Research Article
BibTex RIS Cite

Hava Aracı Hareketliliği ve Havalimanlarındaki Hava Kalitesi Arasındaki İlişkinin İncelenmesi: Aerosol İndeksi ve Avrupa Örneği

Year 2025, Volume: 7 Issue: 1, 56 - 68, 28.02.2025
https://doi.org/10.51785/jar.1611083

Abstract

Bu çalışma, Avrupa'nın en yoğun altı havalimanında (İstanbul (LTFM), Amsterdam Schiphol (EHAM), Paris Charles de Gaulle (LFPG), Londra Heathrow (EGLL), Frankfurt (EDDF) ve Madrid Barajas (LEMD)) Ocak 2023 - Kasım 2024 arasındaki hava trafiği ile atmosferik aerosol indeksi (AAI) arasındaki ilişkiyi incelemektedir. Sentinel-5P uydusundan alınan AAI verileri kullanılarak, her havalimanı için hava trafiği ve AAI değerleri, zamansal değişimleri ve aralarındaki korelasyonlar analiz edilmiştir. Bu çalışma özelinde, hava trafiği ile AAI arasında genel ve belirgin bir ilişki saptanmamıştır. Bununla birlikte, havalimanı bazında yapılan incelemeler, bu ilişkinin her bir havalimanında farklı derecelerde ve bazı durumlarda düzensiz bir şekilde ortaya çıktığını göstermiştir. Madrid Barajas ve Paris Charles de Gaulle'de ilişki zayıf ve düzensizken, Amsterdam Schiphol, Londra Heathrow ve Frankfurt'ta belirgin bir negatif, İstanbul'da ise zayıf bir pozitif ilişki gözlenmiştir. Endüstriyel faaliyetler, kentsel ısınma ve diğer ulaşım kaynakları gibi faktörlerin AAI değerlerine etkisi çalışma kapsamı dışında bırakılmıştır. Sonuç olarak, hava trafiği ve AAI ilişkisi havalimanlarına göre değişmekte ve Sentinel-5P verileri bu tür analizlerde değerli bir araç sunmaktadır.

References

  • AENA (Aeropuertos Españoles y Navegación Aérea). (2024). Estadisticas. https://www.aena.es/es/estadisticas/informes-mensuales.html [Erişim tarihi: 20.12.2024].
  • Airport Carbon Accreditation. (2024). Accredited airports. https://www.airportcarbonaccreditation.org/accredited-airports/ [Erişim tarihi: 19.12.2024].
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons.
  • De Graaf, M., Stammes, P., Torres, O., & Koelemeijer, R. B. A. (2005). Absorbing aerosol index: Sensitivity analysis, application to GOME and comparison with TOMS. Journal of Geophysical Research: Atmospheres, 110(D1). https://doi.org/[DOI]
  • Devlet Hava Meydanları İşletmesi. (2024). İstatistikler. https://www.dhmi.gov.tr/Sayfalar/Istatistikler.aspx [Erişim tarihi: 20.12.2024].
  • Duan, J., Qin, M., Fang, W., Liao, Z., Gui, H., Shi, Z., Yang, H., Meng, F., Shao, D., Hu, J., Han, B., Xie, P., & Liu, W. (2022). Detection of aircraft emissions using long-path differential optical absorption spectroscopy at Hefei Xinqiao International Airport. Remote Sensing, 14(16), 3927. https://doi.org/10.3390/rs14163927
  • Dünya Sağlık Örgütü. (2024). Newsroom. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health [Erişim tarihi: 19.12.2024].
  • EUROCONTROL. (2025). European aviation overview 2024. EUROCONTROL. E uropean Union Aviation Safety Agency (EASA). (2019). European aviation environmental report 2019. European Union Aviation Safety Agency.
  • Fraport AG. (2024). Traffic figures https://www.fraport.com/en/investors/traffic-figures.html [Erişim tarihi: 20.12.2024].
  • Groupe Aeroports de Paris. (2024). Traffic of Paris Aéroport and Groupe ADP airports. https://www.dhmi.gov.tr/Sayfalar/Istatistikler.aspx [Erişim tarihi: 20.12.2024].
  • Heathrow Airport Limited. (2024). Traffic statistics. https://www.heathrow.com/company/investor-centre/reports/traffic-statistics [Erişim tarihi: 20.12.2024].
  • Hsu, H. H., Adamkiewicz, G., Houseman, E. A., Zarubiak, D., Spengler, J. D., & Levy, J. I. (2013). Contributions of aircraft arrivals and departures to ultrafine particle counts near Los Angeles International Airport. Science of the Total E Environment, 444, 347–355. https://doi.org/10.1016/j.scitotenv.2012.12.058
  • Hudda, N., Gould, T., Hartin, K., Larson, T. V., & Fruin, S. A. (2014). Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environmental Science & Technology, 48(12), 6628–6635. https://doi.org/10.1021/es5016126
  • Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. https://doi.org/10.2307/2685263
  • Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C., Lim, L. L., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537. https://doi.org/10.1016/j.atmosenv.2009.06.005
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 95, 409–455. https://doi.org/10.1016/j.atmosenv.2014.06.028
  • Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., … & Köhler, P. (2020). Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction. International Journal of Applied Earth Observation and Geoinformation, 90, 102126. https://doi.org/10.1016/j.jag.2020.102126
  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520–7540. https://doi.org/10.1002/anie.200500717
  • Royal Schiphol Group. (2024). Traffic and transport figures. https://www.schiphol.nl/en/schiphol-group/transport-and-traffic-statistics/ [Erişim tarihi: 20.12.2024].
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
  • SentiWiki. (2024). Sentinel-5P. https://sentiwiki.copernicus.eu/web/sentinel-5p [Erişim tarihi: 20.12.2024].
  • Stettler, M. E. J., Eastham, S., & Barrett, S. R. H. (2011). Air quality and public health impacts of UK airports. Part I: Emissions. Atmospheric Environment, 45(31), 5415–5424. https://doi.org/10.1016/j.atmosenv.2011.06.057
  • Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., & Gleason, J. (1998). Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. Journal of Geophysical Research: Atmospheres, 103(D14), 17099–17110. https://doi.org/10.1029/98JD00900
  • Wilkinson, L., & Friendly, M. (2009). The history of the cluster heat map. The American Statistician, 63(2), 179–184. https://doi.org/10.1198/tast.2009.08185
  • Yim, S. H., Stettler, M. E., & Barrett, S. R. (2013). Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmospheric Environment, 67, 184–192. https://doi.org/10.1016/j.atmosenv.2012.10.058

Investigation of the Relationship Between Aircraft Movement and Air Quality at Airports: Aerosol Index and the European Example

Year 2025, Volume: 7 Issue: 1, 56 - 68, 28.02.2025
https://doi.org/10.51785/jar.1611083

Abstract

This study examines the relationship between air traffic and the atmospheric aerosol index (AAI) at six of Europe's busiest airports (Istanbul (LTFM), Amsterdam Schiphol (EHAM), Paris Charles de Gaulle (LFPG), London Heathrow (EGLL), Frankfurt (EDDF), and Madrid Barajas (LEMD)) between January 2023 and November 2024. Utilizing AAI data obtained from the Sentinel-5P satellite, air traffic and AAI values, their temporal variations, and the correlations between them were analyzed for each airport. Within the scope of this particular study, no general and significant correlation was found between air traffic and AAI. However, detailed analyses conducted on an individual airport basis revealed that this relationship emerged at different degrees and, in some cases, irregularly. While the relationship was weaker and more irregular at Madrid Barajas and Paris Charles de Gaulle, a more pronounced negative correlation was observed at Amsterdam Schiphol, London Heathrow, and Frankfurt, and a weak positive correlation was observed at Istanbul. The impact of factors such as industrial activities, urban heating, and other transportation sources on AAI values was excluded from the scope of this study. In conclusion, the relationship between air traffic and AAI varies across airports, and Sentinel-5P data provides a valuable tool for such analyses.

References

  • AENA (Aeropuertos Españoles y Navegación Aérea). (2024). Estadisticas. https://www.aena.es/es/estadisticas/informes-mensuales.html [Erişim tarihi: 20.12.2024].
  • Airport Carbon Accreditation. (2024). Accredited airports. https://www.airportcarbonaccreditation.org/accredited-airports/ [Erişim tarihi: 19.12.2024].
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time series analysis: Forecasting and control. John Wiley & Sons.
  • De Graaf, M., Stammes, P., Torres, O., & Koelemeijer, R. B. A. (2005). Absorbing aerosol index: Sensitivity analysis, application to GOME and comparison with TOMS. Journal of Geophysical Research: Atmospheres, 110(D1). https://doi.org/[DOI]
  • Devlet Hava Meydanları İşletmesi. (2024). İstatistikler. https://www.dhmi.gov.tr/Sayfalar/Istatistikler.aspx [Erişim tarihi: 20.12.2024].
  • Duan, J., Qin, M., Fang, W., Liao, Z., Gui, H., Shi, Z., Yang, H., Meng, F., Shao, D., Hu, J., Han, B., Xie, P., & Liu, W. (2022). Detection of aircraft emissions using long-path differential optical absorption spectroscopy at Hefei Xinqiao International Airport. Remote Sensing, 14(16), 3927. https://doi.org/10.3390/rs14163927
  • Dünya Sağlık Örgütü. (2024). Newsroom. https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health [Erişim tarihi: 19.12.2024].
  • EUROCONTROL. (2025). European aviation overview 2024. EUROCONTROL. E uropean Union Aviation Safety Agency (EASA). (2019). European aviation environmental report 2019. European Union Aviation Safety Agency.
  • Fraport AG. (2024). Traffic figures https://www.fraport.com/en/investors/traffic-figures.html [Erişim tarihi: 20.12.2024].
  • Groupe Aeroports de Paris. (2024). Traffic of Paris Aéroport and Groupe ADP airports. https://www.dhmi.gov.tr/Sayfalar/Istatistikler.aspx [Erişim tarihi: 20.12.2024].
  • Heathrow Airport Limited. (2024). Traffic statistics. https://www.heathrow.com/company/investor-centre/reports/traffic-statistics [Erişim tarihi: 20.12.2024].
  • Hsu, H. H., Adamkiewicz, G., Houseman, E. A., Zarubiak, D., Spengler, J. D., & Levy, J. I. (2013). Contributions of aircraft arrivals and departures to ultrafine particle counts near Los Angeles International Airport. Science of the Total E Environment, 444, 347–355. https://doi.org/10.1016/j.scitotenv.2012.12.058
  • Hudda, N., Gould, T., Hartin, K., Larson, T. V., & Fruin, S. A. (2014). Emissions from an international airport increase particle number concentrations 4-fold at 10 km downwind. Environmental Science & Technology, 48(12), 6628–6635. https://doi.org/10.1021/es5016126
  • Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59–66. https://doi.org/10.2307/2685263
  • Lee, D. S., Fahey, D. W., Forster, P. M., Newton, P. J., Wit, R. C., Lim, L. L., & Sausen, R. (2009). Aviation and global climate change in the 21st century. Atmospheric Environment, 43(22–23), 3520–3537. https://doi.org/10.1016/j.atmosenv.2009.06.005
  • Masiol, M., & Harrison, R. M. (2014). Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmospheric Environment, 95, 409–455. https://doi.org/10.1016/j.atmosenv.2014.06.028
  • Peng, B., Guan, K., Zhou, W., Jiang, C., Frankenberg, C., Sun, Y., … & Köhler, P. (2020). Assessing the benefit of satellite-based solar-induced chlorophyll fluorescence in crop yield prediction. International Journal of Applied Earth Observation and Geoinformation, 90, 102126. https://doi.org/10.1016/j.jag.2020.102126
  • Pöschl, U. (2005). Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie International Edition, 44(46), 7520–7540. https://doi.org/10.1002/anie.200500717
  • Royal Schiphol Group. (2024). Traffic and transport figures. https://www.schiphol.nl/en/schiphol-group/transport-and-traffic-statistics/ [Erişim tarihi: 20.12.2024].
  • Seinfeld, J. H., & Pandis, S. N. (2016). Atmospheric chemistry and physics: From air pollution to climate change. John Wiley & Sons.
  • SentiWiki. (2024). Sentinel-5P. https://sentiwiki.copernicus.eu/web/sentinel-5p [Erişim tarihi: 20.12.2024].
  • Stettler, M. E. J., Eastham, S., & Barrett, S. R. H. (2011). Air quality and public health impacts of UK airports. Part I: Emissions. Atmospheric Environment, 45(31), 5415–5424. https://doi.org/10.1016/j.atmosenv.2011.06.057
  • Torres, O., Bhartia, P. K., Herman, J. R., Ahmad, Z., & Gleason, J. (1998). Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation: Theoretical basis. Journal of Geophysical Research: Atmospheres, 103(D14), 17099–17110. https://doi.org/10.1029/98JD00900
  • Wilkinson, L., & Friendly, M. (2009). The history of the cluster heat map. The American Statistician, 63(2), 179–184. https://doi.org/10.1198/tast.2009.08185
  • Yim, S. H., Stettler, M. E., & Barrett, S. R. (2013). Air quality and public health impacts of UK airports. Part II: Impacts and policy assessment. Atmospheric Environment, 67, 184–192. https://doi.org/10.1016/j.atmosenv.2012.10.058
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Air-Space Transportation
Journal Section Research Articles
Authors

Eray Kaçar 0009-0003-3762-6031

Kaan Kalkan 0000-0002-2732-5425

Publication Date February 28, 2025
Submission Date December 31, 2024
Acceptance Date February 22, 2025
Published in Issue Year 2025 Volume: 7 Issue: 1

Cite

APA Kaçar, E., & Kalkan, K. (2025). Hava Aracı Hareketliliği ve Havalimanlarındaki Hava Kalitesi Arasındaki İlişkinin İncelenmesi: Aerosol İndeksi ve Avrupa Örneği. Journal of Aviation Research, 7(1), 56-68. https://doi.org/10.51785/jar.1611083

15550155491554815547155461554415543

15854  17159  17426   17988logo.png








17297
Bu dergi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.