider, E. (2025). Genome-Wide Analysis of Vacuolar Iron Transporter (VIT) Gene Family in Phaseolus vulgaris L.: Functional Roles in Heavy Metal Stress. Journal of Agricultural Production, 6(1), 15-31. https://doi.org/10.56430/japro.1593604