Research Article
PDF Zotero Mendeley EndNote BibTex Cite

Year 2020, Volume 1, Issue 1, 21 - 29, 02.07.2020

Abstract

References

  • Ata, M. S., Liu, Y., & Zhitomirsky, I. (2014). A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Advances, 4(43), 22716–22732. https://doi.org/10.1039/C4RA02218A
  • Ata, M. S., & Zhitomirsky, I. (2012). Electrophoretic nanotechnology of ceramic films. Advances in Applied Ceramics, 111(5–6), 345–350. https://doi.org/10.1179/1743676111Y.0000000070
  • Bae, Y., Jang, W.-D., Nishiyama, N., Fukushima, S., & Kataoka, K. (2005). Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Molecular BioSystems, 1(3), 242–250. https://doi.org/10.1039/b500266d
  • Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52(1), 1–61. https://doi.org/https://doi.org/10.1016/j.pmatsci.2006.07.001
  • Björk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking. The Journal of Physical Chemistry Letters, 1(23), 3407–3412. https://doi.org/10.1021/jz101360k
  • Boström Caselunghe, M., & Lindeberg, J. (2000). Biosensor-based determination of folic acid in fortified food. Food Chemistry, 70(4), 523–532. https://doi.org/https://doi.org/10.1016/S0308-8146(00)00115-1
  • Boushey, C. J., Beresford, S. A. A., Omenn, G. S., & Motulsky, A. G. (1995). A Quantitative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease: Probable Benefits of Increasing Folic Acid Intakes. JAMA, 274(13), 1049–1057. https://doi.org/10.1001/jama.1995.03530130055028
  • Britto, P J, Santhanam, K. S. V, & Ajayan, P. M. (1996). Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 41(1), 121–125. https://doi.org/https://doi.org/10.1016/0302-4598(96)05078-7
  • Britto, Pichumani J, Santhanam, K. S. V, Rubio, A., Alonso, J. A., & Ajayan, P. M. (1999). Improved Charge Transfer at Carbon Nanotube Electrodes. Advanced Materials, 11(2), 154–157. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
  • Casagrande, T., Lawson, G., Li, H., Wei, J., Adronov, A., & Zhitomirsky, I. (2008). Electrodeposition of composite materials containing functionalized carbon nanotubes. Materials Chemistry and Physics, 111(1), 42–49. https://doi.org/https://doi.org/10.1016/j.matchemphys.2008.03.010
  • Castillo, J. J., Svendsen, W. E., Rozlosnik, N., Escobar, P., Martínez, F., & Castillo-León, J. (2013). Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode. Analyst, 138(4), 1026–1031. https://doi.org/10.1039/C2AN36121C
  • Cheong, M., & Zhitomirsky, I. (2009). Electrophoretic deposition of manganese oxide films. Surface Engineering, 25(5), 346–352. https://doi.org/10.1179/174329408X281786
  • Chicatún, F., Cho, J., Schaab, S., Brusatin, G., Colombo, P., Roether, J. A., & Boccaccini, A. R. (2007). Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Advances in Applied Ceramics, 106(4), 186–195. https://doi.org/10.1179/174367607X178148
  • Davis, J. J., Coles, R. J., Allen, H., & Hill, O. (1997). Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 440(1), 279–282. https://doi.org/https://doi.org/10.1016/S0022-0728(97)80067-8
  • Esumi, K., Ishigami, M., Nakajima, A., Sawada, K., & Honda, H. (1996). Chemical treatment of carbon nanotubes. Carbon, 34(2), 279–281. https://doi.org/https://doi.org/10.1016/0008-6223(96)83349-5
  • Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., & Wolff, J. A. (1948). Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid (Aminopterin). New England Journal of Medicine, 238(23), 787–793. https://doi.org/10.1056/NEJM194806032382301
  • Gabizon, A., Shmeeda, H., Horowitz, A. T., & Zalipsky, S. (2004). Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Advanced Drug Delivery Reviews, 56(8), 1177–1192. https://doi.org/10.1016/j.addr.2004.01.011
  • Hamed, E., Attia, M. S., & Bassiouny, K. (2009). Synthesis, Spectroscopic and Thermal Characterization of Copper(II) and Iron(III) Complexes of Folic Acid and Their Absorption Efficiency in the Blood. Bioinorganic Chemistry and Applications, 2009, 979680. https://doi.org/10.1155/2009/979680
  • He, Y. Y., Wang, X. C., Jin, P. K., Zhao, B., & Fan, X. (2009). Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 72(4), 876–879. https://doi.org/10.1016/j.saa.2008.12.021
  • Hibbard, B. M. (1964). THE ROLE OF FOLIC ACID IN PREGNANCY*. BJOG: An International Journal of Obstetrics & Gynaecology, 71(4), 529–542. https://doi.org/10.1111/j.1471-0528.1964.tb04317.x
  • Honein, M. A., Paulozzi, L. J., Mathews, T. J., Erickson, J. D., & Wong, L.-Y. C. (2001). Impact of Folic Acid Fortification of the US Food Supply on the Occurrence of Neural Tube Defects. JAMA, 285(23), 2981–2986. https://doi.org/10.1001/jama.285.23.2981
  • Im, J. S., Kim, J. G., Lee, S.-H., & Lee, Y.-S. (2010). Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1), 151–157. https://doi.org/https://doi.org/10.1016/j.colsurfa.2010.05.015
  • Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426 LP – 430. https://doi.org/10.1126/science.1147241
  • Limmer, S. J., Chou, T. P., & Cao, G. Z. (2005). A Study on the Influences of Processing Parameters on the Growth of Oxide Nanorod Arrays by Sol Electrophoretic Deposition. Journal of Sol-Gel Science and Technology, 36(2), 183–195. https://doi.org/10.1007/s10971-005-3548-6
  • Lin, D., & Xing, B. (2008). Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups. Environmental Science & Technology, 42(19), 7254–7259. https://doi.org/10.1021/es801297u
  • Milunsky, A., Jick, H., Jick, S. S., Bruell, C. L., MacLaughlin, D. S., Rothman, K. J., & Willett, W. (1989). Multivitamin/Folic Acid Supplementation in Early Pregnancy Reduces the Prevalence of Neural Tube Defects. JAMA, 262(20), 2847–2852. https://doi.org/10.1001/jama.1989.03430200091032
  • Mirmoghtadaie, L., Ensafi, A. A., Kadivar, M., & Norouzi, P. (2013). Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. Materials Science and Engineering: C, 33(3), 1753–1758. https://doi.org/https://doi.org/10.1016/j.msec.2012.12.090
  • Mohapatra, S., Mallick, S. K., Maiti, T. K., Ghosh, S. K., & Pramanik, P. (2007). Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology, 18(38), 385102. https://doi.org/10.1088/0957-4484/18/38/385102
  • Olevsky, E. A., Wang, X., Maximenko, A., & Meyers, M. A. (2007). Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation. Journal of the American Ceramic Society, 90(10), 3047–3056. https://doi.org/10.1111/j.1551-2916.2007.01838.x
  • Prasad, B. B., Madhuri, R., Tiwari, M. P., & Sharma, P. S. (2010). Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode. Sensors and Actuators B: Chemical, 146(1), 321–330. https://doi.org/https://doi.org/10.1016/j.snb.2010.02.025
  • Rajh, T., Chen, L. X., Lukas, K., Liu, T., Thurnauer, M. C., & Tiede, D. M. (2002). Surface Restructuring of Nanoparticles:  An Efficient Route for Ligand−Metal Oxide Crosstalk. The Journal of Physical Chemistry B, 106(41), 10543–10552. https://doi.org/10.1021/jp021235v
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35(7), 837–867. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2010.03.002
  • Sarkar, P., & Nicholson, P. S. (1996). Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987–2002. https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
  • Scholl, T. O., & Johnson, W. G. (2000). Folic acid: influence on the outcome of pregnancy. The American Journal of Clinical Nutrition, 71(5), 1295S-1303S. https://doi.org/10.1093/ajcn/71.5.1295s
  • Sudimack, J., & Lee, R. J. (2000). Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews, 41(2), 147–162. https://doi.org/https://doi.org/10.1016/S0169-409X(99)00062-9
  • Thomas, B. J. C., Boccaccini, A. R., & Shaffer, M. S. P. (2005). Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD). Journal of the American Ceramic Society, 88(4), 980–982. https://doi.org/10.1111/j.1551-2916.2005.00155.x
  • Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128–130, 37–46. https://doi.org/https://doi.org/10.1016/j.cis.2006.11.007
  • Van der Biest, O. O., & Vandeperre, L. J. (1999). ELECTROPHORETIC DEPOSITION OF MATERIALS. Annual Review of Materials Science, 29(1), 327–352. https://doi.org/10.1146/annurev.matsci.29.1.327
  • Waite, J. H. (2008). Mussel power. Nature Materials, 7(1), 8–9. https://doi.org/10.1038/nmat2087
  • Woods, L. M., Bădescu, Ş. C., & Reinecke, T. L. (2007). Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 75(15), 155415. https://doi.org/10.1103/PhysRevB.75.155415
  • Wu, K., & Zhitomirsky, I. (2011). Electrophoretic Deposition of Ceramic Nanoparticles. International Journal of Applied Ceramic Technology, 8(4), 920–927. https://doi.org/10.1111/j.1744-7402.2010.02530.x
  • Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34(11), 4889–4899. https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.04.005
  • Zhitomirsky, I. (2000). Electrophoretic hydroxyapatite coatings and fibers. Materials Letters, 42(4), 262–271. https://doi.org/https://doi.org/10.1016/S0167-577X(99)00197-4

Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent

Year 2020, Volume 1, Issue 1, 21 - 29, 02.07.2020

Abstract

Abstract The deposition mechanism of MnO2 has been investigated by using electrophoretic deposition (EPD) method. Folic acid, a biocompatible dispersing agent, was analyzed for the dispersion of MnO2 and MWCNT and anodic deposition of MnO2 in ethanol. Fourier transform infrared spectroscopy and scanning electron microscopy were used for morphology analysis. The amount of the deposited material can be controlled by the variation of dispersing agent concentration in the solution based on the deposition yield measurements and deposition time. The deposition mechanism is discussed. The films prepared by EPD method are promising materials for application in electrochemical supercapacitors. Özet MnO2'nin biriktirme mekanizması elektroforetik biriktirme (EPD) yöntemi kullanılarak araştırılmıştır. Biyouyumlu bir dispersiyon ajanı olan folik asit, MnO2 ve MWCNT'nin dispersiyonu ve MnO2'nin etanol içinde anodik birikimi için analiz edildi. Morfoloji analizleri için Fourier dönüşümü kızılötesi spektroskopisi ve tarayıcı elektron mikroskopundan yararlanıldı. Biriken malzemenin miktarı, biriktirme verimi ölçümlerine ve biriktirme süresine bağlı olarak çözelti içindeki dispersiyon maddesi konsantrasyonunun değişimi ile kontrol edilebilir. Biriktirme mekanizması tartışılmıştır. EPD yöntemiyle hazırlanan filmler elektrokimyasal süper kapasitörler de uygulama için ümit vaat eden malzemelerdir.

References

  • Ata, M. S., Liu, Y., & Zhitomirsky, I. (2014). A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Advances, 4(43), 22716–22732. https://doi.org/10.1039/C4RA02218A
  • Ata, M. S., & Zhitomirsky, I. (2012). Electrophoretic nanotechnology of ceramic films. Advances in Applied Ceramics, 111(5–6), 345–350. https://doi.org/10.1179/1743676111Y.0000000070
  • Bae, Y., Jang, W.-D., Nishiyama, N., Fukushima, S., & Kataoka, K. (2005). Multifunctional polymeric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing properties for active intracellular drug delivery. Molecular BioSystems, 1(3), 242–250. https://doi.org/10.1039/b500266d
  • Besra, L., & Liu, M. (2007). A review on fundamentals and applications of electrophoretic deposition (EPD). Progress in Materials Science, 52(1), 1–61. https://doi.org/https://doi.org/10.1016/j.pmatsci.2006.07.001
  • Björk, J., Hanke, F., Palma, C.-A., Samori, P., Cecchini, M., & Persson, M. (2010). Adsorption of Aromatic and Anti-Aromatic Systems on Graphene through π−π Stacking. The Journal of Physical Chemistry Letters, 1(23), 3407–3412. https://doi.org/10.1021/jz101360k
  • Boström Caselunghe, M., & Lindeberg, J. (2000). Biosensor-based determination of folic acid in fortified food. Food Chemistry, 70(4), 523–532. https://doi.org/https://doi.org/10.1016/S0308-8146(00)00115-1
  • Boushey, C. J., Beresford, S. A. A., Omenn, G. S., & Motulsky, A. G. (1995). A Quantitative Assessment of Plasma Homocysteine as a Risk Factor for Vascular Disease: Probable Benefits of Increasing Folic Acid Intakes. JAMA, 274(13), 1049–1057. https://doi.org/10.1001/jama.1995.03530130055028
  • Britto, P J, Santhanam, K. S. V, & Ajayan, P. M. (1996). Carbon nanotube electrode for oxidation of dopamine. Bioelectrochemistry and Bioenergetics, 41(1), 121–125. https://doi.org/https://doi.org/10.1016/0302-4598(96)05078-7
  • Britto, Pichumani J, Santhanam, K. S. V, Rubio, A., Alonso, J. A., & Ajayan, P. M. (1999). Improved Charge Transfer at Carbon Nanotube Electrodes. Advanced Materials, 11(2), 154–157. https://doi.org/10.1002/(SICI)1521-4095(199902)11:2<154::AID-ADMA154>3.0.CO;2-B
  • Casagrande, T., Lawson, G., Li, H., Wei, J., Adronov, A., & Zhitomirsky, I. (2008). Electrodeposition of composite materials containing functionalized carbon nanotubes. Materials Chemistry and Physics, 111(1), 42–49. https://doi.org/https://doi.org/10.1016/j.matchemphys.2008.03.010
  • Castillo, J. J., Svendsen, W. E., Rozlosnik, N., Escobar, P., Martínez, F., & Castillo-León, J. (2013). Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode. Analyst, 138(4), 1026–1031. https://doi.org/10.1039/C2AN36121C
  • Cheong, M., & Zhitomirsky, I. (2009). Electrophoretic deposition of manganese oxide films. Surface Engineering, 25(5), 346–352. https://doi.org/10.1179/174329408X281786
  • Chicatún, F., Cho, J., Schaab, S., Brusatin, G., Colombo, P., Roether, J. A., & Boccaccini, A. R. (2007). Carbon nanotube deposits and CNT/SiO2 composite coatings by electrophoretic deposition. Advances in Applied Ceramics, 106(4), 186–195. https://doi.org/10.1179/174367607X178148
  • Davis, J. J., Coles, R. J., Allen, H., & Hill, O. (1997). Protein electrochemistry at carbon nanotube electrodes. Journal of Electroanalytical Chemistry, 440(1), 279–282. https://doi.org/https://doi.org/10.1016/S0022-0728(97)80067-8
  • Esumi, K., Ishigami, M., Nakajima, A., Sawada, K., & Honda, H. (1996). Chemical treatment of carbon nanotubes. Carbon, 34(2), 279–281. https://doi.org/https://doi.org/10.1016/0008-6223(96)83349-5
  • Farber, S., Diamond, L. K., Mercer, R. D., Sylvester, R. F., & Wolff, J. A. (1948). Temporary Remissions in Acute Leukemia in Children Produced by Folic Acid Antagonist, 4-Aminopteroyl-Glutamic Acid (Aminopterin). New England Journal of Medicine, 238(23), 787–793. https://doi.org/10.1056/NEJM194806032382301
  • Gabizon, A., Shmeeda, H., Horowitz, A. T., & Zalipsky, S. (2004). Tumor cell targeting of liposome-entrapped drugs with phospholipid-anchored folic acid-PEG conjugates. Advanced Drug Delivery Reviews, 56(8), 1177–1192. https://doi.org/10.1016/j.addr.2004.01.011
  • Hamed, E., Attia, M. S., & Bassiouny, K. (2009). Synthesis, Spectroscopic and Thermal Characterization of Copper(II) and Iron(III) Complexes of Folic Acid and Their Absorption Efficiency in the Blood. Bioinorganic Chemistry and Applications, 2009, 979680. https://doi.org/10.1155/2009/979680
  • He, Y. Y., Wang, X. C., Jin, P. K., Zhao, B., & Fan, X. (2009). Complexation of anthracene with folic acid studied by FTIR and UV spectroscopies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 72(4), 876–879. https://doi.org/10.1016/j.saa.2008.12.021
  • Hibbard, B. M. (1964). THE ROLE OF FOLIC ACID IN PREGNANCY*. BJOG: An International Journal of Obstetrics & Gynaecology, 71(4), 529–542. https://doi.org/10.1111/j.1471-0528.1964.tb04317.x
  • Honein, M. A., Paulozzi, L. J., Mathews, T. J., Erickson, J. D., & Wong, L.-Y. C. (2001). Impact of Folic Acid Fortification of the US Food Supply on the Occurrence of Neural Tube Defects. JAMA, 285(23), 2981–2986. https://doi.org/10.1001/jama.285.23.2981
  • Im, J. S., Kim, J. G., Lee, S.-H., & Lee, Y.-S. (2010). Enhanced adhesion and dispersion of carbon nanotube in PANI/PEO electrospun fibers for shielding effectiveness of electromagnetic interference. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 364(1), 151–157. https://doi.org/https://doi.org/10.1016/j.colsurfa.2010.05.015
  • Lee, H., Dellatore, S. M., Miller, W. M., & Messersmith, P. B. (2007). Mussel-Inspired Surface Chemistry for Multifunctional Coatings. Science, 318(5849), 426 LP – 430. https://doi.org/10.1126/science.1147241
  • Limmer, S. J., Chou, T. P., & Cao, G. Z. (2005). A Study on the Influences of Processing Parameters on the Growth of Oxide Nanorod Arrays by Sol Electrophoretic Deposition. Journal of Sol-Gel Science and Technology, 36(2), 183–195. https://doi.org/10.1007/s10971-005-3548-6
  • Lin, D., & Xing, B. (2008). Adsorption of Phenolic Compounds by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups. Environmental Science & Technology, 42(19), 7254–7259. https://doi.org/10.1021/es801297u
  • Milunsky, A., Jick, H., Jick, S. S., Bruell, C. L., MacLaughlin, D. S., Rothman, K. J., & Willett, W. (1989). Multivitamin/Folic Acid Supplementation in Early Pregnancy Reduces the Prevalence of Neural Tube Defects. JAMA, 262(20), 2847–2852. https://doi.org/10.1001/jama.1989.03430200091032
  • Mirmoghtadaie, L., Ensafi, A. A., Kadivar, M., & Norouzi, P. (2013). Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology. Materials Science and Engineering: C, 33(3), 1753–1758. https://doi.org/https://doi.org/10.1016/j.msec.2012.12.090
  • Mohapatra, S., Mallick, S. K., Maiti, T. K., Ghosh, S. K., & Pramanik, P. (2007). Synthesis of highly stable folic acid conjugated magnetite nanoparticles for targeting cancer cells. Nanotechnology, 18(38), 385102. https://doi.org/10.1088/0957-4484/18/38/385102
  • Olevsky, E. A., Wang, X., Maximenko, A., & Meyers, M. A. (2007). Fabrication of Net-Shape Functionally Graded Composites by Electrophoretic Deposition and Sintering: Modeling and Experimentation. Journal of the American Ceramic Society, 90(10), 3047–3056. https://doi.org/10.1111/j.1551-2916.2007.01838.x
  • Prasad, B. B., Madhuri, R., Tiwari, M. P., & Sharma, P. S. (2010). Electrochemical sensor for folic acid based on a hyperbranched molecularly imprinted polymer-immobilized sol–gel-modified pencil graphite electrode. Sensors and Actuators B: Chemical, 146(1), 321–330. https://doi.org/https://doi.org/10.1016/j.snb.2010.02.025
  • Rajh, T., Chen, L. X., Lukas, K., Liu, T., Thurnauer, M. C., & Tiede, D. M. (2002). Surface Restructuring of Nanoparticles:  An Efficient Route for Ligand−Metal Oxide Crosstalk. The Journal of Physical Chemistry B, 106(41), 10543–10552. https://doi.org/10.1021/jp021235v
  • Sahoo, N. G., Rana, S., Cho, J. W., Li, L., & Chan, S. H. (2010). Polymer nanocomposites based on functionalized carbon nanotubes. Progress in Polymer Science, 35(7), 837–867. https://doi.org/https://doi.org/10.1016/j.progpolymsci.2010.03.002
  • Sarkar, P., & Nicholson, P. S. (1996). Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. Journal of the American Ceramic Society, 79(8), 1987–2002. https://doi.org/10.1111/j.1151-2916.1996.tb08929.x
  • Scholl, T. O., & Johnson, W. G. (2000). Folic acid: influence on the outcome of pregnancy. The American Journal of Clinical Nutrition, 71(5), 1295S-1303S. https://doi.org/10.1093/ajcn/71.5.1295s
  • Sudimack, J., & Lee, R. J. (2000). Targeted drug delivery via the folate receptor. Advanced Drug Delivery Reviews, 41(2), 147–162. https://doi.org/https://doi.org/10.1016/S0169-409X(99)00062-9
  • Thomas, B. J. C., Boccaccini, A. R., & Shaffer, M. S. P. (2005). Multi-Walled Carbon Nanotube Coatings Using Electrophoretic Deposition (EPD). Journal of the American Ceramic Society, 88(4), 980–982. https://doi.org/10.1111/j.1551-2916.2005.00155.x
  • Vaisman, L., Wagner, H. D., & Marom, G. (2006). The role of surfactants in dispersion of carbon nanotubes. Advances in Colloid and Interface Science, 128–130, 37–46. https://doi.org/https://doi.org/10.1016/j.cis.2006.11.007
  • Van der Biest, O. O., & Vandeperre, L. J. (1999). ELECTROPHORETIC DEPOSITION OF MATERIALS. Annual Review of Materials Science, 29(1), 327–352. https://doi.org/10.1146/annurev.matsci.29.1.327
  • Waite, J. H. (2008). Mussel power. Nature Materials, 7(1), 8–9. https://doi.org/10.1038/nmat2087
  • Woods, L. M., Bădescu, Ş. C., & Reinecke, T. L. (2007). Adsorption of simple benzene derivatives on carbon nanotubes. Physical Review B, 75(15), 155415. https://doi.org/10.1103/PhysRevB.75.155415
  • Wu, K., & Zhitomirsky, I. (2011). Electrophoretic Deposition of Ceramic Nanoparticles. International Journal of Applied Ceramic Technology, 8(4), 920–927. https://doi.org/10.1111/j.1744-7402.2010.02530.x
  • Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International Journal of Hydrogen Energy, 34(11), 4889–4899. https://doi.org/https://doi.org/10.1016/j.ijhydene.2009.04.005
  • Zhitomirsky, I. (2000). Electrophoretic hydroxyapatite coatings and fibers. Materials Letters, 42(4), 262–271. https://doi.org/https://doi.org/10.1016/S0167-577X(99)00197-4

Details

Primary Language English
Subjects Engineering
Journal Section Sayı 1
Authors

Mustafa Sami ATA (Primary Author)
AMASYA UNIVERSITY
0000-0003-0944-4276
Türkiye

Thanks I would like to thank Dr. Igor Zhitomirksy for his generous help and contribution during the project.
Publication Date July 2, 2020
Published in Issue Year 2020, Volume 1, Issue 1

Cite

Bibtex @research article { jauist743353, journal = {Journal of Amasya University the Institute of Sciences and Technology}, issn = {2717-8900}, address = {Amasya University}, publisher = {Amasya University}, year = {2020}, volume = {1}, pages = {21 - 29}, doi = {}, title = {Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent}, key = {cite}, author = {Ata, Mustafa Sami} }
APA Ata, M. S. (2020). Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent . Journal of Amasya University the Institute of Sciences and Technology , 1 (1) , 21-29 . Retrieved from https://dergipark.org.tr/en/pub/jauist/issue/55760/743353
MLA Ata, M. S. "Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent" . Journal of Amasya University the Institute of Sciences and Technology 1 (2020 ): 21-29 <https://dergipark.org.tr/en/pub/jauist/issue/55760/743353>
Chicago Ata, M. S. "Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent". Journal of Amasya University the Institute of Sciences and Technology 1 (2020 ): 21-29
RIS TY - JOUR T1 - Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent AU - Mustafa Sami Ata Y1 - 2020 PY - 2020 N1 - DO - T2 - Journal of Amasya University the Institute of Sciences and Technology JF - Journal JO - JOR SP - 21 EP - 29 VL - 1 IS - 1 SN - 2717-8900- M3 - UR - Y2 - 2020 ER -
EndNote %0 Journal of Amasya University the Institute of Sciences and Technology Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent %A Mustafa Sami Ata %T Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent %D 2020 %J Journal of Amasya University the Institute of Sciences and Technology %P 2717-8900- %V 1 %N 1 %R %U
ISNAD Ata, Mustafa Sami . "Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent". Journal of Amasya University the Institute of Sciences and Technology 1 / 1 (July 2020): 21-29 .
AMA Ata M. S. Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent. Journal of Amasya University the Institute of Sciences and Technology. 2020; 1(1): 21-29.
Vancouver Ata M. S. Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent. Journal of Amasya University the Institute of Sciences and Technology. 2020; 1(1): 21-29.
IEEE M. S. Ata , "Electrophoretic Deposition of MnO2 using Folic Acid as Advanced Dispersing Agent", Journal of Amasya University the Institute of Sciences and Technology, vol. 1, no. 1, pp. 21-29, Jul. 2020