Research Article
BibTex RIS Cite

Influence of Transfer to High Salinity on Chloride Cells, Oxygen and Energy Consumption in Common Carp Cyprinus carpio

Year 2019, Volume: 2 Issue: 1, 1 - 12, 27.12.2019

Abstract

The present study was conducted to investigate the effect of high salinity on some stress parameters of common carp (Cyprinus carpio), which gradually exposed to salt concentrations of 5, 10 and 15 g/L, as well as tap water (control 0.1g/L) for 90 days. 80 fish were randomly distributed on eight glass tanks with 2 replicates as 10 fish /tank at average weight of 15 ± 3 g to study the effects of salinity on the number and percentages of the chloride cells in gills, beside the effect of salt concentrations on metabolism and the cost of the energy spent for osmoregulation through studying the oxygen consumption. Chloride cells in the gills were increased to 10.36, 14.80, 11.95 x 105 cell /g scraped matter. While the percentage of the chloride cells, increased to 11.34, 12.14 and 11.90% in the salt concentration of 5, 10 and 15 g/L, respectively, in comparison with the control treatment (8.42%). The rise in salinity was accompanied with an increase in the average of the oxygen consumed by common carp as it amounted 150,181.25 and 196.87 mg O2 /kg/h when the salinity increased to 5,10 and 15 g/l respectively, in comparison with the control treatment (85.93 mg O2 /kg/ hour), and this increase in the oxygen consumption resulted in an increase in the average of the energy consumed by fish that reached 0.50, 0.6 and 0.66 kcal (kg/h) with the increase of salinity to 5,10, and 15 g/L, respectively, in comparison to control (0.28 kcal/kg/h).

Thanks

This study has been supported by University of Baghdad. I appreciate the invaluable technical support of the Ministry of Science and Technology in Iraq.

References

  • Ahmed, S. M. 2005. Bioenergetics of osmoregulation in Liza abu Juveniles during salinity acclimation. Bas. J.Vet. Res. 4(1): 9- 16.
  • Ahmed, S. M., Al-Dubiakel, A. Y., Mohamed, F. A. 2004. Changes in alkaline phosphatase activity in the intestine of Liza abu Juveniles during salinity acclimation. Iraq.J. Aquaculture 11:17-27.
  • Al-Faiz, A.F., Jabir A., Yesser, A. 2009. Variance salinity concentrations effects on survival, growth and feeding of common carp (Cyprinus carpio) fingerlings. Iraqi J. Aquaculture 6(2):59–70.
  • Al-Khshali, M. S. 2011. Effect of different salt concentrations on some physiological and nutritional aspects of grass carp Ctenopharyngodon idella and gold fish Carassius auratus, University of Baghdad, Ph.D Thesis p. 120.
  • Awal, M. A., Kuri, K. C., Sarker, S. 2012. Effect of Salinity on the Oxygen Consumption of Tilapia Fingerlings. Daffodil International University Journal of Science and Technology 7(1):12-14.
  • Azizi, S., Kochanian, P., Peyghan, R. 2010. Chloride cell morphometrics of Common carp, Cyprinus carpio, in response to different salinities. Comp. Clin. Pathol. 4: 363-367.
  • Bardach, J. E., Ryther, J. H., Mclarney, W. O. 1972. Aquaculture: The Farming and husbandry of fresh water and marine organisms. New York NY, Willey.
  • Carmona, R., García-Gallego, M., Sanz, A., Domezaín, A., Ostos-Garrido, V. 2004. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens. J. Fish Biol. 64(2): 553–566.
  • Dube, P. N., Hosetti, B. B. 2010. Behavior, surveillance and oxygen consumption in the fresh water fish Labeo rohita (Hamilton) exposed to sodium cyanide. Biotech. Anim. Husbandry 26(2-1): 91- 103.
  • Eddy, F.B. 1982. Osmotic and ionic regulation in captive fish. Comp.Bio.Physiology 73(1):125-141.
  • Epstein, F. H., Silva, P., Kormani, G. 1980. Role of Na-K-ATPase in chloride cell function. Am. J. Physiology 238 (3):R246-250.
  • Evans, D. H., Piermarini, P. M., Choe, K. P. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85(1): 97-177.
  • Fazio, A., Marafioti, S., Arfuso, F., Piccione, G., Faggio, C. 2013. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar. Freshwater Behav. Physiol. 46(4): 211–218.
  • Fielder, D. S., Allan, G. L., Pepperall, D., Pankhurst, P. M. 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture 272: 656–666.
  • Fischer, P. 2000. An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian J. Fish. Aqua. Sci. 57: 2336–2344.
  • Ghahremanzadeh, Z., Namin, J. I., Bani, A., Hallajian, A. 2014. Cytological comparison of gill chloride cells and blood serum ion concentrations in kutum (Rutilus frisii kutum) spawners from brackish (Caspian Sea) and fresh water (Khoshkrood River) environments. Polish Fisheries 22(3): 189–196.
  • Gracia-Lopez, V., Rosas-Vazquez, C., Brito-Perez, R. 2006. Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 145(3): 340-345.
  • Grøtan, K., Østbye, K., Taugbøl, A., Vøllestad, L. A. 2012. No short-term effect of salinity on oxygen consumption in threespine stickleback (Gasterosteus aculeatus) from fresh, brackish, and salt water. Can. J. Zool. 90(12): 1386-1393.
  • Gulácsi, A., Lee, G. R., Sík, A., Viitanen, T., Kaila, K., Tepper, J. M., Freund, T. F. 2003. Cell type-specific differences in chloride-regulatory mechanisms and GABAA receptor-mediated inhibition in rat substantia Nigra. The Journal of Neuroscience 23: 8237-8246.
  • Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R., Kaneko, T. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na +/K+-ATPase, Na+/K+/2Cl− cotransporter and CFTR anion channel. J.Exp. Biol.208:2023–2036.
  • Jackson, A. G. 1981. Salinity tolerance and osmotic behavior of European carp (Cyprinus carpio L.) from the river Murray. Australia Trans. R.Soc.Aus. 103 (7): 185- 189.
  • Kaneko, T., Hiroi, J. 2008. Osmo and ion regulation. In R. N. Finn, & B. G. Kapoor, Fish Larval Physiology. Enfield: Science Publishers.
  • Keddy, P. A. 2001. Competition, 2nd Edition. London, Kluwer Academic Publishers.
  • Lee, T. H., Hwang, P. P., Shieh, Y. E., Lin, C. H. 2000. The relationship between `deep-hole' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiology and Biochemistry 23:133-140.
  • Mancera,, J. M., McCormick, S. D. 2000. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus. J. Exp. Zool. 287: 263-274.
  • Mangum, C., Towle, D. 1977. Physiological adaptation to unstable environments. Am. Sci. 65: 67-75.
  • McCormick, S. D., Sakamoto, T., Hasegawa, S., Hirano, T. 1991. Osmoregulatory actions of insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). Journal of Endocrinology 130: 87-92.
  • McKenzie, D. J., Cataldi, E., Romano, P., Taylor, E. W., Cataudella, S., Bronzi, P. 2001. Effects of acclimation to brackish water on tolerance of salinity challenge by young-of-the-year adriatic sturgeon (Acipenser naccarii). Canadian Journal of Fisheries and Aquatic Sciences 58: 1113–1121.
  • Mommsen, T.P. 1998. Growth and metabolism. In D. Evans, The Physiology of Fishes, Second Edition. Boca Raton: CRC Press.
  • Morgan, J. D., Iwama, G. K. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout (Oncorhynchus mykiss) and fall Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquacult. Sci. 48 (11): 2083-2094.
  • Morgan, J. D., Gordon Grau, T. E., Iwama, G. K. 1997. Physiological and respiratory responses of the Mozambique Tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol 117(3): 391- 398.
  • Mylonas, C. C., Pavlidis, M., Papandroulakis, N., Zaiss, M. M., Tsafarakis, D., Papadakis, I. E., Varsamos, S. 2009. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environment salinities. Aquaculture 287: 203-210.
  • Nordlie, F. G., Leffer, G. W. 1975. Ionic regulation and the energetic of osmoregulation in Mugil cephalus Lin. Comparative Biochemistry and Physiology Part A: Physiology 51(1): 125-131.
  • Peck, M. A., Buckley, L. J., Bengtson, D. A. 2005. Effects of temperature, body size, and feeding on rates of metabolism in young- of the year haddock. J. Fish Biol. 66:911-923.
  • Pereira, B. F., Caetano, F. H. 2009. Histochemical technique for the detection of chloride cells in fish. Micron 40(8): 783- 786.
  • Sangiao-Alvarellos, S., Miguez, J. M., Soengas, J. L. 2007. Melatonin treatment affects the osmoregulatory capacity of rainbow trout. Aquacult Res. 38: 325–330.
  • Sargent, J. R., Pirire, B. D., Thompson, A. J., George, S. G. 1978. Structure and function of chloride cells in the gills of Anguilla Anguilla. Physiology and Behavior of Marine Organisms 123- 132.
  • Shikano, T., Fujio, Y. 1999. Relationships of salinity tolerance to immunolocalization of Na +K+ ATPase in the gill epithelium during seawater and freshwater adaptation of the Guppy, Poecilia reticulata. Zool. Sci. 15(1): 35-41.
  • Tseng, Y. C., Hwang, P. P. 2008. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 148(4): 419–429.
  • Wang, J. Q., Lui, H., Po, H., Fan, L. 1997. Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture 148: 115–124.

Influence of Transfer to High Salinity on Chloride Cells, Oxygen and Energy Consumption in Common Carp Cyprinus carpio

Year 2019, Volume: 2 Issue: 1, 1 - 12, 27.12.2019

Abstract

The present study was conducted to investigate the effect of high salinity on some stress parameters of common carp (Cyprinus carpio), which gradually exposed to salt concentrations of 5, 10 and 15 g/L, as well as tap water (control 0.1g/L) for 90 days. 80 fish were randomly distributed on eight glass tanks with 2 replicates as 10 fish /tank at average weight of 15 ± 3 g to study the effects of salinity on the number and percentages of the chloride cells in gills, beside the effect of salt concentrations on metabolism and the cost of the energy spent for osmoregulation through studying the oxygen consumption. Chloride cells in the gills were increased to 10.36, 14.80, 11.95 x 105 cell /g scraped matter. While the percentage of the chloride cells, increased to 11.34, 12.14 and 11.90% in the salt concentration of 5, 10 and 15 g/L, respectively, in comparison with the control treatment (8.42%). The rise in salinity was accompanied with an increase in the average of the oxygen consumed by common carp as it amounted 150,181.25 and 196.87 mg O2 /kg/h when the salinity increased to 5,10 and 15 g/l respectively, in comparison with the control treatment (85.93 mg O2 /kg/ hour), and this increase in the oxygen consumption resulted in an increase in the average of the energy consumed by fish that reached 0.50, 0.6 and 0.66 kcal (kg/h) with the increase of salinity to 5,10, and 15 g/L, respectively, in comparison to control (0.28 kcal/kg/h).

References

  • Ahmed, S. M. 2005. Bioenergetics of osmoregulation in Liza abu Juveniles during salinity acclimation. Bas. J.Vet. Res. 4(1): 9- 16.
  • Ahmed, S. M., Al-Dubiakel, A. Y., Mohamed, F. A. 2004. Changes in alkaline phosphatase activity in the intestine of Liza abu Juveniles during salinity acclimation. Iraq.J. Aquaculture 11:17-27.
  • Al-Faiz, A.F., Jabir A., Yesser, A. 2009. Variance salinity concentrations effects on survival, growth and feeding of common carp (Cyprinus carpio) fingerlings. Iraqi J. Aquaculture 6(2):59–70.
  • Al-Khshali, M. S. 2011. Effect of different salt concentrations on some physiological and nutritional aspects of grass carp Ctenopharyngodon idella and gold fish Carassius auratus, University of Baghdad, Ph.D Thesis p. 120.
  • Awal, M. A., Kuri, K. C., Sarker, S. 2012. Effect of Salinity on the Oxygen Consumption of Tilapia Fingerlings. Daffodil International University Journal of Science and Technology 7(1):12-14.
  • Azizi, S., Kochanian, P., Peyghan, R. 2010. Chloride cell morphometrics of Common carp, Cyprinus carpio, in response to different salinities. Comp. Clin. Pathol. 4: 363-367.
  • Bardach, J. E., Ryther, J. H., Mclarney, W. O. 1972. Aquaculture: The Farming and husbandry of fresh water and marine organisms. New York NY, Willey.
  • Carmona, R., García-Gallego, M., Sanz, A., Domezaín, A., Ostos-Garrido, V. 2004. Chloride cells and pavement cells in gill epithelia of Acipenser naccarii: ultrastructural modifications in seawater-acclimated specimens. J. Fish Biol. 64(2): 553–566.
  • Dube, P. N., Hosetti, B. B. 2010. Behavior, surveillance and oxygen consumption in the fresh water fish Labeo rohita (Hamilton) exposed to sodium cyanide. Biotech. Anim. Husbandry 26(2-1): 91- 103.
  • Eddy, F.B. 1982. Osmotic and ionic regulation in captive fish. Comp.Bio.Physiology 73(1):125-141.
  • Epstein, F. H., Silva, P., Kormani, G. 1980. Role of Na-K-ATPase in chloride cell function. Am. J. Physiology 238 (3):R246-250.
  • Evans, D. H., Piermarini, P. M., Choe, K. P. 2005. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiol Rev. 85(1): 97-177.
  • Fazio, A., Marafioti, S., Arfuso, F., Piccione, G., Faggio, C. 2013. Influence of different salinity on haematological and biochemical parameters of the widely cultured mullet, Mugil cephalus. Mar. Freshwater Behav. Physiol. 46(4): 211–218.
  • Fielder, D. S., Allan, G. L., Pepperall, D., Pankhurst, P. M. 2007. The effects of changes in salinity on osmoregulation and chloride cell morphology of juvenile Australian snapper, Pagrus auratus. Aquaculture 272: 656–666.
  • Fischer, P. 2000. An experimental test of metabolic and behavioural responses of benthic fish species to different types of substrate. Canadian J. Fish. Aqua. Sci. 57: 2336–2344.
  • Ghahremanzadeh, Z., Namin, J. I., Bani, A., Hallajian, A. 2014. Cytological comparison of gill chloride cells and blood serum ion concentrations in kutum (Rutilus frisii kutum) spawners from brackish (Caspian Sea) and fresh water (Khoshkrood River) environments. Polish Fisheries 22(3): 189–196.
  • Gracia-Lopez, V., Rosas-Vazquez, C., Brito-Perez, R. 2006. Effects of salinity on physiological conditions in juvenile common snook Centropomus undecimalis. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 145(3): 340-345.
  • Grøtan, K., Østbye, K., Taugbøl, A., Vøllestad, L. A. 2012. No short-term effect of salinity on oxygen consumption in threespine stickleback (Gasterosteus aculeatus) from fresh, brackish, and salt water. Can. J. Zool. 90(12): 1386-1393.
  • Gulácsi, A., Lee, G. R., Sík, A., Viitanen, T., Kaila, K., Tepper, J. M., Freund, T. F. 2003. Cell type-specific differences in chloride-regulatory mechanisms and GABAA receptor-mediated inhibition in rat substantia Nigra. The Journal of Neuroscience 23: 8237-8246.
  • Hiroi, J., McCormick, S. D., Ohtani-Kaneko, R., Kaneko, T. 2005. Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na +/K+-ATPase, Na+/K+/2Cl− cotransporter and CFTR anion channel. J.Exp. Biol.208:2023–2036.
  • Jackson, A. G. 1981. Salinity tolerance and osmotic behavior of European carp (Cyprinus carpio L.) from the river Murray. Australia Trans. R.Soc.Aus. 103 (7): 185- 189.
  • Kaneko, T., Hiroi, J. 2008. Osmo and ion regulation. In R. N. Finn, & B. G. Kapoor, Fish Larval Physiology. Enfield: Science Publishers.
  • Keddy, P. A. 2001. Competition, 2nd Edition. London, Kluwer Academic Publishers.
  • Lee, T. H., Hwang, P. P., Shieh, Y. E., Lin, C. H. 2000. The relationship between `deep-hole' mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus. Fish Physiology and Biochemistry 23:133-140.
  • Mancera,, J. M., McCormick, S. D. 2000. Rapid activation of gill Na+,K+-ATPase in the euryhaline teleost Fundulus heteroclitus. J. Exp. Zool. 287: 263-274.
  • Mangum, C., Towle, D. 1977. Physiological adaptation to unstable environments. Am. Sci. 65: 67-75.
  • McCormick, S. D., Sakamoto, T., Hasegawa, S., Hirano, T. 1991. Osmoregulatory actions of insulin-like growth factor-I in rainbow trout (Oncorhynchus mykiss). Journal of Endocrinology 130: 87-92.
  • McKenzie, D. J., Cataldi, E., Romano, P., Taylor, E. W., Cataudella, S., Bronzi, P. 2001. Effects of acclimation to brackish water on tolerance of salinity challenge by young-of-the-year adriatic sturgeon (Acipenser naccarii). Canadian Journal of Fisheries and Aquatic Sciences 58: 1113–1121.
  • Mommsen, T.P. 1998. Growth and metabolism. In D. Evans, The Physiology of Fishes, Second Edition. Boca Raton: CRC Press.
  • Morgan, J. D., Iwama, G. K. 1991. Effects of salinity on growth, metabolism, and ion regulation in juvenile rainbow trout (Oncorhynchus mykiss) and fall Chinook salmon (Oncorhynchus tshawytscha). Can. J. Fish. Aquacult. Sci. 48 (11): 2083-2094.
  • Morgan, J. D., Gordon Grau, T. E., Iwama, G. K. 1997. Physiological and respiratory responses of the Mozambique Tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol 117(3): 391- 398.
  • Mylonas, C. C., Pavlidis, M., Papandroulakis, N., Zaiss, M. M., Tsafarakis, D., Papadakis, I. E., Varsamos, S. 2009. Growth performance and osmoregulation in the shi drum (Umbrina cirrosa) adapted to different environment salinities. Aquaculture 287: 203-210.
  • Nordlie, F. G., Leffer, G. W. 1975. Ionic regulation and the energetic of osmoregulation in Mugil cephalus Lin. Comparative Biochemistry and Physiology Part A: Physiology 51(1): 125-131.
  • Peck, M. A., Buckley, L. J., Bengtson, D. A. 2005. Effects of temperature, body size, and feeding on rates of metabolism in young- of the year haddock. J. Fish Biol. 66:911-923.
  • Pereira, B. F., Caetano, F. H. 2009. Histochemical technique for the detection of chloride cells in fish. Micron 40(8): 783- 786.
  • Sangiao-Alvarellos, S., Miguez, J. M., Soengas, J. L. 2007. Melatonin treatment affects the osmoregulatory capacity of rainbow trout. Aquacult Res. 38: 325–330.
  • Sargent, J. R., Pirire, B. D., Thompson, A. J., George, S. G. 1978. Structure and function of chloride cells in the gills of Anguilla Anguilla. Physiology and Behavior of Marine Organisms 123- 132.
  • Shikano, T., Fujio, Y. 1999. Relationships of salinity tolerance to immunolocalization of Na +K+ ATPase in the gill epithelium during seawater and freshwater adaptation of the Guppy, Poecilia reticulata. Zool. Sci. 15(1): 35-41.
  • Tseng, Y. C., Hwang, P. P. 2008. Some insights into energy metabolism for osmoregulation in fish. Comp. Biochem. Physiol. C-Toxicol. Pharmacol. 148(4): 419–429.
  • Wang, J. Q., Lui, H., Po, H., Fan, L. 1997. Influence of salinity on food consumption, growth and energy conversion efficiency of common carp (Cyprinus carpio) fingerlings. Aquaculture 148: 115–124.
There are 40 citations in total.

Details

Primary Language English
Subjects Agricultural Engineering
Journal Section Research Articles
Authors

Mohamed Shaker Al-khshalı This is me

Hasan Ali Al-hılalı This is me

Publication Date December 27, 2019
Published in Issue Year 2019 Volume: 2 Issue: 1

Cite

APA Al-khshalı, M. S., & Al-hılalı, H. A. (2019). Influence of Transfer to High Salinity on Chloride Cells, Oxygen and Energy Consumption in Common Carp Cyprinus carpio. Hayvan Bilimi Ve Ürünleri Dergisi, 2(1), 1-12.


Indexed by:

Google Scholar        Directory of Research Journals Indexing       idealonline        19413        BASE (Bielefeld Academic Search Engine)        

Index Copernicus        Cite Factor        JournalTOCs

InfoBase Index        SIS Scientific Group        Food and Agriculture Organization of the United Nations

International Peer Reviewed Journal)
The journal doesn’t have APC or any submission charges.

Creative Commons License