Theoretical Article
BibTex RIS Cite
Year 2022, , 49 - 59, 30.06.2022
https://doi.org/10.54559/jauist.1124012

Abstract

References

  • [1] M. Atçeken and S.Dirik , On the geometry of pseudo-slant submanifold of a Kenmotsu manifold, Gulf Journal of Mathematics , 2(2)(2014),51-66.
  • [2 D. E. Blair, Contact Manifolds in Riemannian Geometry: Lecture Notes in Mathematics, 509, Springer, Berlin (1976).
  • [3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).
  • [4] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics 91, (1995), 189-214.
  • [5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Mathematical Journal, 42, (2000), 125-138.
  • [6] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi, India, (2002).
  • [7] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ,μ)-space forms, Mediterranean Journal of Mathematics, 10, (2013), 475-496, doi: 10.1007/s00009-012-0196-2.
  • [8] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
  • [9] B.Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.
  • [10] U.C. De and A. Sarkar, On Pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01
  • [11] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in Cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.
  • [12] S. Dirik, M. Atçeken, ¨U . Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.
  • [13] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian Journal of püre and applied Mathematics, 38, 1(2007), 31-42.
  • [14] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica Aeterna, 3, 8(2013), 645-653.
  • [15] T. Koufogiorgos, Contact Riemannian manifolds with constant 𝜑-sectional curvature, Tokyo Journal of Mathematics, 20, 1(1997),13-22.
  • [16] B. Laha and A. Bhattacharyya, Totally umbilical Hemislant submanifolds of LP-Sasakian Manifold, Lobachevskii Journal of Mathematics, 36, 2(2015), 127-131, doi: 10.1134/S1995080215020122.
  • [17] A. Lotta, Slant submanifolds in contact geometry, Bulletin of Mathematical Society Romania, 39, (1996), 183-198.
  • [18] S. Phan, On geometry of warped product pseudo-slant submanifolds on generelized Sasakian space forms , Gulf journal of Mathematics 9(1), (2020,)42-61.
  • [19] M.S. Siddesha and C. S. Bagewadi, On Slant submanifolds of (κ,μ)−contact manifold, Differential Geometry-Dynamical Systems, 18, (2016), 123-131.
  • [20] N. Venkatesha, Srikantha and M.S.Siddesha, On pseudo-slant submanifolds of (κ,μ)−contact space forms, Palestine Journal of Mathematics, 8(2)(2019) , 248-257.

CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD

Year 2022, , 49 - 59, 30.06.2022
https://doi.org/10.54559/jauist.1124012

Abstract

In this paper, the geometry of contact pseudo-slant submanifolds of a para Kenmotsu manifold
howe been studied. The necessary and sufficient conditions for a submanifolds to be a contact pseudoslant
submanifolds of a para Kenmotsu manifold are given.

References

  • [1] M. Atçeken and S.Dirik , On the geometry of pseudo-slant submanifold of a Kenmotsu manifold, Gulf Journal of Mathematics , 2(2)(2014),51-66.
  • [2 D. E. Blair, Contact Manifolds in Riemannian Geometry: Lecture Notes in Mathematics, 509, Springer, Berlin (1976).
  • [3] D. E. Blair, Riemannian Geometry of Contact and Symplectic Manifolds, Birkhäuser, Boston (2002).
  • [4] D. E. Blair, T. Koufogiorgos, B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel Journal of Mathematics 91, (1995), 189-214.
  • [5] J. L. Cabrerizo, A. Carriazo, L. M. Fernandez, M. Fernandez, Slant submanifolds in Sasakian manifolds, Glasgow Mathematical Journal, 42, (2000), 125-138.
  • [6] A. Carriazo, New Devolopments in Slant Submanifolds Theory, Narosa publishing House, New Delhi, India, (2002).
  • [7] A. Carriazo, V. Martin-Molina and M. M. Tripathi, Generalized (κ,μ)-space forms, Mediterranean Journal of Mathematics, 10, (2013), 475-496, doi: 10.1007/s00009-012-0196-2.
  • [8] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universiteit Leuven, Leuven, (1990).
  • [9] B.Y. Chen, Slant immersions, Bulletin of the Australian Mathematical Society, 41, (1990), 135-147.
  • [10] U.C. De and A. Sarkar, On Pseudo-slant submanifolds of trans-Sasakian manifolds, Proceedings of the Estonian Academy of Sciences, 60, 1(2011), 1-11, doi: 10.3176/proc.2011.1.01
  • [11] S. Dirik, M. Atçeken, Pseudo-slant submanifolds in Cosymplectic space forms, Acta Universitatis Sapientiae: Mathematica, 8, 1(2016), 53-74, doi: 10.1515/ausm-2016-0004.
  • [12] S. Dirik, M. Atçeken, ¨U . Yildirim, Pseudo-slant submanifold in Kenmotsu space forms, Journal of Advances in Mathematics, 11, 10(2016), 5680-5696.
  • [13] V. A. Khan and M. A. Khan, Pseudo-slant submanifolds of a Sasakian manifold, Indian Journal of püre and applied Mathematics, 38, 1(2007), 31-42.
  • [14] M. A. Khan, Totally umbilical Hemi-slant submanifolds of Cosymplectic manifolds, Mathematica Aeterna, 3, 8(2013), 645-653.
  • [15] T. Koufogiorgos, Contact Riemannian manifolds with constant 𝜑-sectional curvature, Tokyo Journal of Mathematics, 20, 1(1997),13-22.
  • [16] B. Laha and A. Bhattacharyya, Totally umbilical Hemislant submanifolds of LP-Sasakian Manifold, Lobachevskii Journal of Mathematics, 36, 2(2015), 127-131, doi: 10.1134/S1995080215020122.
  • [17] A. Lotta, Slant submanifolds in contact geometry, Bulletin of Mathematical Society Romania, 39, (1996), 183-198.
  • [18] S. Phan, On geometry of warped product pseudo-slant submanifolds on generelized Sasakian space forms , Gulf journal of Mathematics 9(1), (2020,)42-61.
  • [19] M.S. Siddesha and C. S. Bagewadi, On Slant submanifolds of (κ,μ)−contact manifold, Differential Geometry-Dynamical Systems, 18, (2016), 123-131.
  • [20] N. Venkatesha, Srikantha and M.S.Siddesha, On pseudo-slant submanifolds of (κ,μ)−contact space forms, Palestine Journal of Mathematics, 8(2)(2019) , 248-257.
There are 20 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Articles
Authors

Süleyman Dirik

Ümit Yıldırım

Publication Date June 30, 2022
Published in Issue Year 2022

Cite

APA Dirik, S., & Yıldırım, Ü. (2022). CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD. Journal of Amasya University the Institute of Sciences and Technology, 3(1), 49-59. https://doi.org/10.54559/jauist.1124012
AMA Dirik S, Yıldırım Ü. CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD. J. Amasya Univ. Inst. Sci. Technol. June 2022;3(1):49-59. doi:10.54559/jauist.1124012
Chicago Dirik, Süleyman, and Ümit Yıldırım. “CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD”. Journal of Amasya University the Institute of Sciences and Technology 3, no. 1 (June 2022): 49-59. https://doi.org/10.54559/jauist.1124012.
EndNote Dirik S, Yıldırım Ü (June 1, 2022) CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD. Journal of Amasya University the Institute of Sciences and Technology 3 1 49–59.
IEEE S. Dirik and Ü. Yıldırım, “CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD”, J. Amasya Univ. Inst. Sci. Technol., vol. 3, no. 1, pp. 49–59, 2022, doi: 10.54559/jauist.1124012.
ISNAD Dirik, Süleyman - Yıldırım, Ümit. “CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD”. Journal of Amasya University the Institute of Sciences and Technology 3/1 (June 2022), 49-59. https://doi.org/10.54559/jauist.1124012.
JAMA Dirik S, Yıldırım Ü. CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD. J. Amasya Univ. Inst. Sci. Technol. 2022;3:49–59.
MLA Dirik, Süleyman and Ümit Yıldırım. “CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD”. Journal of Amasya University the Institute of Sciences and Technology, vol. 3, no. 1, 2022, pp. 49-59, doi:10.54559/jauist.1124012.
Vancouver Dirik S, Yıldırım Ü. CHARACTERIZATIONS OF CONTACT PSEUDO-SLANT SUBMANIFOLDS OF A PARA-KENMOTSU MANIFOLD. J. Amasya Univ. Inst. Sci. Technol. 2022;3(1):49-5.



Scilit 30442                               

Academindex 30443

SOBIAD 30444


29442 As of 2023, JAUIST is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).