Review
BibTex RIS Cite

Alternative Energy Sources in the Modern Aviation Sector: Steps Toward Sustainability Goal

Year 2024, Volume: 2 Issue: 1, 21 - 42, 01.06.2024

Abstract

The aviation sector in the 21st century faces a significant challenge in sustainability, particularly with the use of aircraft characterized by excessive power and energy requirements. This study examines alternative energy sources that could assist the aviation sector in achieving its sustainability goals. Energy sources such as biofuel pathways for synthetic kerosene, liquid hydrogen, ammonia, liquid natural gas, ethanol, methanol, and electric systems are compared with traditional fossil-origin aviation fuels. However, resolving technical and economic issues associated with these alternative energy sources is imperative. Factors such as aircraft performance, material properties affecting fuel processing, emissions, cost and scalability, resource and land requirements, and social impacts must be considered. This review indicates that bio-jet fuels, synthetic kerosene production pathways, liquid natural gas, and liquid hydrogen are technically feasible and can contribute environmentally. However, issues related to non-renewable production pathways pose challenges, offering no permanent solution for a fully sustainable aviation ecosystem. Consequently, transition scenarios from fossil-origin turbine fuels to synthetic kerosene propose the simultaneous adoption of liquid hydrogen and battery electric systems.

References

  • Abdullah, M.-A., Chew, B. C., & Hamid, S.-R. (2016). Benchmarking Key Success Factors for the Future Green Airline Industry. Social and Behavioral Sciences, 224, 246–253.
  • Abrahams, L. S., Samaras, C., Griffin, W. M., & Matthews, H. S. (2015). Life cycle greenhouse gas emissions from US liquefied natural gas exports: implications for end uses. Environmental Science & Technology, 49(5), 3237–3245.
  • Adelman, H., Browning, L., & Pefley, R. (1976). Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor. AIAA Journal, 14(6), 793–798.
  • Ansell, P. J. (2023). Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Progress in Aerospace Sciences, 141, 100919. https://doi.org/10.1016/j.paerosci.2023.100919.
  • Aydın, H., Turan, Ö., Karakoç, T. H., & Midilli, A. (2013). Exergo-Sustainability Indicators of a Turboprop Aircraft for the Phases of a Flight. Energy, 58, 550–560.
  • Aydın, H., Turan, Ö., Karakoç, T. H., & Midilli, A. (2015). Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine. International Journal of Green Energy, 12, 28–40.
  • Battal, Ü., & Mühim, S. A. (2016). Havayolu Taşımacılığında Yakıt Anlaşmalarında Riskten Korunma Yöntemleri ve Türkiye Uygulaması. Finans Politik ve Ekonomik Yorumlar (611), 39-56.
  • Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. John-Wiley & Sons, Inc.
  • Bauen, A., Bitossi, N., German, L., Harris, A., & Leow, K. (2020). Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johnson Matthey Technol. Rev., 64(3), 263–278. http://dx.doi.org/10.1595/205651320X15816756012040.
  • Becattini, F. (2023). Exergy of an open continuous medium. Physical Review E, 107(3), 034135. https://doi.org/10.1103/PhysRevE.107.034135
  • Bicer, Y., & Dincer, I. (2017). Life cycle evaluation of hydrogen and other potential fuels for aircrafts. International Journal of Hydrogen Energy, 42(16), 10722–10738.
  • Brundtland, G. H. (1987). Our Common Future (Brundtland Report). United Nations.
  • Cherbini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Gcb Bioenergy, 3(5), 413–426.
  • Directorate General of Civil Aviation TURKEY. (2018). (s. 57)
  • European Environment Agency. (2009). EMEP/EEA air pollutant emission inventory guidebook- 2009. European Environment Agency: https://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation_annex.zip/at_download/file (Erişim Tarihi: 25 Ocak 2024).
  • EUROCONTROL. (2018). European Aviation Fuel Burn and Emissions Inventory System (FEIS). https://www.eurocontrol.int/archive_download/all/node/10454 (Erişim Tarihi: 18 Ocak 2024).
  • FAA. (2005). Aviation & Emissions- A Primer. Federal Aviation Administration Office of Environment and Energy. United State of America: Federal Aviation Administration [FAA]. https://www.faa.gov/regulations_policies/policy_guidance/envir_policy/media/aeprimer.pdf (Erişim Tarihi: 21 Ocak 2024).
  • Federal Aviation Administration [FAA]. (2020). Airport Carbon Emissions Reduction. ABD. https://www.faa.gov/airports/environmental/air_quality/carbon_emissions_reduction/ (Erişim Tarihi: 21 Ocak 2024).
  • Federal Aviation Administration [FAA]. (2019). Economic performance of the airline industry, in: 2018 End-Year Report.
  • Gadreau, K., Fraser, R. A., & Murphy, S. (2012). The Characteristics of Exergy Reference Environment and Its Implications for Sustainability Based Decision Making. Energies, 5, 2197–2213.
  • Grimley, P. M. (2006). Indicators of sustainable development in civil aviation (Ph.D. Thesis, Loughborough University).
  • Gülsün Nakıboğlu. (2017). Sürdürülebilirlik için Yeşil Tedarik Zincirlerine Bütünsel Yaklaşım. Detay Yayıncılık, Ankara.
  • Hepperle, M. (2012). Electric Flight: Potential and Limitations. Technical Report STO-MP-AVT-209.
  • Hulst, D. (2006). Commercial Market Outlook 2022–2041. Boeing.
  • IATA. (2019). Economic performance of the airline industry, in: 2018 End-Year Report.
  • International Civil Aviation Organization [ICAO]. (2011). Airport Air Quality Manuel. Montreal, Kanada: International Civil Aviation Organization.
  • IPCC. (1999). Aviation and The Global Atmosphere. UNEP; WMO. Costa Rica: The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/av-en-1.pdf (Erişim Tarihi: 29 Ocak 2024).
  • Karataş, Y. (2020). Havacılık sektöründe performans analizi, performansı etkileyen faktörler ve strateji (Doktora tezi). İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Anabilim Dalı, Finans Bilim Dalı.
  • Klöwer, M., Allen, M. R., Lee, D. S., Proud, S. R., Gallagher, L., & Skowron, A. (2021). Quantifying aviation’s contribution to global warming. Environmental Research Letters, 16(2021), 104027. https://doi.org/10.1088/1748-9326/ac286e.
  • Klug, H. G., & Faass, R. (2001). CRYOPLANE: Hydrogen fuelled aircraft—status and challenges. Air Space Eur., 3(3–4), 252–254.
  • Kılkış, Ş., & Kılkış, Ş. (2016b). Multicriteria Analysis of Integrated Airline – Main Hub Airports Based on a Sustainable Aviation Sector Index. International Symposium on Sustainable Aviation, 29 Mayıs – 1 Haziran 2016, İstanbul, Türkiye.
  • Lee, D., Fahey, D., Skowron, A., Allen, M., Burkhardt, U., Chen, Q., Doherty, S., Freeman, P., Forster, J., Fuglestvedt, A., et al. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ., 244, 117834. http://dx.doi.org/10.1016/j.atmosenv.2020.117834.
  • Lee, D. S. (2018). The Current State of Scientific Understanding of The Non-CO2 Effects of Aviation on Climate. Manchester: Manchester Metropolitan University.
  • Liu, G. (2014). Development of a General Sustainability Indicator for Renewable Energy Systems, A Review. Renewable and Sustainable Energy Reviews, 31, 611–621.
  • Mai, T., Sandor, D., Wiser, R., & Schneider, T. (2012). Renewable Electricity Futures Study: Executive Summary. Technical Report, National Renewable Energy Lab (NREL), Golden, CO, United States.
  • Misra, A. (2018). Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications. In AIAA SciTech Forum and Exposition.
  • Mody, P. P. C. (2010). Impact of Liquefied Natural Gas Usage and Payload Size on Hybrid Wing Body Aircraft Fuel Efficiency (Ph.D. thesis). Massachusetts Institute of Technology.
  • Muhammad-Azfar Abdullah, Boon Cheong Chew, Syaiful-Rizal Hamid (2016). “Benchmarking Key Success Factors for the Future Green Airline Industry”. Social and Behavioral Sciences, 224, 246-253.
  • Mrazova, M. (2014). Sustainable development – the key for green aviation. Incas Bulletin, 6 (1), 109-122.
  • NASA. (2020). The Causes of Climate Change. Global Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/causes/ (Erişim Tarihi: 1 Haziran 2020).
  • National Academy of Sciences (2008). Appendices to ACRP Report 11: Guidebook on Preparing Airport GHG Emissions Inventories. Washington: The National Academies of Sciences, Engineering, and Medicine.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources: Review. Progress in Energy and Combustion Science, 37, 52–68.
  • Otton, M. V., Vesely, L., Kapat, J., Stoia, M., Applegate, N. D., & Natsui, G. (2022). Ammonia as an aircraft fuel: Thermal assessment from airport to wake. In Turbo Expo: Power for Land, Sea, and Air (Vol. 85987, V002T03A023). American Society of Mechanical Engineers.
  • Ram, V.; Salkuti, S.R. (2023) An Overview of Major Synthetic Fuels. Energies, 16, 2834. https://doi.org/10.3390/en16062834
  • Rocco, M. V., Colombo, E., & Sciubba, E. (2014). Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting Method. Applied Energy, 113, 1405–1420.
  • Romero, J. C., & Linares, P. (2014). Exergy as a Global Energy Sustainability Indicator. A Review of the State of the Art. Renewable and Sustainable Energy Reviews, 33, 427–442.
  • Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chem. Ing. Tech., 90(1–2), 127–140.
  • Scherbini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Gcb Bioenergy, 3(5), 413–426. Sewalt, M. P. G., Toxopeus, M. E., & Hirs, G. G. (2001). Thermodynamics Based Sustainability Concept. International Journal of Applied Thermodynamics, 4, 35–41.
  • Shauck, M., Tubbs, J., & Zanin, M. (1994). Certification of a carbureted aircraft engine on ethanol fuel. In Proceedings of AIAA/FAA/MSU 3rd Joint Symposium on General Aviation Systems, Starksville, Missouri. Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chem. Ing. Tech., 90(1–2), 127–140.
  • Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., & Liang, X.S. (2016). On the causal structure between CO2 and global temperature. Sci. Rep., 6(1), 1–9.
  • Sripad, S., Bills, A., & Viswanathan, V. (2021). A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 46(5), 435–442.
  • Tona, C., Raviolo, P. A., Pellegrini, L. F., & Junior S. de O. (2010). Exergy and Thermoeconomic Analysis of a Turbofan Engine during a Typical Commercial Flight. Energy, 35, 952–959.
  • United Nations Environment Programme. (2008). UNEP 2008 Annual Report.
  • United Nations Framework Convention on Climate Change. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change.
  • United States Government Accountability Office [GAO]. (2009). Aviation and Climate Change. Washington, Amerika Birleşik Devletleri. https://www.gao.gov/new.items/d09554.pdf (Erişim Tarihi: 18 Ocak 2024).
  • Wolfgang, Grimme. (2023). The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace, doi: 10.3390/aerospace10030218
  • Yılmaz, N., & Atmanlı, A. (2016). Havacılıkta Alternatif Yakıt Kullanılmasının İncelenmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 1(1), 3-10.
  • Yıldız, M. (2021). Electric Energy Use in Aviation: Perspective and Applications. Journal of Polytechnic-Politeknik Dergisi, 24, 1605–1610. https://doi.org/10.2339/politeknik.852272
  • Zhao, Y., Setzler, B. P., Wang, J., Nash, J., Wang, T., Xu, B., & Yan, Y. (2019). An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule, 3(10), 2472–2484.

Modern Havacılık Sektöründe Alternatif Enerji Kaynakları: Sürdürülebilirlik Hedeflerine Doğru Adımlar

Year 2024, Volume: 2 Issue: 1, 21 - 42, 01.06.2024

Abstract

21. yüzyılın modern havacılık sektörü, sürdürülebilirlikle ilgili önemli zorluklarla karşı karşıyadır, özellikle aşırı güç ve enerji gereksinimleriyle tanımlanan uçakların kullanımıyla. Bu çalışma, havacılık sektörünün sürdürülebilirlik hedeflerine ulaşmasına yardımcı olabilecek alternatif enerji kaynaklarını incelemektedir. Sentetik kerosen için biyoyakıt yolları, likit hidrojen, amonyak, sıvı doğal gaz, etanol, metanol ve elektrik sistemleri gibi enerji kaynakları, geleneksel fosil kökenli havacılık yakıtlarıyla karşılaştırılmaktadır. Ancak, bu alternatif enerji kaynaklarıyla ilgili teknik ve ekonomik konuların çözülmesi gerekmektedir. Uçak performansı, malzeme özellikleri, emisyonlar, maliyet ve ölçeklenebilirlik, kaynak ve arazi gereksinimleri, sosyal etkiler gibi faktörler dikkate alınmalıdır. Bu inceleme, biyo-jet yakıtları, sentetik kerosen üretim yolları, sıvı doğal gaz ve likit hidrojenin teknik açıdan uygulanabilir olduğunu ve çevresel açıdan katkı sağlayabileceğini göstermektedir. Ancak, yenilenebilir olmayan üretim yollarıyla ilgili sorunlar, tamamen sürdürülebilir bir havacılık ekosistemi için kalıcı çözüm oluşturmamaktadır. Sonuç olarak, sentetik kerosenin fosil kökenli türbin yakıtlarından geçiş senaryoları, likit hidrojen ve pil elektrik sistemlerinin eş zamanlı benimsenmesini önermektedir.

References

  • Abdullah, M.-A., Chew, B. C., & Hamid, S.-R. (2016). Benchmarking Key Success Factors for the Future Green Airline Industry. Social and Behavioral Sciences, 224, 246–253.
  • Abrahams, L. S., Samaras, C., Griffin, W. M., & Matthews, H. S. (2015). Life cycle greenhouse gas emissions from US liquefied natural gas exports: implications for end uses. Environmental Science & Technology, 49(5), 3237–3245.
  • Adelman, H., Browning, L., & Pefley, R. (1976). Predicted exhaust emissions from a methanol and jet fueled gas turbine combustor. AIAA Journal, 14(6), 793–798.
  • Ansell, P. J. (2023). Review of sustainable energy carriers for aviation: Benefits, challenges, and future viability. Progress in Aerospace Sciences, 141, 100919. https://doi.org/10.1016/j.paerosci.2023.100919.
  • Aydın, H., Turan, Ö., Karakoç, T. H., & Midilli, A. (2013). Exergo-Sustainability Indicators of a Turboprop Aircraft for the Phases of a Flight. Energy, 58, 550–560.
  • Aydın, H., Turan, Ö., Karakoç, T. H., & Midilli, A. (2015). Exergetic Sustainability Indicators as a Tool in Commercial Aircraft: A Case Study for a Turbofan Engine. International Journal of Green Energy, 12, 28–40.
  • Battal, Ü., & Mühim, S. A. (2016). Havayolu Taşımacılığında Yakıt Anlaşmalarında Riskten Korunma Yöntemleri ve Türkiye Uygulaması. Finans Politik ve Ekonomik Yorumlar (611), 39-56.
  • Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal Design and Optimization. John-Wiley & Sons, Inc.
  • Bauen, A., Bitossi, N., German, L., Harris, A., & Leow, K. (2020). Sustainable Aviation Fuels: Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johnson Matthey Technol. Rev., 64(3), 263–278. http://dx.doi.org/10.1595/205651320X15816756012040.
  • Becattini, F. (2023). Exergy of an open continuous medium. Physical Review E, 107(3), 034135. https://doi.org/10.1103/PhysRevE.107.034135
  • Bicer, Y., & Dincer, I. (2017). Life cycle evaluation of hydrogen and other potential fuels for aircrafts. International Journal of Hydrogen Energy, 42(16), 10722–10738.
  • Brundtland, G. H. (1987). Our Common Future (Brundtland Report). United Nations.
  • Cherbini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Gcb Bioenergy, 3(5), 413–426.
  • Directorate General of Civil Aviation TURKEY. (2018). (s. 57)
  • European Environment Agency. (2009). EMEP/EEA air pollutant emission inventory guidebook- 2009. European Environment Agency: https://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009/part-b-sectoral-guidance-chapters/1-energy/1-a-combustion/1-a-3-a-aviation_annex.zip/at_download/file (Erişim Tarihi: 25 Ocak 2024).
  • EUROCONTROL. (2018). European Aviation Fuel Burn and Emissions Inventory System (FEIS). https://www.eurocontrol.int/archive_download/all/node/10454 (Erişim Tarihi: 18 Ocak 2024).
  • FAA. (2005). Aviation & Emissions- A Primer. Federal Aviation Administration Office of Environment and Energy. United State of America: Federal Aviation Administration [FAA]. https://www.faa.gov/regulations_policies/policy_guidance/envir_policy/media/aeprimer.pdf (Erişim Tarihi: 21 Ocak 2024).
  • Federal Aviation Administration [FAA]. (2020). Airport Carbon Emissions Reduction. ABD. https://www.faa.gov/airports/environmental/air_quality/carbon_emissions_reduction/ (Erişim Tarihi: 21 Ocak 2024).
  • Federal Aviation Administration [FAA]. (2019). Economic performance of the airline industry, in: 2018 End-Year Report.
  • Gadreau, K., Fraser, R. A., & Murphy, S. (2012). The Characteristics of Exergy Reference Environment and Its Implications for Sustainability Based Decision Making. Energies, 5, 2197–2213.
  • Grimley, P. M. (2006). Indicators of sustainable development in civil aviation (Ph.D. Thesis, Loughborough University).
  • Gülsün Nakıboğlu. (2017). Sürdürülebilirlik için Yeşil Tedarik Zincirlerine Bütünsel Yaklaşım. Detay Yayıncılık, Ankara.
  • Hepperle, M. (2012). Electric Flight: Potential and Limitations. Technical Report STO-MP-AVT-209.
  • Hulst, D. (2006). Commercial Market Outlook 2022–2041. Boeing.
  • IATA. (2019). Economic performance of the airline industry, in: 2018 End-Year Report.
  • International Civil Aviation Organization [ICAO]. (2011). Airport Air Quality Manuel. Montreal, Kanada: International Civil Aviation Organization.
  • IPCC. (1999). Aviation and The Global Atmosphere. UNEP; WMO. Costa Rica: The Intergovernmental Panel on Climate Change. https://www.ipcc.ch/site/assets/uploads/2018/03/av-en-1.pdf (Erişim Tarihi: 29 Ocak 2024).
  • Karataş, Y. (2020). Havacılık sektöründe performans analizi, performansı etkileyen faktörler ve strateji (Doktora tezi). İstanbul Üniversitesi, Sosyal Bilimler Enstitüsü, İşletme Anabilim Dalı, Finans Bilim Dalı.
  • Klöwer, M., Allen, M. R., Lee, D. S., Proud, S. R., Gallagher, L., & Skowron, A. (2021). Quantifying aviation’s contribution to global warming. Environmental Research Letters, 16(2021), 104027. https://doi.org/10.1088/1748-9326/ac286e.
  • Klug, H. G., & Faass, R. (2001). CRYOPLANE: Hydrogen fuelled aircraft—status and challenges. Air Space Eur., 3(3–4), 252–254.
  • Kılkış, Ş., & Kılkış, Ş. (2016b). Multicriteria Analysis of Integrated Airline – Main Hub Airports Based on a Sustainable Aviation Sector Index. International Symposium on Sustainable Aviation, 29 Mayıs – 1 Haziran 2016, İstanbul, Türkiye.
  • Lee, D., Fahey, D., Skowron, A., Allen, M., Burkhardt, U., Chen, Q., Doherty, S., Freeman, P., Forster, J., Fuglestvedt, A., et al. (2021). The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ., 244, 117834. http://dx.doi.org/10.1016/j.atmosenv.2020.117834.
  • Lee, D. S. (2018). The Current State of Scientific Understanding of The Non-CO2 Effects of Aviation on Climate. Manchester: Manchester Metropolitan University.
  • Liu, G. (2014). Development of a General Sustainability Indicator for Renewable Energy Systems, A Review. Renewable and Sustainable Energy Reviews, 31, 611–621.
  • Mai, T., Sandor, D., Wiser, R., & Schneider, T. (2012). Renewable Electricity Futures Study: Executive Summary. Technical Report, National Renewable Energy Lab (NREL), Golden, CO, United States.
  • Misra, A. (2018). Summary of 2017 NASA Workshop on Assessment of Advanced Battery Technologies for Aerospace Applications. In AIAA SciTech Forum and Exposition.
  • Mody, P. P. C. (2010). Impact of Liquefied Natural Gas Usage and Payload Size on Hybrid Wing Body Aircraft Fuel Efficiency (Ph.D. thesis). Massachusetts Institute of Technology.
  • Muhammad-Azfar Abdullah, Boon Cheong Chew, Syaiful-Rizal Hamid (2016). “Benchmarking Key Success Factors for the Future Green Airline Industry”. Social and Behavioral Sciences, 224, 246-253.
  • Mrazova, M. (2014). Sustainable development – the key for green aviation. Incas Bulletin, 6 (1), 109-122.
  • NASA. (2020). The Causes of Climate Change. Global Climate Change: Vital Signs of the Planet. https://climate.nasa.gov/causes/ (Erişim Tarihi: 1 Haziran 2020).
  • National Academy of Sciences (2008). Appendices to ACRP Report 11: Guidebook on Preparing Airport GHG Emissions Inventories. Washington: The National Academies of Sciences, Engineering, and Medicine.
  • Nigam, P. S., & Singh, A. (2011). Production of liquid biofuels from renewable resources: Review. Progress in Energy and Combustion Science, 37, 52–68.
  • Otton, M. V., Vesely, L., Kapat, J., Stoia, M., Applegate, N. D., & Natsui, G. (2022). Ammonia as an aircraft fuel: Thermal assessment from airport to wake. In Turbo Expo: Power for Land, Sea, and Air (Vol. 85987, V002T03A023). American Society of Mechanical Engineers.
  • Ram, V.; Salkuti, S.R. (2023) An Overview of Major Synthetic Fuels. Energies, 16, 2834. https://doi.org/10.3390/en16062834
  • Rocco, M. V., Colombo, E., & Sciubba, E. (2014). Advances in exergy analysis: a novel assessment of the Extended Exergy Accounting Method. Applied Energy, 113, 1405–1420.
  • Romero, J. C., & Linares, P. (2014). Exergy as a Global Energy Sustainability Indicator. A Review of the State of the Art. Renewable and Sustainable Energy Reviews, 33, 427–442.
  • Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chem. Ing. Tech., 90(1–2), 127–140.
  • Scherbini, F., Peters, G. P., Berntsen, T., Strømman, A. H., & Hertwich, E. (2011). CO2 emissions from biomass combustion for bioenergy: Atmospheric decay and contribution to global warming. Gcb Bioenergy, 3(5), 413–426. Sewalt, M. P. G., Toxopeus, M. E., & Hirs, G. G. (2001). Thermodynamics Based Sustainability Concept. International Journal of Applied Thermodynamics, 4, 35–41.
  • Shauck, M., Tubbs, J., & Zanin, M. (1994). Certification of a carbureted aircraft engine on ethanol fuel. In Proceedings of AIAA/FAA/MSU 3rd Joint Symposium on General Aviation Systems, Starksville, Missouri. Schmidt, P., Batteiger, V., Roth, A., Weindorf, W., & Raksha, T. (2018). Power-to-liquids as renewable fuel option for aviation: A review. Chem. Ing. Tech., 90(1–2), 127–140.
  • Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., & Liang, X.S. (2016). On the causal structure between CO2 and global temperature. Sci. Rep., 6(1), 1–9.
  • Sripad, S., Bills, A., & Viswanathan, V. (2021). A review of safety considerations for batteries in aircraft with electric propulsion. MRS Bulletin, 46(5), 435–442.
  • Tona, C., Raviolo, P. A., Pellegrini, L. F., & Junior S. de O. (2010). Exergy and Thermoeconomic Analysis of a Turbofan Engine during a Typical Commercial Flight. Energy, 35, 952–959.
  • United Nations Environment Programme. (2008). UNEP 2008 Annual Report.
  • United Nations Framework Convention on Climate Change. (1998). Kyoto Protocol to the United Nations Framework Convention on Climate Change.
  • United States Government Accountability Office [GAO]. (2009). Aviation and Climate Change. Washington, Amerika Birleşik Devletleri. https://www.gao.gov/new.items/d09554.pdf (Erişim Tarihi: 18 Ocak 2024).
  • Wolfgang, Grimme. (2023). The Introduction of Sustainable Aviation Fuels—A Discussion of Challenges, Options and Alternatives. Aerospace, doi: 10.3390/aerospace10030218
  • Yılmaz, N., & Atmanlı, A. (2016). Havacılıkta Alternatif Yakıt Kullanılmasının İncelenmesi. Sürdürülebilir Havacılık Araştırmaları Dergisi, 1(1), 3-10.
  • Yıldız, M. (2021). Electric Energy Use in Aviation: Perspective and Applications. Journal of Polytechnic-Politeknik Dergisi, 24, 1605–1610. https://doi.org/10.2339/politeknik.852272
  • Zhao, Y., Setzler, B. P., Wang, J., Nash, J., Wang, T., Xu, B., & Yan, Y. (2019). An efficient direct ammonia fuel cell for affordable carbon-neutral transportation. Joule, 3(10), 2472–2484.
There are 59 citations in total.

Details

Primary Language Turkish
Subjects Environmental Management (Other), Air-Space Transportation
Journal Section Reviews
Authors

Ozan Öztürk 0000-0002-4959-6808

Hülya Göktepe 0000-0003-3669-1598

Early Pub Date April 16, 2024
Publication Date June 1, 2024
Submission Date February 15, 2024
Acceptance Date March 4, 2024
Published in Issue Year 2024 Volume: 2 Issue: 1

Cite

APA Öztürk, O., & Göktepe, H. (2024). Modern Havacılık Sektöründe Alternatif Enerji Kaynakları: Sürdürülebilirlik Hedeflerine Doğru Adımlar. Journal of Aerospace Science and Management, 2(1), 21-42.

Publication of Erciyes University, Aviation Sciences Application and Research Center, 2021 | jasam@erciyes.edu.tr

This publication is licensed under Creative Commons CC BY-NC-SA 4.0by-nc-sa.png