Research Article
BibTex RIS Cite

Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging

Year 2024, Volume: 5 Issue: 2, 60 - 71, 31.12.2024
https://doi.org/10.54559/jauist.1541318

Abstract

Petroleum-containing packaging materials of the past and present have created serious ecological problems for the environment due to their resistance to biodegradation. In this context, researches have been conducted to promote the use of biodegradable films as an alternative to packaging materials. Among various biopolymers, poly(lactide) (PLA) has found application in the food industry owing to its promising properties and is currently one of the most industrially produced bioplastics. In this study, biomasses of olive pruning wastes, which are abundant in the Çanakkale region, were converted into biochar (BC) by slow pyrolysis, and their characterization was examined by adding them to PLA at different rates (5%, 10%, 15%, 20% by mass). Specific surface area analysis (BET), scanning electron microscopy (SEM) analysis, biochar yield, ash content, surface contact angles, and antimicrobial activity of film depending on the BC concentration were evaluated. As a result, potassium hydroxide (KOH) activated BC was successfully synthesized with a surface area of 1022 m2/g. The hydrophobicity of films was improved with increasing BC ratio. Also, the film shows good antimicrobial activity toward gram-negative bacteria.

Ethical Statement

No approval from the Board of Ethics is required.

Project Number

This study was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FBA-2023-4345

Thanks

This study was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FBA-2023-4345

References

  • Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Biodegradability of plastics, International Journal of Molecular Sciences 10 (9) (2009) 3722–3742.
  • A. B. H. Yoruç, V. Uğraşkan, Green Polymers and Applications, Afyon Kocatepe University Journal of Science and Engineering 17 (1) (2017) 318–337.
  • S. Marano, E. Laudadio, C. Minnelli, P. Stipa, Tailoring the barrier properties of PLA: A state-of-the-art review for food packaging applications, Polymers 14 (8) (2022) 1626.
  • S. Nanda, B. R. Patra, R. Patel, J. Bakos, A. K. Dalai, Innovations in applications and prospects of bioplastics and biopolymers: A review, Environmental Chemistry Letters 20 (1) (2022) 379–395.
  • F. Amalina, A. S. Abd Razak, S. Krishnan, H. Sulaiman, A. W. Zularisam, M. Nasrullah, Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications, Cleaner Materials 6 (2022) 100137.
  • L. Wang, M. N. Olsen, C. Moni, A. Dieguez-Alonso, J. M. de la Rosa, M. Stenrød, X. Liu, L. Mao, Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600° C, Applications in Energy and Combustion Science 12 (2022) 100090.
  • A. M. Poulose, A. Y. Elnour, A. Anis, H. Shaikh, S. M. Al-Zahrani, J. George, M. I. Al-Wabel, A. R. Usman, Y. S. Ok, D. C. W. Tsang, A. K. Sarmah, Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics, Science of the Total Environment 619-620 (2018) 311–318.
  • S. S. Sahoo, V. K. Vijay, R. Chandra, H. Kumar, Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo, Cleaner Engineering and Technology 3 (2021) 100101.
  • R. Singh, R. K. Dutta, D. V. Naik, A. Ray, P. K. Kanaujia, High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater, Environmental Challenges 5 (2021) 100353.
  • A. K. Sharma, P. K. Ghodke, N Goyal, P. K. Bobde, E. E. Won, K. Y. A. Lin, W. H. Chen, A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges, Bioresource Technology 387 (2023) 129632.
  • L. Li, A. Long, B. Fossum, M. Kaiser, Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis, Soil Use and Management 39 (1) (2023) 43–52.
  • R. Mehdi, A. H. Khoja, S. R. Naqvi, N. Gao, N. A. S. Amin, A review on production and surface modifications of biochar materials via biomass pyrolysis process for supercapacitor applications, Catalysts 12 (7) (2022) 798.
  • D. She, J. Dong, J. Zhang, L. Liu, Q. Sun, Z. Geng, P. Peng, Development of black and biodegradable biochar/gutta percha composite films with high stretchability and barrier properties, Composites Science and Technology 175 (2019) 1–5.
  • O. Das, N. K. Kim, M. S. Hedenqvist, R. J. Lin, A. K. Sarmah, D. Bhattacharyya, An attempt to find a suitable biomass for biochar-based polypropylene biocomposites, Environmental Management 62 (2018) 403–413.
  • M. Bartoli, M. A. Nasir, P. Jagdale, E. Passaglia, R. Spiniello, C. Rosso, M. Giorcelli, M. Rovere, A. Tagliaferro, Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties, Journal of Composite Materials 54 (14) (2020) 1863–1873.
  • M. Idrees, S. Jeelani, V. Rangari, Three-dimensional-printed sustainable biochar-recycled PET composites, ACS Sustainable Chemistry & Engineering 6 (11) (2018) 13940–13948.
  • H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, A. Dufresne, Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications, ACS Sustainable Chemistry & Engineering 5 (2) (2017) 1906–1916.
  • R. Arrigo, M. Bartoli, G. Malucelli, Poly (lactic acid)–biochar biocomposites: Effect of processing and filler content on rheological, thermal, and mechanical properties, Polymers 12 (4) (2020) 892.
  • A Sobhan, K. Muthukumarappan, L. Wei, Q. Qiao, M. T. Rahman, N. Ghimire, Development and characterization of a novel activated biochar-based polymer composite for biosensors, International Journal of Polymer Analysis and Characterization 26 (6) (2021) 544–560.
  • A. M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage, Biomass and Bioenergy 87 (2016) 107–121.
  • L. Zhu, N. Zhao, L. Tong, Y. Lv, Structural and adsorption characteristics of potassium carbonate activated biochar, RSC Advances 8 (37) (2018) 21012–21019.
  • F. R. Vieira, C. M. R. Luna, G. L. Arce, I. Ávila, Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk, Biomass and Bioenergy 132 (2020) 105412.
  • N. Kaya, Z. Y. Uzun, Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO2 capture, Biomass Conversion and Biorefinery 11 (2021) 1067–1083.
  • A. Herath, C. A. Layne, F. Perez, E. B. Hassan, Jr. C. U. Pittman T. E. Mlsna, KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II), Chemosphere 269 (2021) 128409.
  • M. S. Jesus, A. Napoli, P. F. Trugilho, Á. A. Abreu Júnior, C. L. M. Martinez, T. P. Freitas, Energy and mass balance in the pyrolysis process of eucalyptus wood, Cerne 24 (2018) 288–294.
  • P. Tu, G. Zhang, G. Wei, J. Li, Y. Li, L. Deng, H. Yuan, Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants, Bioresources and Bioprocessing 9 (1) (2022) 131.
  • N. Khazaei, M. Esmaiili, Z. E. Djomeh, M. Ghasemlou, M. Jouki, Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum, Carbohydrate Polymers 102 (2014) 199–206.
  • S. Bahram, M. Rezaei, M. Soltani, A. Kamali, S. M. Ojagh, M. Abdollahi, Whey protein concentrate edible film activated with cinnamon essential oil, Journal of Food Processing and Preservation 38 (3) (2014) 1251–1258.
  • T. Karbowiak, F. Debeaufort, A. Voilley, Importance of surface tension characterization for food, pharmaceutical and packaging products: A review, Critical Reviews in Food Science and Nutrition 46 (5) (2006) 391–407.
  • E. A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science 74 (1-3) (1998) 69–117.
  • Y. Ma, X. Cao, X. Feng, Y. Ma, H. Zou, Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90, Polymer 48 (26) (2007) 7455–7460.
  • M. Kurek, S. Galus, F. Debeaufort, Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein, Food Packaging and Shelf Life 1 (1) (2014) 56–67.
  • K. Nishshankage, A. B. Fernandez, S. Pallewatta, P. K. C. Buddhinie, M. Vithanage, Current trends in antimicrobial activities of carbon nanostructures: potentiality and status of nanobiochar in comparison to carbon dots, Biochar 6 (2024) 2.
  • D. R. Tapia-Blácido, G. J. Aguilar, M. T. de Andrade, M. F. Rodrigues-Júnior, F. C. Guareschi-Martins, Trends and challenges of starch-based foams for use as food packaging and food container, Trends in Food Science & Technology 119 (2022) 257–271.
Year 2024, Volume: 5 Issue: 2, 60 - 71, 31.12.2024
https://doi.org/10.54559/jauist.1541318

Abstract

Project Number

This study was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FBA-2023-4345

References

  • Y. Tokiwa, B. P. Calabia, C. U. Ugwu, S. Aiba, Biodegradability of plastics, International Journal of Molecular Sciences 10 (9) (2009) 3722–3742.
  • A. B. H. Yoruç, V. Uğraşkan, Green Polymers and Applications, Afyon Kocatepe University Journal of Science and Engineering 17 (1) (2017) 318–337.
  • S. Marano, E. Laudadio, C. Minnelli, P. Stipa, Tailoring the barrier properties of PLA: A state-of-the-art review for food packaging applications, Polymers 14 (8) (2022) 1626.
  • S. Nanda, B. R. Patra, R. Patel, J. Bakos, A. K. Dalai, Innovations in applications and prospects of bioplastics and biopolymers: A review, Environmental Chemistry Letters 20 (1) (2022) 379–395.
  • F. Amalina, A. S. Abd Razak, S. Krishnan, H. Sulaiman, A. W. Zularisam, M. Nasrullah, Advanced techniques in the production of biochar from lignocellulosic biomass and environmental applications, Cleaner Materials 6 (2022) 100137.
  • L. Wang, M. N. Olsen, C. Moni, A. Dieguez-Alonso, J. M. de la Rosa, M. Stenrød, X. Liu, L. Mao, Comparison of properties of biochar produced from different types of lignocellulosic biomass by slow pyrolysis at 600° C, Applications in Energy and Combustion Science 12 (2022) 100090.
  • A. M. Poulose, A. Y. Elnour, A. Anis, H. Shaikh, S. M. Al-Zahrani, J. George, M. I. Al-Wabel, A. R. Usman, Y. S. Ok, D. C. W. Tsang, A. K. Sarmah, Date palm biochar-polymer composites: An investigation of electrical, mechanical, thermal and rheological characteristics, Science of the Total Environment 619-620 (2018) 311–318.
  • S. S. Sahoo, V. K. Vijay, R. Chandra, H. Kumar, Production and characterization of biochar produced from slow pyrolysis of pigeon pea stalk and bamboo, Cleaner Engineering and Technology 3 (2021) 100101.
  • R. Singh, R. K. Dutta, D. V. Naik, A. Ray, P. K. Kanaujia, High surface area Eucalyptus wood biochar for the removal of phenol from petroleum refinery wastewater, Environmental Challenges 5 (2021) 100353.
  • A. K. Sharma, P. K. Ghodke, N Goyal, P. K. Bobde, E. E. Won, K. Y. A. Lin, W. H. Chen, A critical review on biochar production from pine wastes, upgradation techniques, environmental sustainability, and challenges, Bioresource Technology 387 (2023) 129632.
  • L. Li, A. Long, B. Fossum, M. Kaiser, Effects of pyrolysis temperature and feedstock type on biochar characteristics pertinent to soil carbon and soil health: A meta‐analysis, Soil Use and Management 39 (1) (2023) 43–52.
  • R. Mehdi, A. H. Khoja, S. R. Naqvi, N. Gao, N. A. S. Amin, A review on production and surface modifications of biochar materials via biomass pyrolysis process for supercapacitor applications, Catalysts 12 (7) (2022) 798.
  • D. She, J. Dong, J. Zhang, L. Liu, Q. Sun, Z. Geng, P. Peng, Development of black and biodegradable biochar/gutta percha composite films with high stretchability and barrier properties, Composites Science and Technology 175 (2019) 1–5.
  • O. Das, N. K. Kim, M. S. Hedenqvist, R. J. Lin, A. K. Sarmah, D. Bhattacharyya, An attempt to find a suitable biomass for biochar-based polypropylene biocomposites, Environmental Management 62 (2018) 403–413.
  • M. Bartoli, M. A. Nasir, P. Jagdale, E. Passaglia, R. Spiniello, C. Rosso, M. Giorcelli, M. Rovere, A. Tagliaferro, Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties, Journal of Composite Materials 54 (14) (2020) 1863–1873.
  • M. Idrees, S. Jeelani, V. Rangari, Three-dimensional-printed sustainable biochar-recycled PET composites, ACS Sustainable Chemistry & Engineering 6 (11) (2018) 13940–13948.
  • H. Moustafa, C. Guizani, C. Dupont, V. Martin, M. Jeguirim, A. Dufresne, Utilization of torrefied coffee grounds as reinforcing agent to produce high-quality biodegradable PBAT composites for food packaging applications, ACS Sustainable Chemistry & Engineering 5 (2) (2017) 1906–1916.
  • R. Arrigo, M. Bartoli, G. Malucelli, Poly (lactic acid)–biochar biocomposites: Effect of processing and filler content on rheological, thermal, and mechanical properties, Polymers 12 (4) (2020) 892.
  • A Sobhan, K. Muthukumarappan, L. Wei, Q. Qiao, M. T. Rahman, N. Ghimire, Development and characterization of a novel activated biochar-based polymer composite for biosensors, International Journal of Polymer Analysis and Characterization 26 (6) (2021) 544–560.
  • A. M. Dehkhoda, E. Gyenge, N. Ellis, A novel method to tailor the porous structure of KOH-activated biochar and its application in capacitive deionization and energy storage, Biomass and Bioenergy 87 (2016) 107–121.
  • L. Zhu, N. Zhao, L. Tong, Y. Lv, Structural and adsorption characteristics of potassium carbonate activated biochar, RSC Advances 8 (37) (2018) 21012–21019.
  • F. R. Vieira, C. M. R. Luna, G. L. Arce, I. Ávila, Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk, Biomass and Bioenergy 132 (2020) 105412.
  • N. Kaya, Z. Y. Uzun, Investigation of effectiveness of pine cone biochar activated with KOH for methyl orange adsorption and CO2 capture, Biomass Conversion and Biorefinery 11 (2021) 1067–1083.
  • A. Herath, C. A. Layne, F. Perez, E. B. Hassan, Jr. C. U. Pittman T. E. Mlsna, KOH-activated high surface area Douglas Fir biochar for adsorbing aqueous Cr (VI), Pb (II) and Cd (II), Chemosphere 269 (2021) 128409.
  • M. S. Jesus, A. Napoli, P. F. Trugilho, Á. A. Abreu Júnior, C. L. M. Martinez, T. P. Freitas, Energy and mass balance in the pyrolysis process of eucalyptus wood, Cerne 24 (2018) 288–294.
  • P. Tu, G. Zhang, G. Wei, J. Li, Y. Li, L. Deng, H. Yuan, Influence of pyrolysis temperature on the physicochemical properties of biochars obtained from herbaceous and woody plants, Bioresources and Bioprocessing 9 (1) (2022) 131.
  • N. Khazaei, M. Esmaiili, Z. E. Djomeh, M. Ghasemlou, M. Jouki, Characterization of new biodegradable edible film made from basil seed (Ocimum basilicum L.) gum, Carbohydrate Polymers 102 (2014) 199–206.
  • S. Bahram, M. Rezaei, M. Soltani, A. Kamali, S. M. Ojagh, M. Abdollahi, Whey protein concentrate edible film activated with cinnamon essential oil, Journal of Food Processing and Preservation 38 (3) (2014) 1251–1258.
  • T. Karbowiak, F. Debeaufort, A. Voilley, Importance of surface tension characterization for food, pharmaceutical and packaging products: A review, Critical Reviews in Food Science and Nutrition 46 (5) (2006) 391–407.
  • E. A. Vogler, Structure and reactivity of water at biomaterial surfaces, Advances in Colloid and Interface Science 74 (1-3) (1998) 69–117.
  • Y. Ma, X. Cao, X. Feng, Y. Ma, H. Zou, Fabrication of super-hydrophobic film from PMMA with intrinsic water contact angle below 90, Polymer 48 (26) (2007) 7455–7460.
  • M. Kurek, S. Galus, F. Debeaufort, Surface, mechanical and barrier properties of bio-based composite films based on chitosan and whey protein, Food Packaging and Shelf Life 1 (1) (2014) 56–67.
  • K. Nishshankage, A. B. Fernandez, S. Pallewatta, P. K. C. Buddhinie, M. Vithanage, Current trends in antimicrobial activities of carbon nanostructures: potentiality and status of nanobiochar in comparison to carbon dots, Biochar 6 (2024) 2.
  • D. R. Tapia-Blácido, G. J. Aguilar, M. T. de Andrade, M. F. Rodrigues-Júnior, F. C. Guareschi-Martins, Trends and challenges of starch-based foams for use as food packaging and food container, Trends in Food Science & Technology 119 (2022) 257–271.
There are 34 citations in total.

Details

Primary Language English
Subjects Materials Science and Technologies
Journal Section Research Articles
Authors

Filiz Uğur Nigiz 0000-0003-0509-8425

Zeynep İrem Özyörü 0009-0005-9587-9090

Serhat Balcı 0009-0002-9619-4489

Project Number This study was supported by the Office of Scientific Research Projects Coordination at Çanakkale Onsekiz Mart University, Grant number: FBA-2023-4345
Early Pub Date December 30, 2024
Publication Date December 31, 2024
Submission Date September 1, 2024
Acceptance Date November 14, 2024
Published in Issue Year 2024 Volume: 5 Issue: 2

Cite

APA Uğur Nigiz, F., Özyörü, Z. İ., & Balcı, S. (2024). Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging. Journal of Amasya University the Institute of Sciences and Technology, 5(2), 60-71. https://doi.org/10.54559/jauist.1541318
AMA Uğur Nigiz F, Özyörü Zİ, Balcı S. Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging. J. Amasya Univ. Inst. Sci. Technol. December 2024;5(2):60-71. doi:10.54559/jauist.1541318
Chicago Uğur Nigiz, Filiz, Zeynep İrem Özyörü, and Serhat Balcı. “Production of Potassium Hydroxide-Activated Biochar and Its Use As a Filler in Polylactic Acid for Food Packaging”. Journal of Amasya University the Institute of Sciences and Technology 5, no. 2 (December 2024): 60-71. https://doi.org/10.54559/jauist.1541318.
EndNote Uğur Nigiz F, Özyörü Zİ, Balcı S (December 1, 2024) Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging. Journal of Amasya University the Institute of Sciences and Technology 5 2 60–71.
IEEE F. Uğur Nigiz, Z. İ. Özyörü, and S. Balcı, “Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging”, J. Amasya Univ. Inst. Sci. Technol., vol. 5, no. 2, pp. 60–71, 2024, doi: 10.54559/jauist.1541318.
ISNAD Uğur Nigiz, Filiz et al. “Production of Potassium Hydroxide-Activated Biochar and Its Use As a Filler in Polylactic Acid for Food Packaging”. Journal of Amasya University the Institute of Sciences and Technology 5/2 (December 2024), 60-71. https://doi.org/10.54559/jauist.1541318.
JAMA Uğur Nigiz F, Özyörü Zİ, Balcı S. Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging. J. Amasya Univ. Inst. Sci. Technol. 2024;5:60–71.
MLA Uğur Nigiz, Filiz et al. “Production of Potassium Hydroxide-Activated Biochar and Its Use As a Filler in Polylactic Acid for Food Packaging”. Journal of Amasya University the Institute of Sciences and Technology, vol. 5, no. 2, 2024, pp. 60-71, doi:10.54559/jauist.1541318.
Vancouver Uğur Nigiz F, Özyörü Zİ, Balcı S. Production of potassium hydroxide-activated biochar and its use as a filler in polylactic acid for food packaging. J. Amasya Univ. Inst. Sci. Technol. 2024;5(2):60-71.