Research Article
BibTex RIS Cite

Year 2025, Volume: 6 Issue: 3, 186 - 196, 30.09.2025
https://doi.org/10.56430/japro.1777194

Abstract

References

  • Abbasnia, M., & Toros, H. (2018). Analysis of long-term changes in extreme climatic indices: A case study of the Mediterranean climate, Marmara Region, Turkey. Pure and Applied Geophysics, 175, 3861-3873. https://doi.org/10.1007/s00024-018-1888-8
  • Aka, K. S. R., Akpavi, S., Dibi, N. H., Kabo-Bah, A. T., Gyilbag, A., & Boamah, E. (2023). Toward understanding land use land cover changes and their effects on land surface temperature in yam production area, Côte d’Ivoire, Gontougo Region, using remote sensing and machine learning tools (Google Earth Engine). Frontiers in Remote Sensing, 4, 1-22. https://doi.org/10.3389/frsen.2023.1221757
  • Aklibasinda, M., & Ozdarici Ok, A. (2019). Determination of the urbanization and changes in open-green spaces in Nevsehir city through remote sensing. Environmental Monitoring and Assessment, 191, 756. https://doi.org/10.1007/s10661-019-7953-7
  • Alipbeki, O., Alipbekova, C., Sterenharz, A., Toleubekova, Z., Makenova, S., Aliyev, M., & Mineyev, N. (2020). Analysis of land-use change in shortandy district in terms of sustainable development. Land, 9(5), 147. https://doi.org/10.3390/LAND9050147
  • Anand, S., Kumar, H., Kumar, P., & Kumar, M. (2025). Analyzing landscape changes and their relationship with land surface temperature and vegetation indices using remote sensing and AI techniques. Geoscience Letters, 12, 7. https://doi.org/10.1186/s40562-024-00372-4
  • Arfa, A., & Minaei, M. (2024). Utilizing multitemporal indices and spectral bands of Sentinel-2 to enhance land use and land cover classification with random forest and support vector machine. Advances in Space Research, 74(11), 5580-5590. https://doi.org/10.1016/j.asr.2024.08.062
  • Azzari, G., & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64-74. https://doi.org/10.1016/j.rse.2017.05.025
  • Bikis, A., Engdaw, M., Pandey, D., & Pandey, B. K. (2025). The impact of urbanization on land use land cover change using geographic information system and remote sensing: A case of Mizan Aman City Southwest Ethiopia. Scientific Reports, 15, 12014. https://doi.org/10.1038/s41598-025-94189-6
  • Boluk, E., Eskioglu, O., Çalık, Y., & Yagan, S. (2023). Köppen iklim sınıflandırmasına göre Türkiye iklimi. Retrieved Jul 20, 2025, from https://www.mgm.gov.tr/files/iklim/iklim_siniflandirmalari/koppen.pdf (In Turkish)
  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., & Tait, A. M. (2022). Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, 9, 251. https://doi.org/10.1038/s41597-022-01307-4
  • Cheng, G., Huang, Y., Li, X., Lyu, S., Xu, Z., Zhao, H., Zhao, Q., & Xiang, S. (2024). Change detection methods for remote sensing in the last decade: A comprehensive review. Remote Sensing, 16(13), 2355. https://doi.org/10.3390/rs16132355
  • Cieślak, I., Biłozor, A., & Szuniewicz, K. (2020). The use of the CORINE Land Cover (CLC) database for analyzing urban sprawl. Remote Sensing, 12(2), 282. https://doi.org/10.3390/rs12020282
  • de la Iglesia Martinez, A., & Labib, S. M. (2023). Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research, 220, 115155. https://doi.org/10.1016/j.envres.2022.115155
  • Dzieszko, P. (2014). Land-cover modelling using corine land cover data and multi-layer perceptron. Quaestiones Geographicae, 33(1), 5-22. https://doi.org/10.2478/quageo-2014-0004
  • Falt’an, V., Petrovič, F., Ot’ahel’, J., Feranec, J., Druga, M., Hruška, M., Nováček, J., Solár, V., & Mechurová, V. (2020). Comparison of CORINE land cover data with national statistics and the possibility to record this data on a local scale-case studies from Slovakia. Remote Sensing, 12(15), 2484. https://doi.org/10.3390/RS12152484
  • Feranec, J., Hazeu, G., Christensen, S., & Jaffrain, G. (2007). Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy, 24(1), 234-247. https://doi.org/10.1016/j.landusepol.2006.02.002
  • Gabisa, M., Kabite, G., & Mammo, S. (2025). Land use and land cover change trends, drivers and its impacts on ecosystem services in burayu sub city, Ethiopia. Frontiers in Environmental Science, 13, 1-17. https://doi.org/10.3389/fenvs.2025.1557000
  • Ganjirad, M., & Bagheri, H. (2024). Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecological Informatics, 80, 102498. https://doi.org/10.1016/j.ecoinf.2024.102498
  • Gul, E., & Esen, S. (2024). High desertification susceptibility in forest ecosystems revealed by the environmental sensitivity area index (ESAI). Sustainability, 16(23), 10409. https://doi.org/10.3390/su162310409
  • Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9), 1365. https://doi.org/10.3390/rs10091365
  • Hu, Y., Raza, A., Syed, N. R., Acharki, S., Ray, R. L., Hussain, S., Dehghanisanij, H., Zubair, M., & Elbeltagi, A. (2023). Land use/land cover change detection and NDVI estimation in Pakistan’s southern Punjab Province. Sustainability, 15(4), 3572. https://doi.org/10.3390/su15043572
  • Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A., & Qin, S. (2022). Modeling and predicting land use land cover spatiotemporal changes: A case study in Chalus Watershed, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5496-5513. https://doi.org/10.1109/JSTARS.2022.3189528
  • Kalayci Kadak, M. (2021). Bartın Çayı Havzası'nda uzaktan algılama ve coğrafi bilgi sistemleri ile iklim değişikliği senaryolarına uygun bir model önerisi (Doctoral dissertation, Kastamonu University). (In Turkish)
  • Kalayci Kadak, M. (2022). Investigation of the usability of landsat satellite images in studies related to climate change effects on land use-land cover. In M. Karaboyaci & A. Demircali (Eds.), Versatile multidisciplinary engineering research (pp. 116-126). SRA Academic Publishing.
  • Kalayci Kadak, M., Ozturk, S., & Mert, A. (2024). Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: A case study in Bartin river basin with time series analysis for 2050. Natural Hazards, 120, 13289-13307. https://doi.org/10.1007/s11069-024-06706-x
  • Kalaycı Kadak, M. (2025). Towards a climate-resilient metropolis: A neighborhood-scale nature-based urban adaptation planning approach. Sustainability, 17(16), 7356. https://doi.org/10.3390/su17167356
  • Karahasan, B. C., & Pinar, M. (2023). Climate change and spatial agricultural development in Turkey. Review of Development Economics, 27(3), 1699-1720. https://doi.org/10.1111/rode.12986
  • Kirui, K. B., Kairo, J. G., Bosire, J., Viergever, K. M., Rudra, S., Huxham, M., & Briers, R. A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean and Coastal Management, 83, 19-24. https://doi.org/10.1016/j.ocecoaman.2011.12.004
  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205-241. https://doi.org/10.1146/annurev.energy.28.050302.105459
  • Liu, B., Pan, L., Qi, Y., Guan, X., & Li, J. (2021). Land use and land cover change in the yellow river basin from 1980 to 2015 and its impact on the ecosystem services. Land, 10(10), 1080. https://doi.org/10.3390/land10101080
  • Lv, Z., Liu, T., Zhang, P., Benediktsson, J. A., & Chen, Y. (2018). Land cover change detection based on adaptive contextual information using bi-temporal remote sensing images. Remote Sensing, 10(6), 901. https://doi.org/10.3390/rs10060901
  • Maden, G., & Aslan, Z. (2019). Statistical analysis of vegetation index depending on precipitation. AURUM Journal of Engineering System and Architecture, 2(2), 19-28.
  • Mandvikar, K., Kumar, N., Supe, H., Singh, D., Gupta, A., Kumar, P., Meraj, G., Khan, I. D., Kouser, A., Pandey, S. K., & Avtar, R. (2024). Evaluating heat health risk in Indian cities: Geospatial and socio-ecological analysis. World Development Sustainability, 5, 100180. https://doi.org/10.1016/j.wds.2024.100180
  • Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., & Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16), 3926. https://doi.org/10.3390/rs15163926
  • Mert, A., Tavuç, İ., Özdemir, S., & Ulusan, M. D. (2024). Future responses of the Burdur Lake to climate change and uncontrolled exploitation. Journal of the Indian Society of Remote Sensing, 53, 1025-1036. https://doi.org/10.1007/s12524-024-02008-8
  • Mohiuddin, G., & Mund, J. P. (2024). Spatiotemporal analysis of land surface temperature in response to land use and land cover changes: A remote sensing approach. Remote Sensing, 16(7), 1286. https://doi.org/10.3390/rs16071286
  • Muche, M., Yemata, G., Molla, E., Adnew, W., & Muasya, A. M. (2023). Land use and land cover changes and their impact on ecosystem service values in the north-eastern highlands of Ethiopia. PLoS ONE, 18(9), e0289962. https://doi.org/10.1371/journal.pone.0289962
  • Myga-Piatek, U., Żemła-Siesicka, A., Pukowiec-Kurda, K., Sobala, M., & Nita, J. (2021). Is there urban landscape in metropolitan areas? An unobvious answer based on corine land cover analyses. Land, 10(1), 51. https://doi.org/10.3390/land10010051
  • Nasiri, V., Deljouei, A., Moradi, F., Seyed Mohammad Moein, S., & Borz, S. A. (2022). Land use and land cover mapping using sentinel-2, landsat-8 satellite images, and Google Earth engine: A comparison of two composition methods. Remote Sensing, 14(9), 1977. https://doi.org/10.3390/rs14091977
  • Negese, A. (2021). Impacts of land use and land cover change on soil erosion and hydrological responses in Ethiopia. Applied and Environmental Soil Science, 2021(1), 6669438. https://doi.org/10.1155/2021/6669438
  • Pande, C. B., Srivastava, A., Moharir, K. N., Radwan, N., Mohd Sidek, L., Alshehri, F., Pal, S. C., Tolche, A. D., & Zhran, M. (2024). Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: A Google Earth Engine implementation. Environmental Sciences Europe, 36, 84. https://doi.org/10.1186/s12302-024-00901-0
  • Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X. P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022). The global 2000-2020 land cover and land use change dataset derived from the landsat archive: First results. Frontiers in Remote Sensing, 3, 1-22. https://doi.org/10.3389/frsen.2022.856903
  • Selcuk, F., & Gulumser, A. A. (2023). İklim değişikliği etkisinde Türkiye’de tarimsal ürün verimliliği: Bölgesel bir değerlendirme. Bölgesel Kalkınma Dergisi, 01(04), 425-451. https://doi.org/10.61138/bolgeselkalkinmadergisi.1347009 (In Turkish)
  • Shafizadeh-Moghadam, H., Khazaei, M., Alavipanah, S. K., & Weng, Q. (2021). Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GIScience & Remote Sensing, 58(6), 914-928. https://doi.org/10.1080/15481603.2021.1947623
  • Taiwo, B. E., Kafy, A. Al, Samuel, A. A., Rahaman, Z. A., Ayowole, O. E., Shahrier, M., Duti, B. M., Rahman, M. T., Peter, O. T., & Abosede, O. O. (2023). Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environmental and Sustainability Indicators, 18, 100248. https://doi.org/10.1016/j.indic.2023.100248
  • Tesfaye, W., Elias, E., Warkineh, B., Tekalign, M., & Abebe, G. (2024). Modeling of land use and land cover changes using google earth engine and machine learning approach: Implications for landscape management. Environmental Systems Research, 13, 31. https://doi.org/10.1186/s40068-024-00366-3
  • Tewabe, D., & Fentahun, T. (2020). Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environmental Science, 6(1), 1778998. https://doi.org/10.1080/23311843.2020.1778998
  • TÜİK. (2024). Tarım ve hayvancılık: Tarım alanı (dekar). https://cip.tuik.gov.tr/ (In Turkish)
  • Turkish Ministry of Agriculture and Forestry. (2024). Tarım havzaları üretim ve destekleme modeli illere göre 2024 yılında desteklenecek ürünlerin listesi. https://www.tarimorman.gov.tr/BUGEM/Belgeler/Tarım Havzaları/2024 Yılı Ürün Deseni Listesi.pdf (In Turkish)
  • Ursu, C. D., Benedek, J., & Temerdek-Ivan, K. (2025). Accuracy assessment of four land cover datasets at urban, rural and metropolitan area level. Remote Sensing, 17(5), 756. https://doi.org/10.3390/rs17050756
  • Varga, O. G., Pontius, R. G., Szabó, Z., & Szabó, S. (2020). Effects of category aggregation on land change simulation based on corine land cover data. Remote Sensing, 12(8), 1314. https://doi.org/10.3390/RS12081314
  • Venter, Z. S., & Sydenham, M. A. K. (2021). Continental-scale land cover mapping at 10 m resolution over europe (Elc10). Remote Sensing, 13(12), 2301. https://doi.org/10.3390/rs13122301
  • Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., & Singh, G. (2022). Global 10 m land use land cover datasets: A comparison of dynamic world, world cover and esri land cover. Remote Sensing, 14(16), 4101. https://doi.org/10.3390/rs14164101
  • Verburg, P. H., Overmars, K. P., & Witte, N. (2004). Accessibility and land-use patterns of the forest fringe in the northeastern part of the Philippines. Geographical Journal, 170(3), 238-255. https://doi.org/10.1111/j.0016-7398.2004.00123.x
  • Wang, Z., & Mountrakis, G. (2023). Accuracy assessment of eleven medium resolution global and regional land cover land use products: A case study over the conterminous United States. Remote Sensing, 15(12), 3186. https://doi.org/10.3390/rs15123186
  • WRI and Google. (n.d.). Dynamic World V1. Retrieved Jun 13, 2025, from https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
  • Yenişehir Municipality. (2022). Yenişehir hakkında. https://www.bursa-yenisehir.bel.tr/bel/yenisehir/yenisehir-hakkinda/205 (In Turkish)
  • Yetik, A. K., & Candogan, B. N. (2024). Climate change impacts on precipitation dynamics in the southern Marmara Region of Turkey. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 38(1), 123-141. https://doi.org/10.20479/bursauludagziraat.1442146
  • Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustainability, 9(7), 1204. https://doi.org/10.3390/su9071204
  • YOSAB. (2022). Yenişehir organize sanayi bölgesi. https://yosab.org.tr/ (In Turkish)
  • Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171. https://doi.org/10.1016/j.rse.2014.01.011

Spatiotemporal Assessment of LULC Changes Using Remote Sensing Approaches

Year 2025, Volume: 6 Issue: 3, 186 - 196, 30.09.2025
https://doi.org/10.56430/japro.1777194

Abstract

The study examines changes in Land-Use/Land-Cover (LULC) in the Yenişehir district of Bursa province (Türkiye) between 2020 and 2024. Focusing specifically on the loss of agricultural land due to anthropogenic pressure, the study aims to identify changes in the LULC using remote sensing tools and techniques. In this regard, it aims to contribute to the development of sustainable land use policies. High-resolution Dynamic World dataset generated from Sentinel-2 satellite imagery was employed. The study, which was conducted by using Google Earth Engine (GEE) and ArcGIS Pro, generated annual LULC maps, inter-class transition maps that focus on agricultural land for consecutive years, and annual NDVI maps. As a result, a total of 2% decrease was detected in the crops class, accelerating particularly after 2022. NDVI values also decreased in the same areas, displaying similarity to this result. The findings are generally observed in agricultural land in peri-urban areas and are associated with both anthropogenic pressure and climate change impacts on the agricultural landscape. The study, based on data analyses, emphasizes the importance of ecology-based strategic approaches and demonstrates the need to integrate these approaches into spatial planning. Moreover, it shows the applicability of Dynamic World dataset in short-term monitoring of surface area losses in agricultural areas.

Ethical Statement

This study does not require ethical committee approval.

References

  • Abbasnia, M., & Toros, H. (2018). Analysis of long-term changes in extreme climatic indices: A case study of the Mediterranean climate, Marmara Region, Turkey. Pure and Applied Geophysics, 175, 3861-3873. https://doi.org/10.1007/s00024-018-1888-8
  • Aka, K. S. R., Akpavi, S., Dibi, N. H., Kabo-Bah, A. T., Gyilbag, A., & Boamah, E. (2023). Toward understanding land use land cover changes and their effects on land surface temperature in yam production area, Côte d’Ivoire, Gontougo Region, using remote sensing and machine learning tools (Google Earth Engine). Frontiers in Remote Sensing, 4, 1-22. https://doi.org/10.3389/frsen.2023.1221757
  • Aklibasinda, M., & Ozdarici Ok, A. (2019). Determination of the urbanization and changes in open-green spaces in Nevsehir city through remote sensing. Environmental Monitoring and Assessment, 191, 756. https://doi.org/10.1007/s10661-019-7953-7
  • Alipbeki, O., Alipbekova, C., Sterenharz, A., Toleubekova, Z., Makenova, S., Aliyev, M., & Mineyev, N. (2020). Analysis of land-use change in shortandy district in terms of sustainable development. Land, 9(5), 147. https://doi.org/10.3390/LAND9050147
  • Anand, S., Kumar, H., Kumar, P., & Kumar, M. (2025). Analyzing landscape changes and their relationship with land surface temperature and vegetation indices using remote sensing and AI techniques. Geoscience Letters, 12, 7. https://doi.org/10.1186/s40562-024-00372-4
  • Arfa, A., & Minaei, M. (2024). Utilizing multitemporal indices and spectral bands of Sentinel-2 to enhance land use and land cover classification with random forest and support vector machine. Advances in Space Research, 74(11), 5580-5590. https://doi.org/10.1016/j.asr.2024.08.062
  • Azzari, G., & Lobell, D. B. (2017). Landsat-based classification in the cloud: An opportunity for a paradigm shift in land cover monitoring. Remote Sensing of Environment, 202, 64-74. https://doi.org/10.1016/j.rse.2017.05.025
  • Bikis, A., Engdaw, M., Pandey, D., & Pandey, B. K. (2025). The impact of urbanization on land use land cover change using geographic information system and remote sensing: A case of Mizan Aman City Southwest Ethiopia. Scientific Reports, 15, 12014. https://doi.org/10.1038/s41598-025-94189-6
  • Boluk, E., Eskioglu, O., Çalık, Y., & Yagan, S. (2023). Köppen iklim sınıflandırmasına göre Türkiye iklimi. Retrieved Jul 20, 2025, from https://www.mgm.gov.tr/files/iklim/iklim_siniflandirmalari/koppen.pdf (In Turkish)
  • Brown, C. F., Brumby, S. P., Guzder-Williams, B., Birch, T., Hyde, S. B., Mazzariello, J., Czerwinski, W., Pasquarella, V. J., Haertel, R., Ilyushchenko, S., Schwehr, K., Weisse, M., Stolle, F., Hanson, C., Guinan, O., Moore, R., & Tait, A. M. (2022). Dynamic World, Near real-time global 10 m land use land cover mapping. Scientific Data, 9, 251. https://doi.org/10.1038/s41597-022-01307-4
  • Cheng, G., Huang, Y., Li, X., Lyu, S., Xu, Z., Zhao, H., Zhao, Q., & Xiang, S. (2024). Change detection methods for remote sensing in the last decade: A comprehensive review. Remote Sensing, 16(13), 2355. https://doi.org/10.3390/rs16132355
  • Cieślak, I., Biłozor, A., & Szuniewicz, K. (2020). The use of the CORINE Land Cover (CLC) database for analyzing urban sprawl. Remote Sensing, 12(2), 282. https://doi.org/10.3390/rs12020282
  • de la Iglesia Martinez, A., & Labib, S. M. (2023). Demystifying normalized difference vegetation index (NDVI) for greenness exposure assessments and policy interventions in urban greening. Environmental Research, 220, 115155. https://doi.org/10.1016/j.envres.2022.115155
  • Dzieszko, P. (2014). Land-cover modelling using corine land cover data and multi-layer perceptron. Quaestiones Geographicae, 33(1), 5-22. https://doi.org/10.2478/quageo-2014-0004
  • Falt’an, V., Petrovič, F., Ot’ahel’, J., Feranec, J., Druga, M., Hruška, M., Nováček, J., Solár, V., & Mechurová, V. (2020). Comparison of CORINE land cover data with national statistics and the possibility to record this data on a local scale-case studies from Slovakia. Remote Sensing, 12(15), 2484. https://doi.org/10.3390/RS12152484
  • Feranec, J., Hazeu, G., Christensen, S., & Jaffrain, G. (2007). Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy, 24(1), 234-247. https://doi.org/10.1016/j.landusepol.2006.02.002
  • Gabisa, M., Kabite, G., & Mammo, S. (2025). Land use and land cover change trends, drivers and its impacts on ecosystem services in burayu sub city, Ethiopia. Frontiers in Environmental Science, 13, 1-17. https://doi.org/10.3389/fenvs.2025.1557000
  • Ganjirad, M., & Bagheri, H. (2024). Google Earth Engine-based mapping of land use and land cover for weather forecast models using Landsat 8 imagery. Ecological Informatics, 80, 102498. https://doi.org/10.1016/j.ecoinf.2024.102498
  • Gul, E., & Esen, S. (2024). High desertification susceptibility in forest ecosystems revealed by the environmental sensitivity area index (ESAI). Sustainability, 16(23), 10409. https://doi.org/10.3390/su162310409
  • Holloway, J., & Mengersen, K. (2018). Statistical machine learning methods and remote sensing for sustainable development goals: A review. Remote Sensing, 10(9), 1365. https://doi.org/10.3390/rs10091365
  • Hu, Y., Raza, A., Syed, N. R., Acharki, S., Ray, R. L., Hussain, S., Dehghanisanij, H., Zubair, M., & Elbeltagi, A. (2023). Land use/land cover change detection and NDVI estimation in Pakistan’s southern Punjab Province. Sustainability, 15(4), 3572. https://doi.org/10.3390/su15043572
  • Jalayer, S., Sharifi, A., Abbasi-Moghadam, D., Tariq, A., & Qin, S. (2022). Modeling and predicting land use land cover spatiotemporal changes: A case study in Chalus Watershed, Iran. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5496-5513. https://doi.org/10.1109/JSTARS.2022.3189528
  • Kalayci Kadak, M. (2021). Bartın Çayı Havzası'nda uzaktan algılama ve coğrafi bilgi sistemleri ile iklim değişikliği senaryolarına uygun bir model önerisi (Doctoral dissertation, Kastamonu University). (In Turkish)
  • Kalayci Kadak, M. (2022). Investigation of the usability of landsat satellite images in studies related to climate change effects on land use-land cover. In M. Karaboyaci & A. Demircali (Eds.), Versatile multidisciplinary engineering research (pp. 116-126). SRA Academic Publishing.
  • Kalayci Kadak, M., Ozturk, S., & Mert, A. (2024). Predicting climate-based changes of landscape structure for Turkiye via global climate change scenarios: A case study in Bartin river basin with time series analysis for 2050. Natural Hazards, 120, 13289-13307. https://doi.org/10.1007/s11069-024-06706-x
  • Kalaycı Kadak, M. (2025). Towards a climate-resilient metropolis: A neighborhood-scale nature-based urban adaptation planning approach. Sustainability, 17(16), 7356. https://doi.org/10.3390/su17167356
  • Karahasan, B. C., & Pinar, M. (2023). Climate change and spatial agricultural development in Turkey. Review of Development Economics, 27(3), 1699-1720. https://doi.org/10.1111/rode.12986
  • Kirui, K. B., Kairo, J. G., Bosire, J., Viergever, K. M., Rudra, S., Huxham, M., & Briers, R. A. (2013). Mapping of mangrove forest land cover change along the Kenya coastline using Landsat imagery. Ocean and Coastal Management, 83, 19-24. https://doi.org/10.1016/j.ocecoaman.2011.12.004
  • Lambin, E. F., Geist, H. J., & Lepers, E. (2003). Dynamics of land-use and land-cover change in tropical regions. Annual Review of Environment and Resources, 28, 205-241. https://doi.org/10.1146/annurev.energy.28.050302.105459
  • Liu, B., Pan, L., Qi, Y., Guan, X., & Li, J. (2021). Land use and land cover change in the yellow river basin from 1980 to 2015 and its impact on the ecosystem services. Land, 10(10), 1080. https://doi.org/10.3390/land10101080
  • Lv, Z., Liu, T., Zhang, P., Benediktsson, J. A., & Chen, Y. (2018). Land cover change detection based on adaptive contextual information using bi-temporal remote sensing images. Remote Sensing, 10(6), 901. https://doi.org/10.3390/rs10060901
  • Maden, G., & Aslan, Z. (2019). Statistical analysis of vegetation index depending on precipitation. AURUM Journal of Engineering System and Architecture, 2(2), 19-28.
  • Mandvikar, K., Kumar, N., Supe, H., Singh, D., Gupta, A., Kumar, P., Meraj, G., Khan, I. D., Kouser, A., Pandey, S. K., & Avtar, R. (2024). Evaluating heat health risk in Indian cities: Geospatial and socio-ecological analysis. World Development Sustainability, 5, 100180. https://doi.org/10.1016/j.wds.2024.100180
  • Mashala, M. J., Dube, T., Mudereri, B. T., Ayisi, K. K., & Ramudzuli, M. R. (2023). A systematic review on advancements in remote sensing for assessing and monitoring land use and land cover changes impacts on surface water resources in semi-arid tropical environments. Remote Sensing, 15(16), 3926. https://doi.org/10.3390/rs15163926
  • Mert, A., Tavuç, İ., Özdemir, S., & Ulusan, M. D. (2024). Future responses of the Burdur Lake to climate change and uncontrolled exploitation. Journal of the Indian Society of Remote Sensing, 53, 1025-1036. https://doi.org/10.1007/s12524-024-02008-8
  • Mohiuddin, G., & Mund, J. P. (2024). Spatiotemporal analysis of land surface temperature in response to land use and land cover changes: A remote sensing approach. Remote Sensing, 16(7), 1286. https://doi.org/10.3390/rs16071286
  • Muche, M., Yemata, G., Molla, E., Adnew, W., & Muasya, A. M. (2023). Land use and land cover changes and their impact on ecosystem service values in the north-eastern highlands of Ethiopia. PLoS ONE, 18(9), e0289962. https://doi.org/10.1371/journal.pone.0289962
  • Myga-Piatek, U., Żemła-Siesicka, A., Pukowiec-Kurda, K., Sobala, M., & Nita, J. (2021). Is there urban landscape in metropolitan areas? An unobvious answer based on corine land cover analyses. Land, 10(1), 51. https://doi.org/10.3390/land10010051
  • Nasiri, V., Deljouei, A., Moradi, F., Seyed Mohammad Moein, S., & Borz, S. A. (2022). Land use and land cover mapping using sentinel-2, landsat-8 satellite images, and Google Earth engine: A comparison of two composition methods. Remote Sensing, 14(9), 1977. https://doi.org/10.3390/rs14091977
  • Negese, A. (2021). Impacts of land use and land cover change on soil erosion and hydrological responses in Ethiopia. Applied and Environmental Soil Science, 2021(1), 6669438. https://doi.org/10.1155/2021/6669438
  • Pande, C. B., Srivastava, A., Moharir, K. N., Radwan, N., Mohd Sidek, L., Alshehri, F., Pal, S. C., Tolche, A. D., & Zhran, M. (2024). Characterizing land use/land cover change dynamics by an enhanced random forest machine learning model: A Google Earth Engine implementation. Environmental Sciences Europe, 36, 84. https://doi.org/10.1186/s12302-024-00901-0
  • Potapov, P., Hansen, M. C., Pickens, A., Hernandez-Serna, A., Tyukavina, A., Turubanova, S., Zalles, V., Li, X., Khan, A., Stolle, F., Harris, N., Song, X. P., Baggett, A., Kommareddy, I., & Kommareddy, A. (2022). The global 2000-2020 land cover and land use change dataset derived from the landsat archive: First results. Frontiers in Remote Sensing, 3, 1-22. https://doi.org/10.3389/frsen.2022.856903
  • Selcuk, F., & Gulumser, A. A. (2023). İklim değişikliği etkisinde Türkiye’de tarimsal ürün verimliliği: Bölgesel bir değerlendirme. Bölgesel Kalkınma Dergisi, 01(04), 425-451. https://doi.org/10.61138/bolgeselkalkinmadergisi.1347009 (In Turkish)
  • Shafizadeh-Moghadam, H., Khazaei, M., Alavipanah, S. K., & Weng, Q. (2021). Google Earth Engine for large-scale land use and land cover mapping: An object-based classification approach using spectral, textural and topographical factors. GIScience & Remote Sensing, 58(6), 914-928. https://doi.org/10.1080/15481603.2021.1947623
  • Taiwo, B. E., Kafy, A. Al, Samuel, A. A., Rahaman, Z. A., Ayowole, O. E., Shahrier, M., Duti, B. M., Rahman, M. T., Peter, O. T., & Abosede, O. O. (2023). Monitoring and predicting the influences of land use/land cover change on cropland characteristics and drought severity using remote sensing techniques. Environmental and Sustainability Indicators, 18, 100248. https://doi.org/10.1016/j.indic.2023.100248
  • Tesfaye, W., Elias, E., Warkineh, B., Tekalign, M., & Abebe, G. (2024). Modeling of land use and land cover changes using google earth engine and machine learning approach: Implications for landscape management. Environmental Systems Research, 13, 31. https://doi.org/10.1186/s40068-024-00366-3
  • Tewabe, D., & Fentahun, T. (2020). Assessing land use and land cover change detection using remote sensing in the Lake Tana Basin, Northwest Ethiopia. Cogent Environmental Science, 6(1), 1778998. https://doi.org/10.1080/23311843.2020.1778998
  • TÜİK. (2024). Tarım ve hayvancılık: Tarım alanı (dekar). https://cip.tuik.gov.tr/ (In Turkish)
  • Turkish Ministry of Agriculture and Forestry. (2024). Tarım havzaları üretim ve destekleme modeli illere göre 2024 yılında desteklenecek ürünlerin listesi. https://www.tarimorman.gov.tr/BUGEM/Belgeler/Tarım Havzaları/2024 Yılı Ürün Deseni Listesi.pdf (In Turkish)
  • Ursu, C. D., Benedek, J., & Temerdek-Ivan, K. (2025). Accuracy assessment of four land cover datasets at urban, rural and metropolitan area level. Remote Sensing, 17(5), 756. https://doi.org/10.3390/rs17050756
  • Varga, O. G., Pontius, R. G., Szabó, Z., & Szabó, S. (2020). Effects of category aggregation on land change simulation based on corine land cover data. Remote Sensing, 12(8), 1314. https://doi.org/10.3390/RS12081314
  • Venter, Z. S., & Sydenham, M. A. K. (2021). Continental-scale land cover mapping at 10 m resolution over europe (Elc10). Remote Sensing, 13(12), 2301. https://doi.org/10.3390/rs13122301
  • Venter, Z. S., Barton, D. N., Chakraborty, T., Simensen, T., & Singh, G. (2022). Global 10 m land use land cover datasets: A comparison of dynamic world, world cover and esri land cover. Remote Sensing, 14(16), 4101. https://doi.org/10.3390/rs14164101
  • Verburg, P. H., Overmars, K. P., & Witte, N. (2004). Accessibility and land-use patterns of the forest fringe in the northeastern part of the Philippines. Geographical Journal, 170(3), 238-255. https://doi.org/10.1111/j.0016-7398.2004.00123.x
  • Wang, Z., & Mountrakis, G. (2023). Accuracy assessment of eleven medium resolution global and regional land cover land use products: A case study over the conterminous United States. Remote Sensing, 15(12), 3186. https://doi.org/10.3390/rs15123186
  • WRI and Google. (n.d.). Dynamic World V1. Retrieved Jun 13, 2025, from https://developers.google.com/earth-engine/datasets/catalog/GOOGLE_DYNAMICWORLD_V1
  • Yenişehir Municipality. (2022). Yenişehir hakkında. https://www.bursa-yenisehir.bel.tr/bel/yenisehir/yenisehir-hakkinda/205 (In Turkish)
  • Yetik, A. K., & Candogan, B. N. (2024). Climate change impacts on precipitation dynamics in the southern Marmara Region of Turkey. Bursa Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 38(1), 123-141. https://doi.org/10.20479/bursauludagziraat.1442146
  • Yirsaw, E., Wu, W., Shi, X., Temesgen, H., & Bekele, B. (2017). Land use/land cover change modeling and the prediction of subsequent changes in ecosystem service values in a coastal area of China, the Su-Xi-Chang region. Sustainability, 9(7), 1204. https://doi.org/10.3390/su9071204
  • YOSAB. (2022). Yenişehir organize sanayi bölgesi. https://yosab.org.tr/ (In Turkish)
  • Zhu, Z., & Woodcock, C. E. (2014). Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment, 144, 152-171. https://doi.org/10.1016/j.rse.2014.01.011
There are 61 citations in total.

Details

Primary Language English
Subjects Land Capability and Soil Productivity
Journal Section Research Articles
Authors

Merve Kalaycı Kadak 0000-0003-1109-050X

Publication Date September 30, 2025
Submission Date September 3, 2025
Acceptance Date September 25, 2025
Published in Issue Year 2025 Volume: 6 Issue: 3

Cite

APA Kalaycı Kadak, M. (2025). Spatiotemporal Assessment of LULC Changes Using Remote Sensing Approaches. Journal of Agricultural Production, 6(3), 186-196. https://doi.org/10.56430/japro.1777194