Research Article
BibTex RIS Cite

R-Based Graphical Representation of Trends in Food Production and Agriculture Value Chains in India

Year 2025, Volume: 6 Issue: 4, 253 - 270, 30.12.2025
https://doi.org/10.56430/japro.1811604

Abstract

This study analyses the dynamics in agricultural economics in India during 2000-2023. Agricultural economics in India is a critical sector, supporting population and contributing around to the GDP through food security, the economic growth, and rising exports. Nevertheless, agriculture of India strongly depends on climate and soil setting, as these factors affect the cultivation of crops and growth cycle. Several datasets on agriculture economics of India were evaluated to reveal trends in food production and show effects climate and soil types on agriculture. The materials include three types of data: agricultural production from Food and Agriculture Organization (FAO), climate data from Climate Change Knowledge Portal, soil data from FAO/UNESCO World Digital Soil, and administrative data on India from governmental map repository. The methodology is based on the statistical analysis and GIS mapping. Practical approach includes statistical analysis and plotting of parameters to analyse dynamics in regional context. Statistical analysis was performed by R libraries, while cartographic visualization was based on the QGIS software. The core R packages include ‘ggplot2’, ‘tidyverse’, ‘dplyr’, ‘RColorBrewer’, and ‘viridisLite’. The results demonstrated dynamics in food production, export and consumption in India in recent two decades. The dominant role in export was identified as rice (basmati), spices, tea levels, fruits (mangoes) and cane sugar. The links between agriculture production, climate and soil setting shown that rising temperatures and extremes in precipitation negatively affect agricultural activities and food production in India by decreasing crop yields. This study demonstrated the use of R as effective method of large dataset processing for analysis of trends.

Ethical Statement

This study does not require ethical committee approval.

References

  • Aye, G. C., Kotur, L. N., & Ater, P. I. (2025). Threshold effects of economic-policy uncertainty on food security in Nigeria. Journal of Risk and Financial Management, 18(2), 68. https://doi.org/10.3390/jrfm18020068
  • Bağırtan, S., & Demir, N. (2021). Investigation of seasonal female and child labor use in cotton agriculture: The case of Mardin province. Journal of Agricultural Production, 2(1), 16-25. https://doi.org/10.29329/agripro.2021.344.3
  • Bali, N., & Singla, A. (2021). Deep learning based wheat crop yield prediction model in Punjab region of north India. Applied Artificial Intelligence, 35(15), 1304-1328. https://doi.org/10.1080/08839514.2021.1976091
  • Bansal, R. (2011). Growth of the electronic commerce in China and India: A comparative study. Journal of Asia-Pacific Business, 12(4), 356-374. https://doi.org/10.1080/10599231.2011.611457
  • Bayrak, T., & Olu, M. (2025). Applications of artificial intelligence in smart agriculture: Plant health, drone technology, and digital communication. Journal of Agricultural Production, 6(3), 157-166. https://doi.org/10.56430/japro.1767174
  • Besky, S. (2024). Regeneration and its discontents: Biodynamic agriculture and Darjeeling tea plantations. Social & Cultural Geography, 26(9), 977-996. https://doi.org/10.1080/14649365.2024.2441767
  • Cao, Y., & Mohiuddin, M. (2019). Sustainable emerging country agro-food supply chains: Fresh vegetable price formation mechanisms in rural China. Sustainability, 11(10), 2814. https://doi.org/10.3390/su11102814
  • Ciruela-Lorenzo, A. M., Del-Aguila-Obra, A. R., Padilla-Meléndez, A., & Plaza-Angulo, J. J. (2020). Digitalization of Agri-cooperatives in the smart agriculture context. Proposal of a digital diagnosis tool. Sustainability, 12(4), 1325. https://doi.org/10.3390/su12041325
  • Datta, R., & Reddy, M. J. (2023). Trivariate frequency analysis of droughts using copulas under future climate change over Vidarbha region in India. Stochastic Environmental Research and Risk Assessment, 37, 3855-3877. https://doi.org/10.1007/s00477-023-02484-3
  • Demirci, S. (2025). Balancing trade and sustainability: Türkiye’s squid and cuttlefish market dynamics. Journal of Agricultural Production, 6(1), 53-60. https://doi.org/10.56430/japro.1617852
  • Diaz-Delgado, D., Rodriguez, C., Bernuy-Alva, A., Navarro, C., & Inga-Alva, A. (2025). Optimization of vegetable production in hydroculture environments using artificial intelligence: A literature review. Sustainability, 17(7), 3103. https://doi.org/10.3390/su17073103
  • Dutta Roy, A., Ranglong, A., Timilsina, S., Das, S. K., Watt, M. S., de-Miguel, S., Deb, S., Sahoo, U. K., & Mohan, M. (2025). Spaceborne LiDAR reveals anthropogenic and biophysical drivers shaping the spatial distribution of forest aboveground biomass in eastern Himalayas. Land, 14(8), 1540. https://doi.org/10.3390/land14081540
  • El Sakka, M., Mothe, J., & Ivanovici, M. (2024). Images and CNN applications in smart agriculture. European Journal of Remote Sensing, 57(1), 2352386. https://doi.org/10.1080/22797254.2024.2352386
  • Fiagbor, R., & Brown, O. (2025). Assessing the 10-item Food Security Survey Model (FSSM): Insights from college students in three US universities. Nutrients, 17(6), 1050. https://doi.org/10.3390/nu17061050
  • Forero, Á., Cruz, J. C., & Muñoz, C. (2025). Adoption of agricultural innovations within the ‘farm to fork’ strategy: A realistic review of barriers, paradoxes, and avenues for change. Sustainability, 17(21), 9493. https://doi.org/10.3390/su17219493
  • Gopi, A., Sharma, P., Sudhakar, K., Ngui, W. K., Kirpichnikova, I., & Cuce, E. (2023). Weather impact on solar farm performance: A comparative analysis of machine learning techniques. Sustainability, 15(1), 439. https://doi.org/10.3390/su15010439
  • Huynh, T. N., Burgers, T., & Nguyen, K.-D. (2024). Efficient real-time droplet tracking in crop-spraying systems. Agriculture, 14(10), 1735. https://doi.org/10.3390/agriculture14101735
  • Jayashree, S., & Sumalatha, V. (2024). Performance juxtapose of plant leaf disease detection using adaptive deep convolutional recurrent neural network (ADCRNN) in MATLAB versus python. 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS). Hassan. https://doi.org/10.1109/IACIS61494.2024.10721899
  • Jia, W., Zhang, Z., Dong, X., Ou, M., Gao, R., Wang, Y., Yang, Q., & Wang, X. (2025). Quantification and optimization of straight-line attitude control for orchard weeding robots using adaptive pure pursuit. Agriculture, 15(19), 2085. https://doi.org/10.3390/agriculture15192085
  • Joshi, R. M. (2012). Emerging challenges under WTO to international dairy trade with special reference to India. Transnational Corporations Review, 4(3), 59-76. https://doi.org/10.1080/19186444.2012.11658335
  • Jusoh, A., Abbas, A. F., Abu Yazid, M. H., Latip, H. A., & Che Hussin, A. R. (2025). Cultivating digital pathways: A systematic review of e-commerce adoption in Asian agriculture. Journal of Agricultural & Food Information, 1-37. https://doi.org/10.1080/10496505.2025.2553282
  • Kantamaneni, K., Sudha Rani, N. N. V., Rice, L., Sur, K., Thayaparan, M., Kulatunga, U., Rege, R., Yenneti, K., & Campos, L. C. (2019). A systematic review of coastal vulnerability assessment studies along andhra pradesh, India: A critical evaluation of data gathering, risk levels and mitigation strategies. Water, 11(2), 393. https://doi.org/10.3390/w11020393
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28-42. https://doi.org/10.2478/s13533-012-0120-0
  • Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak rural region. Environmental Engineering and Management Journal, 16(2), 449-458. https://doi.org/10.30638/eemj.2017.045
  • Komolafe, O. J., Nwankwo, T. N., & Chilaka, P. C. (2022). Willingness of agriculture students to be involved in agripreneur career in southeast Nigeria. Journal of Agricultural Production, 3(1), 9-16. https://doi.org/10.29329/agripro.2022.413.2
  • Kondoyanni, M., Loukatos, D., Templalexis, C., Lentzou, D., Xanthopoulos, G., & Arvanitis, K. G. (2025). Computer vision in monitoring fruit browning: Neural networks vs. stochastic modelling. Sensors, 25(8), 2482. https://doi.org/10.3390/s25082482
  • Kopeć, P. (2024). Climate change—the rise of climate-resilient crops. Plants, 13(4), 490. https://doi.org/10.3390/plants13040490
  • Kumar, K. B., Sharma, S., Das Bhowmik, R., & Mujumdar, P. P. (2025). Spatial synchronization of river floods growing beyond the basin boundaries in Peninsular India. Scientific Reports, 15, 18160. https://doi.org/10.1038/s41598-025-02922-y
  • Kumar, V., Pradhan, P. K., Sinha, T., Rao, S. V. B., & Chang, H.-P. (2020). Interaction of a low-pressure system, an offshore trough, and mid-tropospheric dry air intrusion: The Kerala flood of august 2018. Atmosphere, 11(7), 740. https://doi.org/10.3390/atmos11070740
  • Kuntla, S. K., Saharia, M., & Jain, S. K. (2025). The changing magnitude and timing of riverine floods in India. npj Natural Hazards, 2, 44. https://doi.org/10.1038/s44304-025-00099-y
  • Lausch, A., Bumberger, J., Jung, A., Pause, M., Selsam, P., Zhou, T., & Herzog, F. (2025). Monitoring agricultural land use intensity with remote sensing and traits. Agriculture, 15(21), 2233. https://doi.org/10.3390/agriculture15212233
  • Lemenkova, P. (2019a). Testing linear regressions by StatsModel library of python for oceanological data interpretation. Aquatic Sciences and Engineering, 34(2), 51-60. https://doi.org/10.26650/ASE2019547010
  • Lemenkova, P. (2019b). Statistical analysis of the mariana trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57-84. https://doi.org/10.3846/gac.2019.3785
  • Lemenkova, P. (2019c). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2(2), 73-91. https://doi.org/10.3153/AR19009
  • Lemenkova, P. (2022a). Mapping climate parameters over the territory of Botswana using GMT and gridded surface data from TerraClimate. ISPRS International Journal of Geo-Information, 11(9), 473. https://doi.org/10.3390/ijgi11090473
  • Lemenkova, P. (2022b). Console-based mapping of Mongolia using GMT cartographic scripting toolset for processing TerraClimate data. Geosciences, 12(3), 140. https://doi.org/10.3390/geosciences12030140
  • Lemenkova, P. (2023). Using open-source software GRASS GIS for analysis of the environmental patterns in Lake Chad, Central Africa. Die Bodenkultur: Journal of Land Management, Food and Environment, 74(1), 49-64. https://doi.org/10.2478/boku-2023-0005
  • Lemenkova, P. (2024a). Exploitation d'images satellitaires Landsat de la région du Cap (Afrique du Sud) pour le calcul et la cartographie d'indices de végétation à l'aide du logiciel GRASS GIS. Physio-Géo, 20, 113-129. https://doi.org/10.4000/11pyj (In French)
  • Lemenkova, P. (2024b). Approche cartographique par le SIG GRASS pour l'analyse de la structure du paysage au Libéria, Afrique de l'Ouest. Dynamiques environnementales, 53, 1-36. https://doi.org/10.4000/12n0l
  • Lemenkova, P. (2024c). Deep learning methods of satellite image processing for monitoring of flood dynamics in the Ganges Delta, Bangladesh. Water, 16(8), 1141. https://doi.org/10.3390/w16081141
  • Lemenkova, P. (2024d). Artificial intelligence for computational remote sensing: Quantifying patterns of land cover types around Cheetham wetlands, Port Phillip Bay, Australia. Journal of Marine Science and Engineering, 12(8), 1279. https://doi.org/10.3390/jmse12081279
  • Lemenkova, P. (2024e). Artificial neural networks for mapping coastal lagoon of Chilika Lake, India, using earth observation data. Journal of Marine Science and Engineering, 12(5), 709. https://doi.org/10.3390/jmse12050709
  • Lemenkova, P. (2025a). Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python. Examples and Counterexamples, 7, 100180. https://doi.org/10.1016/j.exco.2025.100180
  • Lemenkova, P. (2025b). Machine learning algorithms of remote sensing data processing for mapping changes in land cover types over central Apennines, Italy. Journal of Imaging, 11(5), 153. https://doi.org/10.3390/jimaging11050153
  • Lemenkova, P. (2025c). Reclassification scheme for image analysis in GRASS GIS using gradient boosting algorithm: A case of Djibouti, East Africa. Journal of Imaging, 11(8), 249. https://doi.org/10.3390/jimaging11080249
  • Lemenkova, P. (2025d). Suivi de la dynamique du paysage à l’aide de l’analyse d’images satellite par apprentissage automatique du SIG GRASS dans le Parc National du W, nord du Bénin. Bulletin de L’association de Géographes Français, 102(1),133-154. https://doi.org/10.4000/15e84 (In French)
  • Li, X., Li, Z., Fu, W., & Li, F. (2024). The influence of shallow groundwater on the physicochemical properties of field soil, crop yield, and groundwater. Agriculture, 14(3), 341. https://doi.org/10.3390/agriculture14030341
  • Li, Y., & Cao, W. (2025). Green and efficient technology investment strategies for a contract farming supply chain under the CVaR criterion. Sustainability, 17(17), 7600. https://doi.org/10.3390/su17177600
  • Ligarda-Samanez, C. A., Huamán-Carrión, M. L., Calsina-Ponce, W. C., Cruz, G. D. l., Calderón Huamaní, D. F., Cabel-Moscoso, D. J., Garcia-Espinoza, A. J., Sucari-León, R., Aroquipa-Durán, Y., Muñoz-Saenz, J. C., Muñoz-Melgarejo, M., & Jilaja-Carita, E. E. (2025). Technological innovations and circular economy in the valorization of agri-food by-products: Advances, challenges and perspectives. Foods, 14(11), 1950. https://doi.org/10.3390/foods14111950
  • Lindh, P., & Lemenkova, P. (2022a). Permeability, compressive strength and Proctor parameters of silts stabilised by Portland cement and ground granulated blast furnace slag (GGBFS). Archive of Mechanical Engineering, 69(4), 667-692. https://doi.org/10.24425/ame.2022.141522
  • Lindh, P., & Lemenkova, P. (2022b). Dynamics of strength gain in sandy soil stabilised with mixed binders evaluated by elastic P-waves during compressive loading. Materials, 15(21), 7798. https://doi.org/10.3390/ma15217798
  • Lingwal, S., Bhatia, K. K., & Singh, M. (2022). A novel machine learning approach for rice yield estimation. Journal of Experimental & Theoretical Artificial Intelligence, 36(3), 337-356. https://doi.org/10.1080/0952813X.2022.2062458
  • Makita, R. (2011). A confluence of Fair Trade and organic agriculture in southern India. Development in Practice, 21(2), 205-217. https://doi.org/10.1080/09614524.2011.543277
  • Malik, A., Rai, P., Heddam, S., Kisi, O., Sharafati, A., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2020). Pan evaporation estimation in Uttarakhand and Uttar Pradesh states, India: Validity of an integrative data intelligence model. Atmosphere, 11(6), 553. https://doi.org/10.3390/atmos11060553
  • Marcu, I., Suciu, G., Bălăceanu, C., Drăgulinescu, A. -M., & Dobrea, M. A. (2019). IoT solution for plant monitoring in smart agriculture. IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME). Cluj-Napoca. https://doi.org/10.1109/SIITME47687.2019.8990798
  • McBratney, A., & Park, M. (2025). Agriculture over the horizon: A synthesis for the Mid-21st century. Sustainability, 17(21), 9424. https://doi.org/10.3390/su17219424
  • Mingrone, M., Seracini, M., & Cevoli, C. (2025). Spectral reconstruction applied in precision agriculture: On-field solutions. Applied Sciences, 15(20), 10985. https://doi.org/10.3390/app152010985
  • Mmbando, G. S. (2025). Harnessing artificial intelligence and remote sensing in climate-smart agriculture: The current strategies needed for enhancing global food security. Cogent Food & Agriculture, 11(1). https://doi.org/10.1080/23311932.2025.2454354
  • Patro, B. S., & Bartakke, P. P. (2025). Collaborative station learning for rainfall forecasting. Atmosphere, 16(10), 1197. https://doi.org/10.3390/atmos16101197
  • Pawar, R. S., Nema, S., Jawale, D. R., Joshi, K., Debnath, S., & Singh, S. P. (2022). The role of innovative data mining approaches for analyzing and estimating the crop yield in agriculture among emerging nations. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida. https://doi.org/10.1109/ICACITE53722.2022.9823729
  • Prasad, R., Tiwari, R., & Srivastava, A. K. (2023). Internet of things-based fuzzy logic controller for smart soil health monitoring: A case study of semi-arid regions of India. Engineering Proceedings, 58(1), 85. https://doi.org/10.3390/ecsa-10-16208
  • Prathap, C., Sivaranjani, S., & Sathya, M. (2024). ML-based yield prediction in smart agriculture systems using IoT. 5th International Conference on Innovative Trends in Information Technology (ICITIIT). Kottayam. https://doi.org/10.1109/ICITIIT61487.2024.10580172
  • R Core Team. (2024). R: A language and environment for statistical computing. https://www.R-project.org/
  • Randhawa, M., Dhaliwal, S. S., Sharma, V., Toor, A. S., Sharma, S., & Kaur, M. (2021). Ensuring yield sustainability and nutritional security through enriching manures with fertilizers under rice-wheat system in North-western India. Journal of Plant Nutrition, 45(4), 540-557. https://doi.org/10.1080/01904167.2021.1943748
  • Rejeb, A., Rejeb, K., & Keogh, J. G. (2021). Enablers of augmented reality in the food supply Chain: A systematic literature review. Journal of Foodservice Business Research, 24(4), 415-444. https://doi.org/10.1080/15378020.2020.1859973
  • Rivera Chavez, Z. B., Porcaro, A., De Simone, M. C., & Guida, D. (2025). Improving sustainable viticulture in developing countries: A case study. Sustainability, 17(12), 5338. https://doi.org/10.3390/su17125338
  • Sahu, P. K., Kundu, A. L., Samui, R. C., Mani, P. K., & Pramanick, M. (2006). Sustainable maximization of yield in rice-wheat system of cropping through application of phosphocompost: A farmers’ field study. Journal of Journal of New Seeds, 8(2), 73-84. https://doi.org/10.1300/J153v08n02_05
  • Sajib, M. M. H., & Sayem, A. S. M. (2025). Innovations in sensor-based systems and sustainable energy solutions for smart agriculture: A review. Encyclopedia, 5(2), 67. https://doi.org/10.3390/encyclopedia5020067
  • Savaliya, L., Sapovadiya, M., Garg, D., Patel, P., & Shah, M. (2024). Agricultural analysis of machine learning algorithms for crop prediction. 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). Kirtipur. https://doi.org/10.1109/I-SMAC61858.2024.10714828
  • Sharma, S., & Mujumdar, P. P. (2024). Baseflow significantly contributes to river floods in Peninsular India. Scientific Reports, 14, 1251. https://doi.org/10.1038/s41598-024-51850-w
  • Sharma, M., Joshi, S., Gupta, P., & Joshi, T. (2025). Climate, crops, and communities: Modeling the environmental stressors driving food supply chain insecurity. Earth, 6(4), 121. https://doi.org/10.3390/earth6040121
  • Sharma, N., Singh, S., & Kaur, K. (2025). Optimised DNN-based agricultural land mapping using sentinel-2 and landsat-8 with google earth engine. Land, 14(8), 1578. https://doi.org/10.3390/land14081578
  • Sharma, S. S., Mukherjee, J., & Dell’Acqua, F. (2025). Leveraging sentinel-2 data and machine learning for drought detection in India: The process of ground truth construction and a case study. Remote Sensing, 17(18), 3159. https://doi.org/10.3390/rs17183159
  • Sharmiladevi, J. C. (2023). Impact study of agricultural value added on foreign direct investment, economic development, trade openness for India following ARDL approach. Cogent Economics & Finance, 11(2). https://doi.org/10.1080/23322039.2023.2270595
  • Singh, G., & Joshi, N. K. (2025). Insect pests of wheat in north India: A comprehensive review of their bio-ecology and integrated management strategies. Agriculture, 15(19), 2067. https://doi.org/10.3390/agriculture15192067
  • Singh, R., & Singh, S. (2025). A review of Indian-based drones in the agriculture sector: Issues, challenges, and solutions. Sensors, 25(15), 4876. https://doi.org/10.3390/s25154876
  • Sood, A., Bhardwaj, A. K., & Sharma, R. K. (2022). Towards sustainable agriculture: Key determinants of adopting artificial intelligence in agriculture. Journal of Decision Systems, 33(4), 833-877. https://doi.org/10.1080/12460125.2022.2154419
  • Stanescu, S.-G., Ionescu, C. A., Ștefan, M. C., Ionescu, L., Bondac, G.-T., & Cristea, A. M. (2025). Digitalization and blockchain integration in agri-food supply chains: Towards a resilient, circular, and sustainable future. Sustainability, 17(20), 9276. https://doi.org/10.3390/su17209276
  • Sumathi, K., Santharam, K., & Selvalakshmi, N. (2018). Data analytics platform for intelligent agriculture. 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). Palladam. https://doi.org/10.1109/I-SMAC.2018.8653740
  • Sun, C., Yang, J., Liu, Q., Wu, Y., & Miao, J. (2025). The effect of admixing different types of fine particles into the coarse-grained layer on a capillary barrier cover’s water storage capacity: A laboratory study. Sustainability, 17(22), 10301. https://doi.org/10.3390/su172210301
  • Szeląg-Sikora, A., Oleksy-Gębczyk, A., Rydwańska, P., Kowalska-Jarnot, K., Kochanek, A., & Generowicz, A. (2025). Sustainable food consumption and the attitude-behavior gap: Factor analysis and recommendations for marketing communication. Sustainability, 17(21), 9476. https://doi.org/10.3390/su17219476
  • Todmal, R. S. (2024). Intensity, frequency and coverage of hydro-meteorological droughts and agriculture in the semi-arid basins of Maharashtra (India). Climatic Change, 177, 140. https://doi.org/10.1007/s10584-024-03794-3
  • Yadav, A., Chithaluru, P., Singh, A., Joshi, D., Elkamchouchi, D. H., Pérez-Oleaga, C. M., & Anand, D. (2022a). An enhanced feed-forward back propagation Levenberg Marquardt algorithm for suspended sediment yield modeling. Water, 14(22), 3714. https://doi.org/10.3390/w14223714
  • Yadav, A., Noori, M. T., Biswas, A., & Min, B. (2022b). A concise review on the recent developments in the internet of things (IoT)-based smart aquaculture practices. Reviews in Fisheries Science & Aquaculture, 31(1), 103-118. https://doi.org/10.1080/23308249.2022.2090228
  • Yakkala, V. S., Nusimala, K. V., Gayathri, B., Kanamarlapudi, S., Aravinth, S. S., Salau, A. O., & Srithar, S. (2024). Deep learning-based crop health enhancement through early disease prediction. Cogent Food & Agriculture, 11(1), 2423244. https://doi.org/10.1080/23311932.2024.2423244

Year 2025, Volume: 6 Issue: 4, 253 - 270, 30.12.2025
https://doi.org/10.56430/japro.1811604

Abstract

References

  • Aye, G. C., Kotur, L. N., & Ater, P. I. (2025). Threshold effects of economic-policy uncertainty on food security in Nigeria. Journal of Risk and Financial Management, 18(2), 68. https://doi.org/10.3390/jrfm18020068
  • Bağırtan, S., & Demir, N. (2021). Investigation of seasonal female and child labor use in cotton agriculture: The case of Mardin province. Journal of Agricultural Production, 2(1), 16-25. https://doi.org/10.29329/agripro.2021.344.3
  • Bali, N., & Singla, A. (2021). Deep learning based wheat crop yield prediction model in Punjab region of north India. Applied Artificial Intelligence, 35(15), 1304-1328. https://doi.org/10.1080/08839514.2021.1976091
  • Bansal, R. (2011). Growth of the electronic commerce in China and India: A comparative study. Journal of Asia-Pacific Business, 12(4), 356-374. https://doi.org/10.1080/10599231.2011.611457
  • Bayrak, T., & Olu, M. (2025). Applications of artificial intelligence in smart agriculture: Plant health, drone technology, and digital communication. Journal of Agricultural Production, 6(3), 157-166. https://doi.org/10.56430/japro.1767174
  • Besky, S. (2024). Regeneration and its discontents: Biodynamic agriculture and Darjeeling tea plantations. Social & Cultural Geography, 26(9), 977-996. https://doi.org/10.1080/14649365.2024.2441767
  • Cao, Y., & Mohiuddin, M. (2019). Sustainable emerging country agro-food supply chains: Fresh vegetable price formation mechanisms in rural China. Sustainability, 11(10), 2814. https://doi.org/10.3390/su11102814
  • Ciruela-Lorenzo, A. M., Del-Aguila-Obra, A. R., Padilla-Meléndez, A., & Plaza-Angulo, J. J. (2020). Digitalization of Agri-cooperatives in the smart agriculture context. Proposal of a digital diagnosis tool. Sustainability, 12(4), 1325. https://doi.org/10.3390/su12041325
  • Datta, R., & Reddy, M. J. (2023). Trivariate frequency analysis of droughts using copulas under future climate change over Vidarbha region in India. Stochastic Environmental Research and Risk Assessment, 37, 3855-3877. https://doi.org/10.1007/s00477-023-02484-3
  • Demirci, S. (2025). Balancing trade and sustainability: Türkiye’s squid and cuttlefish market dynamics. Journal of Agricultural Production, 6(1), 53-60. https://doi.org/10.56430/japro.1617852
  • Diaz-Delgado, D., Rodriguez, C., Bernuy-Alva, A., Navarro, C., & Inga-Alva, A. (2025). Optimization of vegetable production in hydroculture environments using artificial intelligence: A literature review. Sustainability, 17(7), 3103. https://doi.org/10.3390/su17073103
  • Dutta Roy, A., Ranglong, A., Timilsina, S., Das, S. K., Watt, M. S., de-Miguel, S., Deb, S., Sahoo, U. K., & Mohan, M. (2025). Spaceborne LiDAR reveals anthropogenic and biophysical drivers shaping the spatial distribution of forest aboveground biomass in eastern Himalayas. Land, 14(8), 1540. https://doi.org/10.3390/land14081540
  • El Sakka, M., Mothe, J., & Ivanovici, M. (2024). Images and CNN applications in smart agriculture. European Journal of Remote Sensing, 57(1), 2352386. https://doi.org/10.1080/22797254.2024.2352386
  • Fiagbor, R., & Brown, O. (2025). Assessing the 10-item Food Security Survey Model (FSSM): Insights from college students in three US universities. Nutrients, 17(6), 1050. https://doi.org/10.3390/nu17061050
  • Forero, Á., Cruz, J. C., & Muñoz, C. (2025). Adoption of agricultural innovations within the ‘farm to fork’ strategy: A realistic review of barriers, paradoxes, and avenues for change. Sustainability, 17(21), 9493. https://doi.org/10.3390/su17219493
  • Gopi, A., Sharma, P., Sudhakar, K., Ngui, W. K., Kirpichnikova, I., & Cuce, E. (2023). Weather impact on solar farm performance: A comparative analysis of machine learning techniques. Sustainability, 15(1), 439. https://doi.org/10.3390/su15010439
  • Huynh, T. N., Burgers, T., & Nguyen, K.-D. (2024). Efficient real-time droplet tracking in crop-spraying systems. Agriculture, 14(10), 1735. https://doi.org/10.3390/agriculture14101735
  • Jayashree, S., & Sumalatha, V. (2024). Performance juxtapose of plant leaf disease detection using adaptive deep convolutional recurrent neural network (ADCRNN) in MATLAB versus python. 2024 International Conference on Intelligent Algorithms for Computational Intelligence Systems (IACIS). Hassan. https://doi.org/10.1109/IACIS61494.2024.10721899
  • Jia, W., Zhang, Z., Dong, X., Ou, M., Gao, R., Wang, Y., Yang, Q., & Wang, X. (2025). Quantification and optimization of straight-line attitude control for orchard weeding robots using adaptive pure pursuit. Agriculture, 15(19), 2085. https://doi.org/10.3390/agriculture15192085
  • Joshi, R. M. (2012). Emerging challenges under WTO to international dairy trade with special reference to India. Transnational Corporations Review, 4(3), 59-76. https://doi.org/10.1080/19186444.2012.11658335
  • Jusoh, A., Abbas, A. F., Abu Yazid, M. H., Latip, H. A., & Che Hussin, A. R. (2025). Cultivating digital pathways: A systematic review of e-commerce adoption in Asian agriculture. Journal of Agricultural & Food Information, 1-37. https://doi.org/10.1080/10496505.2025.2553282
  • Kantamaneni, K., Sudha Rani, N. N. V., Rice, L., Sur, K., Thayaparan, M., Kulatunga, U., Rege, R., Yenneti, K., & Campos, L. C. (2019). A systematic review of coastal vulnerability assessment studies along andhra pradesh, India: A critical evaluation of data gathering, risk levels and mitigation strategies. Water, 11(2), 393. https://doi.org/10.3390/w11020393
  • Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: A case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28-42. https://doi.org/10.2478/s13533-012-0120-0
  • Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak rural region. Environmental Engineering and Management Journal, 16(2), 449-458. https://doi.org/10.30638/eemj.2017.045
  • Komolafe, O. J., Nwankwo, T. N., & Chilaka, P. C. (2022). Willingness of agriculture students to be involved in agripreneur career in southeast Nigeria. Journal of Agricultural Production, 3(1), 9-16. https://doi.org/10.29329/agripro.2022.413.2
  • Kondoyanni, M., Loukatos, D., Templalexis, C., Lentzou, D., Xanthopoulos, G., & Arvanitis, K. G. (2025). Computer vision in monitoring fruit browning: Neural networks vs. stochastic modelling. Sensors, 25(8), 2482. https://doi.org/10.3390/s25082482
  • Kopeć, P. (2024). Climate change—the rise of climate-resilient crops. Plants, 13(4), 490. https://doi.org/10.3390/plants13040490
  • Kumar, K. B., Sharma, S., Das Bhowmik, R., & Mujumdar, P. P. (2025). Spatial synchronization of river floods growing beyond the basin boundaries in Peninsular India. Scientific Reports, 15, 18160. https://doi.org/10.1038/s41598-025-02922-y
  • Kumar, V., Pradhan, P. K., Sinha, T., Rao, S. V. B., & Chang, H.-P. (2020). Interaction of a low-pressure system, an offshore trough, and mid-tropospheric dry air intrusion: The Kerala flood of august 2018. Atmosphere, 11(7), 740. https://doi.org/10.3390/atmos11070740
  • Kuntla, S. K., Saharia, M., & Jain, S. K. (2025). The changing magnitude and timing of riverine floods in India. npj Natural Hazards, 2, 44. https://doi.org/10.1038/s44304-025-00099-y
  • Lausch, A., Bumberger, J., Jung, A., Pause, M., Selsam, P., Zhou, T., & Herzog, F. (2025). Monitoring agricultural land use intensity with remote sensing and traits. Agriculture, 15(21), 2233. https://doi.org/10.3390/agriculture15212233
  • Lemenkova, P. (2019a). Testing linear regressions by StatsModel library of python for oceanological data interpretation. Aquatic Sciences and Engineering, 34(2), 51-60. https://doi.org/10.26650/ASE2019547010
  • Lemenkova, P. (2019b). Statistical analysis of the mariana trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57-84. https://doi.org/10.3846/gac.2019.3785
  • Lemenkova, P. (2019c). Processing oceanographic data by Python libraries NumPy, SciPy and Pandas. Aquatic Research, 2(2), 73-91. https://doi.org/10.3153/AR19009
  • Lemenkova, P. (2022a). Mapping climate parameters over the territory of Botswana using GMT and gridded surface data from TerraClimate. ISPRS International Journal of Geo-Information, 11(9), 473. https://doi.org/10.3390/ijgi11090473
  • Lemenkova, P. (2022b). Console-based mapping of Mongolia using GMT cartographic scripting toolset for processing TerraClimate data. Geosciences, 12(3), 140. https://doi.org/10.3390/geosciences12030140
  • Lemenkova, P. (2023). Using open-source software GRASS GIS for analysis of the environmental patterns in Lake Chad, Central Africa. Die Bodenkultur: Journal of Land Management, Food and Environment, 74(1), 49-64. https://doi.org/10.2478/boku-2023-0005
  • Lemenkova, P. (2024a). Exploitation d'images satellitaires Landsat de la région du Cap (Afrique du Sud) pour le calcul et la cartographie d'indices de végétation à l'aide du logiciel GRASS GIS. Physio-Géo, 20, 113-129. https://doi.org/10.4000/11pyj (In French)
  • Lemenkova, P. (2024b). Approche cartographique par le SIG GRASS pour l'analyse de la structure du paysage au Libéria, Afrique de l'Ouest. Dynamiques environnementales, 53, 1-36. https://doi.org/10.4000/12n0l
  • Lemenkova, P. (2024c). Deep learning methods of satellite image processing for monitoring of flood dynamics in the Ganges Delta, Bangladesh. Water, 16(8), 1141. https://doi.org/10.3390/w16081141
  • Lemenkova, P. (2024d). Artificial intelligence for computational remote sensing: Quantifying patterns of land cover types around Cheetham wetlands, Port Phillip Bay, Australia. Journal of Marine Science and Engineering, 12(8), 1279. https://doi.org/10.3390/jmse12081279
  • Lemenkova, P. (2024e). Artificial neural networks for mapping coastal lagoon of Chilika Lake, India, using earth observation data. Journal of Marine Science and Engineering, 12(5), 709. https://doi.org/10.3390/jmse12050709
  • Lemenkova, P. (2025a). Automation of image processing through ML algorithms of GRASS GIS using embedded Scikit-Learn library of Python. Examples and Counterexamples, 7, 100180. https://doi.org/10.1016/j.exco.2025.100180
  • Lemenkova, P. (2025b). Machine learning algorithms of remote sensing data processing for mapping changes in land cover types over central Apennines, Italy. Journal of Imaging, 11(5), 153. https://doi.org/10.3390/jimaging11050153
  • Lemenkova, P. (2025c). Reclassification scheme for image analysis in GRASS GIS using gradient boosting algorithm: A case of Djibouti, East Africa. Journal of Imaging, 11(8), 249. https://doi.org/10.3390/jimaging11080249
  • Lemenkova, P. (2025d). Suivi de la dynamique du paysage à l’aide de l’analyse d’images satellite par apprentissage automatique du SIG GRASS dans le Parc National du W, nord du Bénin. Bulletin de L’association de Géographes Français, 102(1),133-154. https://doi.org/10.4000/15e84 (In French)
  • Li, X., Li, Z., Fu, W., & Li, F. (2024). The influence of shallow groundwater on the physicochemical properties of field soil, crop yield, and groundwater. Agriculture, 14(3), 341. https://doi.org/10.3390/agriculture14030341
  • Li, Y., & Cao, W. (2025). Green and efficient technology investment strategies for a contract farming supply chain under the CVaR criterion. Sustainability, 17(17), 7600. https://doi.org/10.3390/su17177600
  • Ligarda-Samanez, C. A., Huamán-Carrión, M. L., Calsina-Ponce, W. C., Cruz, G. D. l., Calderón Huamaní, D. F., Cabel-Moscoso, D. J., Garcia-Espinoza, A. J., Sucari-León, R., Aroquipa-Durán, Y., Muñoz-Saenz, J. C., Muñoz-Melgarejo, M., & Jilaja-Carita, E. E. (2025). Technological innovations and circular economy in the valorization of agri-food by-products: Advances, challenges and perspectives. Foods, 14(11), 1950. https://doi.org/10.3390/foods14111950
  • Lindh, P., & Lemenkova, P. (2022a). Permeability, compressive strength and Proctor parameters of silts stabilised by Portland cement and ground granulated blast furnace slag (GGBFS). Archive of Mechanical Engineering, 69(4), 667-692. https://doi.org/10.24425/ame.2022.141522
  • Lindh, P., & Lemenkova, P. (2022b). Dynamics of strength gain in sandy soil stabilised with mixed binders evaluated by elastic P-waves during compressive loading. Materials, 15(21), 7798. https://doi.org/10.3390/ma15217798
  • Lingwal, S., Bhatia, K. K., & Singh, M. (2022). A novel machine learning approach for rice yield estimation. Journal of Experimental & Theoretical Artificial Intelligence, 36(3), 337-356. https://doi.org/10.1080/0952813X.2022.2062458
  • Makita, R. (2011). A confluence of Fair Trade and organic agriculture in southern India. Development in Practice, 21(2), 205-217. https://doi.org/10.1080/09614524.2011.543277
  • Malik, A., Rai, P., Heddam, S., Kisi, O., Sharafati, A., Salih, S. Q., Al-Ansari, N., & Yaseen, Z. M. (2020). Pan evaporation estimation in Uttarakhand and Uttar Pradesh states, India: Validity of an integrative data intelligence model. Atmosphere, 11(6), 553. https://doi.org/10.3390/atmos11060553
  • Marcu, I., Suciu, G., Bălăceanu, C., Drăgulinescu, A. -M., & Dobrea, M. A. (2019). IoT solution for plant monitoring in smart agriculture. IEEE 25th International Symposium for Design and Technology in Electronic Packaging (SIITME). Cluj-Napoca. https://doi.org/10.1109/SIITME47687.2019.8990798
  • McBratney, A., & Park, M. (2025). Agriculture over the horizon: A synthesis for the Mid-21st century. Sustainability, 17(21), 9424. https://doi.org/10.3390/su17219424
  • Mingrone, M., Seracini, M., & Cevoli, C. (2025). Spectral reconstruction applied in precision agriculture: On-field solutions. Applied Sciences, 15(20), 10985. https://doi.org/10.3390/app152010985
  • Mmbando, G. S. (2025). Harnessing artificial intelligence and remote sensing in climate-smart agriculture: The current strategies needed for enhancing global food security. Cogent Food & Agriculture, 11(1). https://doi.org/10.1080/23311932.2025.2454354
  • Patro, B. S., & Bartakke, P. P. (2025). Collaborative station learning for rainfall forecasting. Atmosphere, 16(10), 1197. https://doi.org/10.3390/atmos16101197
  • Pawar, R. S., Nema, S., Jawale, D. R., Joshi, K., Debnath, S., & Singh, S. P. (2022). The role of innovative data mining approaches for analyzing and estimating the crop yield in agriculture among emerging nations. 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). Greater Noida. https://doi.org/10.1109/ICACITE53722.2022.9823729
  • Prasad, R., Tiwari, R., & Srivastava, A. K. (2023). Internet of things-based fuzzy logic controller for smart soil health monitoring: A case study of semi-arid regions of India. Engineering Proceedings, 58(1), 85. https://doi.org/10.3390/ecsa-10-16208
  • Prathap, C., Sivaranjani, S., & Sathya, M. (2024). ML-based yield prediction in smart agriculture systems using IoT. 5th International Conference on Innovative Trends in Information Technology (ICITIIT). Kottayam. https://doi.org/10.1109/ICITIIT61487.2024.10580172
  • R Core Team. (2024). R: A language and environment for statistical computing. https://www.R-project.org/
  • Randhawa, M., Dhaliwal, S. S., Sharma, V., Toor, A. S., Sharma, S., & Kaur, M. (2021). Ensuring yield sustainability and nutritional security through enriching manures with fertilizers under rice-wheat system in North-western India. Journal of Plant Nutrition, 45(4), 540-557. https://doi.org/10.1080/01904167.2021.1943748
  • Rejeb, A., Rejeb, K., & Keogh, J. G. (2021). Enablers of augmented reality in the food supply Chain: A systematic literature review. Journal of Foodservice Business Research, 24(4), 415-444. https://doi.org/10.1080/15378020.2020.1859973
  • Rivera Chavez, Z. B., Porcaro, A., De Simone, M. C., & Guida, D. (2025). Improving sustainable viticulture in developing countries: A case study. Sustainability, 17(12), 5338. https://doi.org/10.3390/su17125338
  • Sahu, P. K., Kundu, A. L., Samui, R. C., Mani, P. K., & Pramanick, M. (2006). Sustainable maximization of yield in rice-wheat system of cropping through application of phosphocompost: A farmers’ field study. Journal of Journal of New Seeds, 8(2), 73-84. https://doi.org/10.1300/J153v08n02_05
  • Sajib, M. M. H., & Sayem, A. S. M. (2025). Innovations in sensor-based systems and sustainable energy solutions for smart agriculture: A review. Encyclopedia, 5(2), 67. https://doi.org/10.3390/encyclopedia5020067
  • Savaliya, L., Sapovadiya, M., Garg, D., Patel, P., & Shah, M. (2024). Agricultural analysis of machine learning algorithms for crop prediction. 8th International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). Kirtipur. https://doi.org/10.1109/I-SMAC61858.2024.10714828
  • Sharma, S., & Mujumdar, P. P. (2024). Baseflow significantly contributes to river floods in Peninsular India. Scientific Reports, 14, 1251. https://doi.org/10.1038/s41598-024-51850-w
  • Sharma, M., Joshi, S., Gupta, P., & Joshi, T. (2025). Climate, crops, and communities: Modeling the environmental stressors driving food supply chain insecurity. Earth, 6(4), 121. https://doi.org/10.3390/earth6040121
  • Sharma, N., Singh, S., & Kaur, K. (2025). Optimised DNN-based agricultural land mapping using sentinel-2 and landsat-8 with google earth engine. Land, 14(8), 1578. https://doi.org/10.3390/land14081578
  • Sharma, S. S., Mukherjee, J., & Dell’Acqua, F. (2025). Leveraging sentinel-2 data and machine learning for drought detection in India: The process of ground truth construction and a case study. Remote Sensing, 17(18), 3159. https://doi.org/10.3390/rs17183159
  • Sharmiladevi, J. C. (2023). Impact study of agricultural value added on foreign direct investment, economic development, trade openness for India following ARDL approach. Cogent Economics & Finance, 11(2). https://doi.org/10.1080/23322039.2023.2270595
  • Singh, G., & Joshi, N. K. (2025). Insect pests of wheat in north India: A comprehensive review of their bio-ecology and integrated management strategies. Agriculture, 15(19), 2067. https://doi.org/10.3390/agriculture15192067
  • Singh, R., & Singh, S. (2025). A review of Indian-based drones in the agriculture sector: Issues, challenges, and solutions. Sensors, 25(15), 4876. https://doi.org/10.3390/s25154876
  • Sood, A., Bhardwaj, A. K., & Sharma, R. K. (2022). Towards sustainable agriculture: Key determinants of adopting artificial intelligence in agriculture. Journal of Decision Systems, 33(4), 833-877. https://doi.org/10.1080/12460125.2022.2154419
  • Stanescu, S.-G., Ionescu, C. A., Ștefan, M. C., Ionescu, L., Bondac, G.-T., & Cristea, A. M. (2025). Digitalization and blockchain integration in agri-food supply chains: Towards a resilient, circular, and sustainable future. Sustainability, 17(20), 9276. https://doi.org/10.3390/su17209276
  • Sumathi, K., Santharam, K., & Selvalakshmi, N. (2018). Data analytics platform for intelligent agriculture. 2nd International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). Palladam. https://doi.org/10.1109/I-SMAC.2018.8653740
  • Sun, C., Yang, J., Liu, Q., Wu, Y., & Miao, J. (2025). The effect of admixing different types of fine particles into the coarse-grained layer on a capillary barrier cover’s water storage capacity: A laboratory study. Sustainability, 17(22), 10301. https://doi.org/10.3390/su172210301
  • Szeląg-Sikora, A., Oleksy-Gębczyk, A., Rydwańska, P., Kowalska-Jarnot, K., Kochanek, A., & Generowicz, A. (2025). Sustainable food consumption and the attitude-behavior gap: Factor analysis and recommendations for marketing communication. Sustainability, 17(21), 9476. https://doi.org/10.3390/su17219476
  • Todmal, R. S. (2024). Intensity, frequency and coverage of hydro-meteorological droughts and agriculture in the semi-arid basins of Maharashtra (India). Climatic Change, 177, 140. https://doi.org/10.1007/s10584-024-03794-3
  • Yadav, A., Chithaluru, P., Singh, A., Joshi, D., Elkamchouchi, D. H., Pérez-Oleaga, C. M., & Anand, D. (2022a). An enhanced feed-forward back propagation Levenberg Marquardt algorithm for suspended sediment yield modeling. Water, 14(22), 3714. https://doi.org/10.3390/w14223714
  • Yadav, A., Noori, M. T., Biswas, A., & Min, B. (2022b). A concise review on the recent developments in the internet of things (IoT)-based smart aquaculture practices. Reviews in Fisheries Science & Aquaculture, 31(1), 103-118. https://doi.org/10.1080/23308249.2022.2090228
  • Yakkala, V. S., Nusimala, K. V., Gayathri, B., Kanamarlapudi, S., Aravinth, S. S., Salau, A. O., & Srithar, S. (2024). Deep learning-based crop health enhancement through early disease prediction. Cogent Food & Agriculture, 11(1), 2423244. https://doi.org/10.1080/23311932.2024.2423244
There are 85 citations in total.

Details

Primary Language English
Subjects Agro-Ecosystem Function and Prediction
Journal Section Research Article
Authors

Polina Lemenkova 0000-0002-5759-1089

Submission Date October 27, 2025
Acceptance Date December 7, 2025
Publication Date December 30, 2025
Published in Issue Year 2025 Volume: 6 Issue: 4

Cite

APA Lemenkova, P. (2025). R-Based Graphical Representation of Trends in Food Production and Agriculture Value Chains in India. Journal of Agricultural Production, 6(4), 253-270. https://doi.org/10.56430/japro.1811604