Research Article
BibTex RIS Cite

Structural and Fatigue Analysis of a UAV Wing

Year 2024, , 80 - 87, 27.06.2024
https://doi.org/10.30518/jav.1433258

Abstract

In this study, the structural and fatigue analyses of an unmanned aerial vehicle wing are investigated together. The spar, which is the main load carrier of the wing, and the ribs, which are the structural support parts that give the wing its aerodynamic shape, are analyzed using different numbers. Accordingly, 5 cases with different rip and spar numbers were examined with the finite element method. Additionally, aluminium and carbon epoxy materials were considered for the wing material in the simulations. The wall thickness for the wing is 0.5 mm and 1 mm, and the applied loads are 80 N, 150 N, and 250 N, respectively. As a result of these inputs, total deformation, maximum principal elastic strain, and fatigue analyses were performed.

References

  • Anil, K. C., Vikas, M. G., Teja, B. S., & Rao, K. S. (2017, April). Effect of cutting parameters on surface finish and machinability of graphite reinforced Al-8011 matrix composite. In IOP conference series: materials science and engineering (Vol. 191, No. 1, p. 012025). IOP Publishing.
  • Anwar, W., Khan, M., Israr, A., Mehmood, S., & Anjum, N. (2017). Effect of structural dynamic characteristics on fatigue and damage tolerance of aerospace grade composite materials. Aerospace Science and Technology, 64, 39-51.
  • Basri, E., Sultan, M., Basri, A., Mustapha, F., & Ahmad, K. (2021). Consideration of Lamination Structural Analysis in a Multi-Layered Composite and Failure Analysis on Wing Design Application. Materials, 14.
  • Chen, H., Fang, X., Zhang, Z., Xie, X., Nie, H., & Wei, X. (2021). Parameter optimisation of a carrier-based UAV drawbar based on strain fatigue analysis. The Aeronautical Journal, 125, 1083 - 1102.
  • Chinvorarat, S. (2021). Composite wing structure of light amphibious airplane design, optimization, and experimental testing. Heliyon, 7(11).
  • Das, S., & Roy, S. (2018). Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer. IOP Conference Series: Materials Science and Engineering, 402.
  • Frulla, G., and E. Cestino. (2008). Design, manufacturing and testing of a HALE-UAV structural demonstrator. Composite Structures 83.2: 143-153.
  • Johnson, A., Adams, B., & Wilson, C. (2018). Aerodynamic Load Effects on UAV Wing Structures. Journal of Aircraft Structures, 32(4), 567-580.
  • Kocamer, A., Çinar, H., Çoban, S., & Uzun, M., (2023). Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. European Mechanical Science, 7(2), 122-127.
  • Liang-zhong, D. (2012). Strength and Modal Analysis of the Wing's Configuration for UAV Based on ABAQUS. Journal of Nanchang Hangkong University.
  • Nanda, M. (2013). State of the Art Structural Fatigue Analyzer for the Unmanned Air Vehicle (UAV)., 9.
  • Park, S., Shin, J., & Kim, T. (2018). Development of the Main Wing Structure of a High Altitude Long Endurance UAV. International Journal of Aeronautical and Space Sciences, 19, 53-71.
  • Peruru, S. P., & Abbisetti, S. B. (2017). Design and finite element analysis of aircraft wing using ribs and spars. Int. Res. J. Eng. Technol.(IRJET), 4(06), 2133-2139.
  • Rumayshah, Khodijah Kholish, Aditya Prayoga, and Mochammad Agoes Moelyadi. (2018). Design of high altitude long endurance UAV: Structural analysis of composite wing using finite element method. Journal of Physics: Conference Series. Vol. 1005. No. 1. IOP Publishing, 2018.
  • Sekar, K., Ramesh, M., Naveen, R., Prasath, M., & Vigneshmoorthy, D. (2020). Aerodynamic design and structural optimization of a wing for an Unmanned Aerial Vehicle (UAV). IOP Conference Series: Materials Science and Engineering, 764.
  • Shi, S. (2008). Wing Structure Design and Analysis of Cranked-Wing Configuration UAV. Aircraft Design.
  • Smith, P., & Brown, R. (2019). Material Selection Strategies for UAV Wing Construction. Materials and Design, 185, 108239.
  • Sullivan, R. W., Hwang, Y., Rais-Rohani, M., & Lacy, T. (2009). Structural analysis and testing of an ultralight unmanned-aerial-vehicle carbon-composite wing. Journal of aircraft, 46(3), 814-820.
  • Thompson, M., Roberts, J., & Davis, K. (2020). Advanced Fatigue Analysis Techniques for UAV Wing Design. Fatigue & Fracture of Engineering Materials & Structures, 43(9), 2080-2095.
  • Uzun, M., & Çoban, S. (2021). Aerodynamic Performance Improvement with Morphing Winglet Design. Journal of Aviation, 5(1), 16-21.
  • Uzun, M., & Çoban, S. (2021). Electrically driven VTOL flying car designing and aerodynamic analysis. Avrupa Bilim ve Teknoloji Dergisi, (25), 815-821.
  • Uzun, M., Çınar, H., Kocamer, A., & Çoban, S. (2023). Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(2), 183-191.
  • Uzun, M., Özdemir, M., Yildirim, Ç. V., & Çoban, S. (2022). A novel biomimetic wing design and optimizing aerodynamic performance. Journal of Aviation, 6(1), 12-25.
Year 2024, , 80 - 87, 27.06.2024
https://doi.org/10.30518/jav.1433258

Abstract

References

  • Anil, K. C., Vikas, M. G., Teja, B. S., & Rao, K. S. (2017, April). Effect of cutting parameters on surface finish and machinability of graphite reinforced Al-8011 matrix composite. In IOP conference series: materials science and engineering (Vol. 191, No. 1, p. 012025). IOP Publishing.
  • Anwar, W., Khan, M., Israr, A., Mehmood, S., & Anjum, N. (2017). Effect of structural dynamic characteristics on fatigue and damage tolerance of aerospace grade composite materials. Aerospace Science and Technology, 64, 39-51.
  • Basri, E., Sultan, M., Basri, A., Mustapha, F., & Ahmad, K. (2021). Consideration of Lamination Structural Analysis in a Multi-Layered Composite and Failure Analysis on Wing Design Application. Materials, 14.
  • Chen, H., Fang, X., Zhang, Z., Xie, X., Nie, H., & Wei, X. (2021). Parameter optimisation of a carrier-based UAV drawbar based on strain fatigue analysis. The Aeronautical Journal, 125, 1083 - 1102.
  • Chinvorarat, S. (2021). Composite wing structure of light amphibious airplane design, optimization, and experimental testing. Heliyon, 7(11).
  • Das, S., & Roy, S. (2018). Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer. IOP Conference Series: Materials Science and Engineering, 402.
  • Frulla, G., and E. Cestino. (2008). Design, manufacturing and testing of a HALE-UAV structural demonstrator. Composite Structures 83.2: 143-153.
  • Johnson, A., Adams, B., & Wilson, C. (2018). Aerodynamic Load Effects on UAV Wing Structures. Journal of Aircraft Structures, 32(4), 567-580.
  • Kocamer, A., Çinar, H., Çoban, S., & Uzun, M., (2023). Structural comparison of vertical and horizontal layout of carrying arms of rotary-wing UAV with finite element analysis. European Mechanical Science, 7(2), 122-127.
  • Liang-zhong, D. (2012). Strength and Modal Analysis of the Wing's Configuration for UAV Based on ABAQUS. Journal of Nanchang Hangkong University.
  • Nanda, M. (2013). State of the Art Structural Fatigue Analyzer for the Unmanned Air Vehicle (UAV)., 9.
  • Park, S., Shin, J., & Kim, T. (2018). Development of the Main Wing Structure of a High Altitude Long Endurance UAV. International Journal of Aeronautical and Space Sciences, 19, 53-71.
  • Peruru, S. P., & Abbisetti, S. B. (2017). Design and finite element analysis of aircraft wing using ribs and spars. Int. Res. J. Eng. Technol.(IRJET), 4(06), 2133-2139.
  • Rumayshah, Khodijah Kholish, Aditya Prayoga, and Mochammad Agoes Moelyadi. (2018). Design of high altitude long endurance UAV: Structural analysis of composite wing using finite element method. Journal of Physics: Conference Series. Vol. 1005. No. 1. IOP Publishing, 2018.
  • Sekar, K., Ramesh, M., Naveen, R., Prasath, M., & Vigneshmoorthy, D. (2020). Aerodynamic design and structural optimization of a wing for an Unmanned Aerial Vehicle (UAV). IOP Conference Series: Materials Science and Engineering, 764.
  • Shi, S. (2008). Wing Structure Design and Analysis of Cranked-Wing Configuration UAV. Aircraft Design.
  • Smith, P., & Brown, R. (2019). Material Selection Strategies for UAV Wing Construction. Materials and Design, 185, 108239.
  • Sullivan, R. W., Hwang, Y., Rais-Rohani, M., & Lacy, T. (2009). Structural analysis and testing of an ultralight unmanned-aerial-vehicle carbon-composite wing. Journal of aircraft, 46(3), 814-820.
  • Thompson, M., Roberts, J., & Davis, K. (2020). Advanced Fatigue Analysis Techniques for UAV Wing Design. Fatigue & Fracture of Engineering Materials & Structures, 43(9), 2080-2095.
  • Uzun, M., & Çoban, S. (2021). Aerodynamic Performance Improvement with Morphing Winglet Design. Journal of Aviation, 5(1), 16-21.
  • Uzun, M., & Çoban, S. (2021). Electrically driven VTOL flying car designing and aerodynamic analysis. Avrupa Bilim ve Teknoloji Dergisi, (25), 815-821.
  • Uzun, M., Çınar, H., Kocamer, A., & Çoban, S. (2023). Fluid-structure coupled simulation-based investigation and thrust/efficiency calculation for a UAV twin-blade propeller. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 39(2), 183-191.
  • Uzun, M., Özdemir, M., Yildirim, Ç. V., & Çoban, S. (2022). A novel biomimetic wing design and optimizing aerodynamic performance. Journal of Aviation, 6(1), 12-25.
There are 23 citations in total.

Details

Primary Language English
Subjects Aerospace Structures
Journal Section Research Articles
Authors

Metin Uzun 0000-0002-0744-3491

Hasan Çınar 0000-0001-8718-3767

Abdullah Kocamer 0000-0001-8948-6390

Sezer Çoban 0000-0001-6750-5001

Early Pub Date June 25, 2024
Publication Date June 27, 2024
Submission Date February 7, 2024
Acceptance Date April 4, 2024
Published in Issue Year 2024

Cite

APA Uzun, M., Çınar, H., Kocamer, A., Çoban, S. (2024). Structural and Fatigue Analysis of a UAV Wing. Journal of Aviation, 8(2), 80-87. https://doi.org/10.30518/jav.1433258

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence