Research Article
BibTex RIS Cite

Air Traffic Controllers' Perspectives on Unmanned Aerial Vehicles Integration into Non-Segregated Airspace

Year 2024, , 153 - 165, 27.06.2024
https://doi.org/10.30518/jav.1475735

Abstract

The integration of Unmanned Aerial Vehicles (UAVs) into non-segregated airspace presents both opportunities and challenges for air traffic control (ATC). The aim of the study is to explore the perspectives of air traffic controllers on the current and anticipated challenges, workload, stress factors, performance errors, and mitigation strategies related to UAV integration. The sample consisted of 213 air traffic controllers in Türkiye. UAV operations have been available in Türkiye not only for military purposes but also for purposes such as forest fires, earthquakes, security, and others for a long time, and these UAV operations are provided with air traffic services (ATS) by air traffic controllers. The results show that air traffic controllers are concerned about mid-air collisions due to UAV technology limits and regulatory gaps, along with managing risks and unique flight characteristics. Addressing technology limitations, regulatory ambiguity, and other factors necessitates a comprehensive strategy. Solutions must prioritize collision avoidance systems, clear communication guidelines, and defined no-fly zones. It is recommended that future studies focus on the comprehensive impact of UAVs on air traffic operations and the development of regulations.

References

  • Albaker, B. M., & Rahim, N. A. (2011). A conceptual framework and a review of conflict sensing, detection, awareness and escape maneuvering methods for UAVs. IntechOpen.
  • Ali, B. (2019). Traffic management for drones flying in the city. Int. J. Crit. Infrastructure Prot., 26.
  • Allouche, M. (2000). The integration of UAVs in airspace. Air & Space Europe, 2(1), 101-104.
  • Al-Mousa, A., Sababha, B. H., Al-Madi, N., Barghouthi, A., & Younisse, R. (2019). UTSim: A framework and simulator for UAV air traffic integration, control, and communication. International Journal of Advanced Robotic Systems, 16(5), 1729881419870937.
  • Ancel, E., Capristan, F. M., Foster, J. V., & Condotta, R. C. (2017). Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3273)
  • Anisetti, M., Ardagna, C., Carminati, B., Ferrari, E., & Perner, C. (2020). Requirements and Challenges for Secure and Trustworthy UAS Collaboration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), 89-98.
  • Arblaster, M. (2018). 11: New Entrants into Airspace–Unmanned Aircraft (Drones) And Increased Space Transportation. Air Traffic Management, 235-255.
  • Bakare, A. K., & Junaidu, S. B. (2013). Integration of radar system with GPS-based traffic alert and collision avoidance system (TCAS) for approach control separation. Journal of Aviation Technology and Engineering, 2(2), 6.
  • Balcı, A. (2012). Research in Social Sciences (9th edition). Ankara: Pegem A Publishing.
  • Barfield, F. (2000). Autonomous collision avoidance: the technical requirements. Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), 808-813.
  • Başak, H., & Gülen, M. (2008). A Risk Measurement and Management Model for Preventing Unmanned Air Vehicle Accidents. Pamukkale University Journal of Engineering Sciences, 14(1), 55-65.
  • Baum, D., Neto, E., Almeida, J., Camargo, J., & Cugnasca, P. (2019). A Mindset-Based Evolution of Unmanned Aircraft System (UAS) Acceptance into the National Airspace System (NAS). IEEE Access, 8, 30938-30952.
  • Bauranov, A., & Rakas, J. (2021). Designing airspace for urban air mobility: A review of concepts and approaches. Progress in Aerospace Sciences, 125, 100726.
  • Bhatt, K., Pourmand, A., & Sikka, N. (2018). Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 24(11), 833-838.
  • Bongo, M., Alimpangog, K., Loar, J., Montefalcon, J., & Ocampo, L. (2017). An application of DEMATEL-ANP and PROMETHEE II approach for air traffic controllers’ workload stress problem: A case of Mactan Civil Aviation Authority of the Philippines. Journal of Air Transport Management, 68, 198-213.
  • Brookings, J., Wilson, G., & Swain, C. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42, 361-377.
  • Büyüköztürk, Ş. (2005). Survey Development. The Journal of Turkish Educational Sciences, 3(2), 133-151.
  • Carr, E. B. (2013). Unmanned aerial vehicles: Examining the safety, security, privacy, and regulatory issues of integration into US airspace. National Centre for Policy Analysis (NCPA). Retrieved on September, 23(2013).
  • Cauwels, M., Hammer, A., Hertz, B., Jones, P., & Rozier, K. (2020). Integrating runtime verification into an automated UAS traffic management system. Innovations in Systems and Software Engineering, 18, 567-580.
  • Chin, C., Li, M. Z., & Pant, Y. V. (2022). Distributed Traffic Flow Management for Uncrewed Aircraft Systems. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 3625-3631). IEEE.
  • Colgren, R., & Holly, L. (2009). Flight dynamic requirements for UAVs-do they really exist. In AIAA Atmospheric Flight Mechanics Conference (p. 6323).
  • Correa, M., Camargo, J., Rossi, M., & Almeida, J. (2012). Improving the Resilience of UAV in Non-segregated Airspace Using Multiagent Paradigm. 2012 Second Brazilian Conference on Critical Embedded Systems, 88- 93.
  • Corver, S., & Grote, G. (2016). Uncertainty management in enroute air traffic control: a field study exploring controller strategies and requirements for automation. Cognition, Technology & Work, 18, 541 - 565.
  • Costa, G. (2000). Working and Health Conditions of Italian Air Traffic Controllers. International Journal of Occupational Safety and Ergonomics, 6, 365 - 382.
  • Cyganczuk, K., & Roguski, J. (2023). New challenges in the operation of unmanned aerial vehicles. changes in legal regulations regarding the safety of unmanned aviation. Zeszyty Naukowe SGSP, 86, 275-294
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences, 44(7-8), 503-519.
  • Dasu, T., Kanza, Y., & Srivastava, D. (2018). Geofences in the sky: herding drones with blockchains and 5G. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
  • Davies, L., Vagapov, Y., Grout, V., Cunningham, S., & Anuchin, A. (2021). Review of air traffic management systems for UAV integration into urban airspace. In 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED) (pp. 1-6). IEEE.
  • Debernard, S., Vanderhaegen, F., & Millot, P. (1992). An experimental investigation of dynamic allocation of tasks between air traffic controller and AI systems. In Analysis, Design and Evaluation of Man–Machine Systems 1992 (pp. 95-100). Pergamon.
  • DeGarmo, M. T. (2004). Issues concerning integration of unmanned aerial vehicles in civil airspace. Center for Advanced Aviation System Development. https://www.mitre.org/sites/default/files/pdf/04_1232.pdf
  • Dianovsky, R., Pecho, P., & Bugaj, M. (2023). The ground station for long-range monitoring, flight control, and operational data telemetry of unmanned aerial vehicles. Perner's Contacts. 18(1)
  • Ellejmi, M., Weiss, B., Schmitt, F., & Straub, S. (2015). Integration of a Routing Tool in an Advanced Airport Controller Working Position. In 15th AIAA Aviation Technology, Integration, and Operations Conference (p. 2595).
  • Euchi, J. (2021). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chinese Journal of Aeronautics, 34(2), 182-190.
  • Ferguson, A., & McCarthy, J. (2017). Sharing the skies (safely): Near term perspective on sUAS integration in the NAS. 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), 3B2-1-3B2-10.
  • Finkelman, J., & Kirschner, C. (1980). An Information-Processing Interpretation of Air Traffic Control Stress. Human Factors: The Journal of Human Factors and Ergonomics Society, 22, 561 - 567.
  • Geister, D., & Geister, R. (2013). Integrating Unmanned Aircraft Efficiently into Hub Airport Approach Procedures. Annual of Navigation, 60, 235-247.
  • Grote, M., Pilko, A., Scanlan, J., Cherrett, T., Dickinson, J., Smith, A., Oakey, A., & Marsden, G. (2021). Pathways to unsegregated sharing of airspace: views of the uncrewed aerial vehicle (UAV) industry. Drones, 5(4), 150.
  • Gunawardana, S., & Alonso, J. (2013). Autonomous Air Traffic Control Dialog Management System to Enable Unmanned Aircraft in the National Airspace System. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 1035).
  • Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18, 1123-1152.
  • Hasan, M. M., Pandey, A., & Raj, A. B. (2022). UAV Classification from Micro-Doppler Signature-based Time Frequency Images using SVM. In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 1225-1230). IEEE.
  • Hassard, J., & Cox, T. (2015). Work-related stress: Nature and management. OSHwiki: Networking Knowledge. https://oshwiki.eu/wiki/Work-related_stress: _Nature_ and_management
  • Ho, F., Geraldes, R., Goncalves, A., Rigault, B., Oosedo, A., Cavazza, M., & Prendinger, H. (2019). Pre-flight conflict detection and resolution for UAV integration in shared airspace: Sendai 2030 model case. IEEE Access, 7, 170226-170237.
  • Hosseinzadeh, M. (2021). UAV Geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems (pp. 567-594). Academic Press.
  • Huttunen, M. T. (2019). The U-space Concept. Air & Space Law, 44(1), 69-90. https://core.ac.uk/download/pdf/302227349.pdf
  • Jack, D. P., & Hoffler, K. D. (2014). Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and Avoid System Performance Requirements. In 14th AIAA Aviation Technology, Integration, and Operations Conference (p. 2288).
  • Kakarla, S., & Ampatzidis, Y. (2018). Instructions on the Use of Unmanned Aerial Vehicles (UAVs). EDIS.
  • Kamienski, J., & Semanek, J. (2015). ATC perspectives of UAS integration in controlled airspace. Procedia Manufacturing, 3, 1046-1051.
  • Kamienski, J., Simons, E., Bell, S., & Estes, S. (2010). Study of unmanned aircraft systems procedures: Impact on air traffic control. 29th Digital Avionics Systems Conference.
  • Karthick, T., & Aravind, S. (2010). Unmanned Air Vehicle collision avoidance system and method for safety flying in civilian airspace. In 2010 3rd International Conference on Emerging Trends in Engineering and Technology (pp. 116-119). IEEE.
  • Khawaja, W., Ezuma, M., Semkin, V., Erden, F., Ozdemir, O., & Guvenc, I. (2022). A Survey on Detection, Tracking, and Classification of Aerial Threats using Radars and Communications Systems. arXiv preprint arXiv:2211.10038.
  • Kim, Y., Jo, J., & Shaw, M. (2015). A lightweight communication architecture for small UAS Traffic Management (SUTM). 2015 Integrated Communication, Navigation and Surveillance Conference (ICNS), T4-1-T4-9.
  • Kobaszynska-Twardowska, A., Łukasiewicz, J., & Sielicki, P. W. (2022). Risk Management Model for Unmanned Aerial Vehicles during Flight Operations. Materials, 15(7), 2448.
  • Koeners, G., Vries, M., Goossens, A., Tadema, J., & Theunissen, E. (2006). Exploring Network Enabled Airspace Integration Functions for a UAV Mission Management Station. 2006 IEEE/AIAA 25TH Digital Avionics Systems Conference, 1-11.
  • Kozak, P., Platenka, V., & Vrsecka, M. (2022). Analysis of Communication Protocols of UAV Control Sets. 2022 New Trends in Signal Processing (NTSP), 1-6.
  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and psychological measurement, 30(3), 607-610.
  • Lacher, A., Zeitlin, A., Maroney, D., Markin, K., Ludwig, D., & Boyd, J. (2010). Airspace integration alternatives for unmanned aircraft. CAASD, The MITRE Corporation.
  • Lecchini-Visintini, A., & Lygeros, J. (2010). Air traffic management: Challenges and opportunities for advanced control. International Journal of Adaptive Control and Signal Processing, 24.
  • Liu, J. X., Feng, S. X., & Zeng, X. Y. (2019). Study on Influencing Factors of Controllers’ Undesirable Stress Response Based on GRAY-DEMATEL Method. In 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE) (pp. 1-7). IEEE
  • Malakis, S., Psaros, P., Kontogiannis, T., & Malaki, C. (2019). Classification of air traffic control scenarios using decision trees: insights from a field study in terminal approach radar environment. Cognition, Technology & Work, 22, 159-179.
  • Malone, P., Apgar, H., Stukes, S., & Sterk, S. (2013). Unmanned Aerial Vehicles unique cost estimating requirements. 2013 IEEE Aerospace Conference, 1-8.
  • Matolak, D. (2015). Unmanned aerial vehicles: Communications challenges and future aerial networking. 2015 International Conference on Computing, Networking and Communications (ICNC), 567-572.
  • Miller, M., Holley, S., Mrusek, B., & Weiland, L. (2020). Assessing cognitive processing and human factors challenges in NextGen air traffic control tower team operations. In Advances in Human Factors and Systems Interaction: Proceedings of the AHFE 2020 Virtual Conference on Human Factors and Systems Interaction, July 16-20, 2020, USA (pp. 289-295). Springer International Publishing.
  • Mooij, M., & Corker, K. (2002). Supervisory control paradigm: limitations in applicability to advanced air traffic management systems. Proceedings. The 21st Digital Avionics Systems Conference, 1, 1C3-1C3.
  • Moreira, M., Papp, E., & Ventura, R. (2019). Interception of non-cooperative UAVs. In 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 120-125). IEEE.
  • Mueller, E. R., Kopardekar, P. H., & Goodrich, K. H. (2017). Enabling airspace integration for high-density on- demand mobility operations. In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3086).
  • Naji, H. R., & Ayari, A. (2023). Risk Management of Unmanned Aerial Vehicles. arXiv preprint arXiv:2311.05648.
  • Neto, E. C. P., Baum, D. M., Almeida Jr, J. R. D., Camargo Jr, J. B., & Cugnasca, P. S. (2022). UAS in the Airspace: A Review on Integration, Simulation, Optimization, and Open Challenges. arXiv preprint arXiv:2211.15330.
  • Orhunbilge, N. (2000). Sampling Methods and Hypothesis Tests. Istanbul: Avcıol Publishing.
  • Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 72, 411-458.
  • Paczan, N., Cooper, J., & Zakrzewski, E. (2012). Integrating unmanned aircraft into NextGen automation systems. 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 8C3-1-8C3-9.
  • Pastor, E., Perez-Batlle, M., Royo, P., Cuadrado, R., & Barrado, C. (2014). Real-time simulations to evaluate the RPAS integration in shared airspace. Proceedings of the 4th SESAR Innovation Days (SIDs2014), Madrid, Spain, 24-27.
  • Pathak, S. V., Mohod, A. G., & Sawant, A. A. (2020). Review on effective role of UAV in precision farming. Journal of Pharmacognosy and Phytochemistry, 9(4), 463-467
  • Pavlinovic, M., Juricic, B., & Antulov-Fantulin, B. (2017). Air traffic controllers' practical part of basic training on computer-based simulation device. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 920-925.
  • Peterson, M. E. (2006). The UAV and the current and future regulatory construct for integration into the national airspace system. J. Air L. & Com., 71, 521.
  • Politi, E., Panagiotopoulos, I. E., Varlamis, I., & Dimitrakopoulos, G. (2021). A Survey of UAS Technologies to Enable Beyond Visual Line of Sight (BVLOS) Operations. In VEHITS (pp. 505-512).
  • Ponchak, D., Templin, F., Sheffield, G., Taboso, P., & Jain, R. (2018). Reliable and secure surveillance, communications, and navigation (RSCAN) for Unmanned Air Systems (UAS) in controlled airspace. 2018 IEEE Aerospace Conference, 1-14.
  • Pop, S., Isaila, O., Preda, D., & Luchian, A. (2017). Risk Management Regarding the Use of UAV in The Modern Air Space. Scientiıfic Research and Education in The Air Force, 19, 171-176.
  • Radmanesh, M. (2016). UAV traffic management for national airspace integration (Master's thesis, University of Cincinnati).
  • Ribeiro, L., Giles, S., Katkin, R., Topiwala, T., & Minnix, M. (2017). Challenges and opportunities to integrate UAS in the National Airspace System. In 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS) (pp. 6C3-1). IEEE.
  • Sandor, Z. (2017). Challenges Caused by the Unmanned Aerial Vehicle in the Air Traffic Management. Periodica Polytechnica Transportation Engineering, 47, 96-105.
  • Sandor, Z. (2019). Challenges caused by the unmanned aerial vehicle in the air traffic management. Periodica polytechnica transportation engineering, 47(2), 96-105.
  • Shaaban Ali, O. H., Gopalakrishnan, A., Muriyan, A., & Francis, S. (2022). Unmanned Aerial Vehicles: A Literature Review. Journal of Hunan University Natural Sciences, 49(7).
  • Shah, S., Shah, V., Vasani, V., & Sanghvi, D. (2020). Unmanned Aerial Vehicle (UAV). Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires.
  • Shan, L., Li, H. B., Miura, R., Matsuda, T., & Matsumura, T. (2023). A Novel Collision Avoidance Strategy with D2D Communications for UAV Systems. Drones, 7(5), 283.
  • Shao, S., Zhu, W., & Li, Y. (2022). Radar Detection of Low-Slow-Small UAVs in Complex Environments. In 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (Vol. 10, pp. 1153-1157). IEEE.
  • Simpson, A. J., & Stoker, J. (2006). Safety challenges in flying UAVS (unmanned aerial vehicles) in non- segregated airspace. 1st IET International Conference on System Safety.
  • Song, C., Wu, Y., Zhou, L., Li, R., Yang, J., Liang, W., & Ding, C. (2019). A multicomponent micro-Doppler signal decomposition and parameter estimation method for target recognition. Science China Information Sciences, 62(2), 29304.
  • Stansbury, R., Vyas, M., & Wilson, T. (2009). A Survey of UAS Technologies for Command, Control, and Communication (C3). Journal of Intelligent and Robotic Systems, 54, 61-78.
  • Stevens, M., & Atkins, E. (2020). Geofence Definition and Deconfliction for UAS Traffic Management. IEEE Transactions on Intelligent Transportation Systems, 22, 5880-5889.
  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote sensing, 9(5), 459.
  • Sujit, P., Saripalli, S., & Sousa, J. (2014). Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles. IEEE Control Systems, 34, 42-59.
  • Swieringa, K., Young, R., Vivona, R., & Hague, M. (2019). UAS Concept of Operations and Vehicle Technologies Demonstration. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), 1-15.
  • Tattersall, A. J., Farmer, E. W., & Belyavin, A. J. (1991). Stress and workload management in air traffic control. In Automation and Systems Issues in Air Traffic Control (pp. 255-266). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Thiels, C., Aho, J., Zietlow, S., & Jenkins, D. (2015). Use of unmanned aerial vehicles for medical product transport. Air Medical Journal, 34(2), 104-108.
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3676).
  • Tomic, I., & Liu, J. (2017). Strategies to overcome fatigue in air traffic control based on stress management. Journal of Engineering and Science, 6(4), 48-57
  • Truitt, T. R., Zingale, C. M., & Konkel, A. (2016). UAS Operational Assessment: Visual compliance. Humanin-the- loop simulation to assess how UAS integration in Class C airspace will affect Air Traffic Control Specialists. DOT/FAA/TC-16/11
  • Valavanis, K. P., & Vachtsevanos, G. J. (2015). UAV integration into the national airspace: Introduction. Handbook of Unmanned Aerial Vehicles, 2113-16.
  • Van Der Veeken, S., Wubben, J., Calafate, C. T., Cano, J. C., Manzoni, P., & Marquez-Barja, J. (2021). A collision avoidance strategy for multirotor UAVs based on artificial potential fields. In Proceedings of the 18th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks (pp. 95-102).
  • Vasile, P., Cioaca, C., Luculescu, D., Luchian, A., & Pop, S. (2019). Consideration about UAV command and control. Ground Control Station. Journal of Physics: Conference Series, 1297.
  • Vidovic, A., Mihetec, T., Wang, B., & Štimac, I. (2019). Operations Of Drones in Controlled Airspace in Europe. International Journal for Traffic and Transport Engineering. 623.746.2-519(4)
  • Yamane, T. (1967). Statistics: An Introductory Analysis. Harper & Row.
  • Wang, H., Dattel, A., Mummert, E., & Haris, S. (2022). Assessing Air Traffic Controllers’ Stress and Performance with UAV Integration in Future Air Traffic Management. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 66, 38 - 38.
  • Wilson, I. (2018). Integration of UAS in existing air traffic management systems connotations and consequences. 2018 Integrated Communications, Navigation, Surveillance Conference (ICNS), 2G3-1-2G3-7.
  • Yılmaz, A., & Ulvi, H. (2022). Some Services to Be Provided and Technologies to Be Used for UAS Traffic Management (UTM) in Urban Airspace. Turkish Journal of Unmanned Aerial Vehicles, 4(1), 8-18.
  • Zeier, H., Brauchli, P., & Joller-jemelka, H. (1996). Effects of work demands on immunoglobulin A and cortisol in air traffic controllers. Biological Psychology, 42, 413-423.
  • Zhang, Z., Shi, Z., Li, N., Zhang, Y., & Xu, X. (2023, July). Study of Psychological Stress Among Air Traffic Controllers. In International Conference on Human-Computer Interaction (pp. 501-519). Cham: Springer Nature Switzerland
  • Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, And Operations Conference (p. 3453).
Year 2024, , 153 - 165, 27.06.2024
https://doi.org/10.30518/jav.1475735

Abstract

References

  • Albaker, B. M., & Rahim, N. A. (2011). A conceptual framework and a review of conflict sensing, detection, awareness and escape maneuvering methods for UAVs. IntechOpen.
  • Ali, B. (2019). Traffic management for drones flying in the city. Int. J. Crit. Infrastructure Prot., 26.
  • Allouche, M. (2000). The integration of UAVs in airspace. Air & Space Europe, 2(1), 101-104.
  • Al-Mousa, A., Sababha, B. H., Al-Madi, N., Barghouthi, A., & Younisse, R. (2019). UTSim: A framework and simulator for UAV air traffic integration, control, and communication. International Journal of Advanced Robotic Systems, 16(5), 1729881419870937.
  • Ancel, E., Capristan, F. M., Foster, J. V., & Condotta, R. C. (2017). Real-time risk assessment framework for unmanned aircraft system (UAS) traffic management (UTM). In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3273)
  • Anisetti, M., Ardagna, C., Carminati, B., Ferrari, E., & Perner, C. (2020). Requirements and Challenges for Secure and Trustworthy UAS Collaboration. 2020 Second IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications (TPS-ISA), 89-98.
  • Arblaster, M. (2018). 11: New Entrants into Airspace–Unmanned Aircraft (Drones) And Increased Space Transportation. Air Traffic Management, 235-255.
  • Bakare, A. K., & Junaidu, S. B. (2013). Integration of radar system with GPS-based traffic alert and collision avoidance system (TCAS) for approach control separation. Journal of Aviation Technology and Engineering, 2(2), 6.
  • Balcı, A. (2012). Research in Social Sciences (9th edition). Ankara: Pegem A Publishing.
  • Barfield, F. (2000). Autonomous collision avoidance: the technical requirements. Proceedings of the IEEE 2000 National Aerospace and Electronics Conference. NAECON 2000. Engineering Tomorrow (Cat. No.00CH37093), 808-813.
  • Başak, H., & Gülen, M. (2008). A Risk Measurement and Management Model for Preventing Unmanned Air Vehicle Accidents. Pamukkale University Journal of Engineering Sciences, 14(1), 55-65.
  • Baum, D., Neto, E., Almeida, J., Camargo, J., & Cugnasca, P. (2019). A Mindset-Based Evolution of Unmanned Aircraft System (UAS) Acceptance into the National Airspace System (NAS). IEEE Access, 8, 30938-30952.
  • Bauranov, A., & Rakas, J. (2021). Designing airspace for urban air mobility: A review of concepts and approaches. Progress in Aerospace Sciences, 125, 100726.
  • Bhatt, K., Pourmand, A., & Sikka, N. (2018). Targeted Applications of Unmanned Aerial Vehicles (Drones) in Telemedicine. Telemedicine journal and e-health: the official journal of the American Telemedicine Association, 24(11), 833-838.
  • Bongo, M., Alimpangog, K., Loar, J., Montefalcon, J., & Ocampo, L. (2017). An application of DEMATEL-ANP and PROMETHEE II approach for air traffic controllers’ workload stress problem: A case of Mactan Civil Aviation Authority of the Philippines. Journal of Air Transport Management, 68, 198-213.
  • Brookings, J., Wilson, G., & Swain, C. (1996). Psychophysiological responses to changes in workload during simulated air traffic control. Biological Psychology, 42, 361-377.
  • Büyüköztürk, Ş. (2005). Survey Development. The Journal of Turkish Educational Sciences, 3(2), 133-151.
  • Carr, E. B. (2013). Unmanned aerial vehicles: Examining the safety, security, privacy, and regulatory issues of integration into US airspace. National Centre for Policy Analysis (NCPA). Retrieved on September, 23(2013).
  • Cauwels, M., Hammer, A., Hertz, B., Jones, P., & Rozier, K. (2020). Integrating runtime verification into an automated UAS traffic management system. Innovations in Systems and Software Engineering, 18, 567-580.
  • Chin, C., Li, M. Z., & Pant, Y. V. (2022). Distributed Traffic Flow Management for Uncrewed Aircraft Systems. In 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 3625-3631). IEEE.
  • Colgren, R., & Holly, L. (2009). Flight dynamic requirements for UAVs-do they really exist. In AIAA Atmospheric Flight Mechanics Conference (p. 6323).
  • Correa, M., Camargo, J., Rossi, M., & Almeida, J. (2012). Improving the Resilience of UAV in Non-segregated Airspace Using Multiagent Paradigm. 2012 Second Brazilian Conference on Critical Embedded Systems, 88- 93.
  • Corver, S., & Grote, G. (2016). Uncertainty management in enroute air traffic control: a field study exploring controller strategies and requirements for automation. Cognition, Technology & Work, 18, 541 - 565.
  • Costa, G. (2000). Working and Health Conditions of Italian Air Traffic Controllers. International Journal of Occupational Safety and Ergonomics, 6, 365 - 382.
  • Cyganczuk, K., & Roguski, J. (2023). New challenges in the operation of unmanned aerial vehicles. changes in legal regulations regarding the safety of unmanned aviation. Zeszyty Naukowe SGSP, 86, 275-294
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). On unmanned aircraft systems issues, challenges and operational restrictions preventing integration into the National Airspace System. Progress in Aerospace Sciences, 44(7-8), 503-519.
  • Dasu, T., Kanza, Y., & Srivastava, D. (2018). Geofences in the sky: herding drones with blockchains and 5G. Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems.
  • Davies, L., Vagapov, Y., Grout, V., Cunningham, S., & Anuchin, A. (2021). Review of air traffic management systems for UAV integration into urban airspace. In 2021 28th International Workshop on Electric Drives: Improving Reliability of Electric Drives (IWED) (pp. 1-6). IEEE.
  • Debernard, S., Vanderhaegen, F., & Millot, P. (1992). An experimental investigation of dynamic allocation of tasks between air traffic controller and AI systems. In Analysis, Design and Evaluation of Man–Machine Systems 1992 (pp. 95-100). Pergamon.
  • DeGarmo, M. T. (2004). Issues concerning integration of unmanned aerial vehicles in civil airspace. Center for Advanced Aviation System Development. https://www.mitre.org/sites/default/files/pdf/04_1232.pdf
  • Dianovsky, R., Pecho, P., & Bugaj, M. (2023). The ground station for long-range monitoring, flight control, and operational data telemetry of unmanned aerial vehicles. Perner's Contacts. 18(1)
  • Ellejmi, M., Weiss, B., Schmitt, F., & Straub, S. (2015). Integration of a Routing Tool in an Advanced Airport Controller Working Position. In 15th AIAA Aviation Technology, Integration, and Operations Conference (p. 2595).
  • Euchi, J. (2021). Do drones have a realistic place in a pandemic fight for delivering medical supplies in healthcare systems problems? Chinese Journal of Aeronautics, 34(2), 182-190.
  • Ferguson, A., & McCarthy, J. (2017). Sharing the skies (safely): Near term perspective on sUAS integration in the NAS. 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS), 3B2-1-3B2-10.
  • Finkelman, J., & Kirschner, C. (1980). An Information-Processing Interpretation of Air Traffic Control Stress. Human Factors: The Journal of Human Factors and Ergonomics Society, 22, 561 - 567.
  • Geister, D., & Geister, R. (2013). Integrating Unmanned Aircraft Efficiently into Hub Airport Approach Procedures. Annual of Navigation, 60, 235-247.
  • Grote, M., Pilko, A., Scanlan, J., Cherrett, T., Dickinson, J., Smith, A., Oakey, A., & Marsden, G. (2021). Pathways to unsegregated sharing of airspace: views of the uncrewed aerial vehicle (UAV) industry. Drones, 5(4), 150.
  • Gunawardana, S., & Alonso, J. (2013). Autonomous Air Traffic Control Dialog Management System to Enable Unmanned Aircraft in the National Airspace System. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (p. 1035).
  • Gupta, L., Jain, R., & Vaszkun, G. (2016). Survey of Important Issues in UAV Communication Networks. IEEE Communications Surveys & Tutorials, 18, 1123-1152.
  • Hasan, M. M., Pandey, A., & Raj, A. B. (2022). UAV Classification from Micro-Doppler Signature-based Time Frequency Images using SVM. In 2022 International Conference on Augmented Intelligence and Sustainable Systems (ICAISS) (pp. 1225-1230). IEEE.
  • Hassard, J., & Cox, T. (2015). Work-related stress: Nature and management. OSHwiki: Networking Knowledge. https://oshwiki.eu/wiki/Work-related_stress: _Nature_ and_management
  • Ho, F., Geraldes, R., Goncalves, A., Rigault, B., Oosedo, A., Cavazza, M., & Prendinger, H. (2019). Pre-flight conflict detection and resolution for UAV integration in shared airspace: Sendai 2030 model case. IEEE Access, 7, 170226-170237.
  • Hosseinzadeh, M. (2021). UAV Geofencing: Navigation of UVAs in constrained environments. In Unmanned Aerial Systems (pp. 567-594). Academic Press.
  • Huttunen, M. T. (2019). The U-space Concept. Air & Space Law, 44(1), 69-90. https://core.ac.uk/download/pdf/302227349.pdf
  • Jack, D. P., & Hoffler, K. D. (2014). Exploration of the Trade Space Between Unmanned Aircraft Systems Descent Maneuver Performance and Sense-and Avoid System Performance Requirements. In 14th AIAA Aviation Technology, Integration, and Operations Conference (p. 2288).
  • Kakarla, S., & Ampatzidis, Y. (2018). Instructions on the Use of Unmanned Aerial Vehicles (UAVs). EDIS.
  • Kamienski, J., & Semanek, J. (2015). ATC perspectives of UAS integration in controlled airspace. Procedia Manufacturing, 3, 1046-1051.
  • Kamienski, J., Simons, E., Bell, S., & Estes, S. (2010). Study of unmanned aircraft systems procedures: Impact on air traffic control. 29th Digital Avionics Systems Conference.
  • Karthick, T., & Aravind, S. (2010). Unmanned Air Vehicle collision avoidance system and method for safety flying in civilian airspace. In 2010 3rd International Conference on Emerging Trends in Engineering and Technology (pp. 116-119). IEEE.
  • Khawaja, W., Ezuma, M., Semkin, V., Erden, F., Ozdemir, O., & Guvenc, I. (2022). A Survey on Detection, Tracking, and Classification of Aerial Threats using Radars and Communications Systems. arXiv preprint arXiv:2211.10038.
  • Kim, Y., Jo, J., & Shaw, M. (2015). A lightweight communication architecture for small UAS Traffic Management (SUTM). 2015 Integrated Communication, Navigation and Surveillance Conference (ICNS), T4-1-T4-9.
  • Kobaszynska-Twardowska, A., Łukasiewicz, J., & Sielicki, P. W. (2022). Risk Management Model for Unmanned Aerial Vehicles during Flight Operations. Materials, 15(7), 2448.
  • Koeners, G., Vries, M., Goossens, A., Tadema, J., & Theunissen, E. (2006). Exploring Network Enabled Airspace Integration Functions for a UAV Mission Management Station. 2006 IEEE/AIAA 25TH Digital Avionics Systems Conference, 1-11.
  • Kozak, P., Platenka, V., & Vrsecka, M. (2022). Analysis of Communication Protocols of UAV Control Sets. 2022 New Trends in Signal Processing (NTSP), 1-6.
  • Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and psychological measurement, 30(3), 607-610.
  • Lacher, A., Zeitlin, A., Maroney, D., Markin, K., Ludwig, D., & Boyd, J. (2010). Airspace integration alternatives for unmanned aircraft. CAASD, The MITRE Corporation.
  • Lecchini-Visintini, A., & Lygeros, J. (2010). Air traffic management: Challenges and opportunities for advanced control. International Journal of Adaptive Control and Signal Processing, 24.
  • Liu, J. X., Feng, S. X., & Zeng, X. Y. (2019). Study on Influencing Factors of Controllers’ Undesirable Stress Response Based on GRAY-DEMATEL Method. In 2019 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE) (pp. 1-7). IEEE
  • Malakis, S., Psaros, P., Kontogiannis, T., & Malaki, C. (2019). Classification of air traffic control scenarios using decision trees: insights from a field study in terminal approach radar environment. Cognition, Technology & Work, 22, 159-179.
  • Malone, P., Apgar, H., Stukes, S., & Sterk, S. (2013). Unmanned Aerial Vehicles unique cost estimating requirements. 2013 IEEE Aerospace Conference, 1-8.
  • Matolak, D. (2015). Unmanned aerial vehicles: Communications challenges and future aerial networking. 2015 International Conference on Computing, Networking and Communications (ICNC), 567-572.
  • Miller, M., Holley, S., Mrusek, B., & Weiland, L. (2020). Assessing cognitive processing and human factors challenges in NextGen air traffic control tower team operations. In Advances in Human Factors and Systems Interaction: Proceedings of the AHFE 2020 Virtual Conference on Human Factors and Systems Interaction, July 16-20, 2020, USA (pp. 289-295). Springer International Publishing.
  • Mooij, M., & Corker, K. (2002). Supervisory control paradigm: limitations in applicability to advanced air traffic management systems. Proceedings. The 21st Digital Avionics Systems Conference, 1, 1C3-1C3.
  • Moreira, M., Papp, E., & Ventura, R. (2019). Interception of non-cooperative UAVs. In 2019 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) (pp. 120-125). IEEE.
  • Mueller, E. R., Kopardekar, P. H., & Goodrich, K. H. (2017). Enabling airspace integration for high-density on- demand mobility operations. In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3086).
  • Naji, H. R., & Ayari, A. (2023). Risk Management of Unmanned Aerial Vehicles. arXiv preprint arXiv:2311.05648.
  • Neto, E. C. P., Baum, D. M., Almeida Jr, J. R. D., Camargo Jr, J. B., & Cugnasca, P. S. (2022). UAS in the Airspace: A Review on Integration, Simulation, Optimization, and Open Challenges. arXiv preprint arXiv:2211.15330.
  • Orhunbilge, N. (2000). Sampling Methods and Hypothesis Tests. Istanbul: Avcıol Publishing.
  • Otto, A., Agatz, N., Campbell, J., Golden, B., & Pesch, E. (2018). Optimization approaches for civil applications of unmanned aerial vehicles (UAVs) or aerial drones: A survey. Networks, 72, 411-458.
  • Paczan, N., Cooper, J., & Zakrzewski, E. (2012). Integrating unmanned aircraft into NextGen automation systems. 2012 IEEE/AIAA 31st Digital Avionics Systems Conference (DASC), 8C3-1-8C3-9.
  • Pastor, E., Perez-Batlle, M., Royo, P., Cuadrado, R., & Barrado, C. (2014). Real-time simulations to evaluate the RPAS integration in shared airspace. Proceedings of the 4th SESAR Innovation Days (SIDs2014), Madrid, Spain, 24-27.
  • Pathak, S. V., Mohod, A. G., & Sawant, A. A. (2020). Review on effective role of UAV in precision farming. Journal of Pharmacognosy and Phytochemistry, 9(4), 463-467
  • Pavlinovic, M., Juricic, B., & Antulov-Fantulin, B. (2017). Air traffic controllers' practical part of basic training on computer-based simulation device. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), 920-925.
  • Peterson, M. E. (2006). The UAV and the current and future regulatory construct for integration into the national airspace system. J. Air L. & Com., 71, 521.
  • Politi, E., Panagiotopoulos, I. E., Varlamis, I., & Dimitrakopoulos, G. (2021). A Survey of UAS Technologies to Enable Beyond Visual Line of Sight (BVLOS) Operations. In VEHITS (pp. 505-512).
  • Ponchak, D., Templin, F., Sheffield, G., Taboso, P., & Jain, R. (2018). Reliable and secure surveillance, communications, and navigation (RSCAN) for Unmanned Air Systems (UAS) in controlled airspace. 2018 IEEE Aerospace Conference, 1-14.
  • Pop, S., Isaila, O., Preda, D., & Luchian, A. (2017). Risk Management Regarding the Use of UAV in The Modern Air Space. Scientiıfic Research and Education in The Air Force, 19, 171-176.
  • Radmanesh, M. (2016). UAV traffic management for national airspace integration (Master's thesis, University of Cincinnati).
  • Ribeiro, L., Giles, S., Katkin, R., Topiwala, T., & Minnix, M. (2017). Challenges and opportunities to integrate UAS in the National Airspace System. In 2017 Integrated Communications, Navigation and Surveillance Conference (ICNS) (pp. 6C3-1). IEEE.
  • Sandor, Z. (2017). Challenges Caused by the Unmanned Aerial Vehicle in the Air Traffic Management. Periodica Polytechnica Transportation Engineering, 47, 96-105.
  • Sandor, Z. (2019). Challenges caused by the unmanned aerial vehicle in the air traffic management. Periodica polytechnica transportation engineering, 47(2), 96-105.
  • Shaaban Ali, O. H., Gopalakrishnan, A., Muriyan, A., & Francis, S. (2022). Unmanned Aerial Vehicles: A Literature Review. Journal of Hunan University Natural Sciences, 49(7).
  • Shah, S., Shah, V., Vasani, V., & Sanghvi, D. (2020). Unmanned Aerial Vehicle (UAV). Encyclopedia of Wildfires and Wildland-Urban Interface (WUI) Fires.
  • Shan, L., Li, H. B., Miura, R., Matsuda, T., & Matsumura, T. (2023). A Novel Collision Avoidance Strategy with D2D Communications for UAV Systems. Drones, 7(5), 283.
  • Shao, S., Zhu, W., & Li, Y. (2022). Radar Detection of Low-Slow-Small UAVs in Complex Environments. In 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC) (Vol. 10, pp. 1153-1157). IEEE.
  • Simpson, A. J., & Stoker, J. (2006). Safety challenges in flying UAVS (unmanned aerial vehicles) in non- segregated airspace. 1st IET International Conference on System Safety.
  • Song, C., Wu, Y., Zhou, L., Li, R., Yang, J., Liang, W., & Ding, C. (2019). A multicomponent micro-Doppler signal decomposition and parameter estimation method for target recognition. Science China Information Sciences, 62(2), 29304.
  • Stansbury, R., Vyas, M., & Wilson, T. (2009). A Survey of UAS Technologies for Command, Control, and Communication (C3). Journal of Intelligent and Robotic Systems, 54, 61-78.
  • Stevens, M., & Atkins, E. (2020). Geofence Definition and Deconfliction for UAS Traffic Management. IEEE Transactions on Intelligent Transportation Systems, 22, 5880-5889.
  • Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote sensing, 9(5), 459.
  • Sujit, P., Saripalli, S., & Sousa, J. (2014). Unmanned Aerial Vehicle Path Following: A Survey and Analysis of Algorithms for Fixed-Wing Unmanned Aerial Vehicles. IEEE Control Systems, 34, 42-59.
  • Swieringa, K., Young, R., Vivona, R., & Hague, M. (2019). UAS Concept of Operations and Vehicle Technologies Demonstration. 2019 Integrated Communications, Navigation and Surveillance Conference (ICNS), 1-15.
  • Tattersall, A. J., Farmer, E. W., & Belyavin, A. J. (1991). Stress and workload management in air traffic control. In Automation and Systems Issues in Air Traffic Control (pp. 255-266). Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Thiels, C., Aho, J., Zietlow, S., & Jenkins, D. (2015). Use of unmanned aerial vehicles for medical product transport. Air Medical Journal, 34(2), 104-108.
  • Thipphavong, D. P., Apaza, R., Barmore, B., Battiste, V., Burian, B., Dao, Q., Feary, M., Go, S., Goodrich, K. H., Homola, J., Idris, H. R., Kopardekar, P. H., Lachter, J. B., Neogi, N. A., Ng, H. K., Oseguera-Lohr, R. M., Patterson, M. D., & Verma, S. A. (2018). Urban air mobility airspace integration concepts and considerations. In 2018 Aviation Technology, Integration, and Operations Conference (p. 3676).
  • Tomic, I., & Liu, J. (2017). Strategies to overcome fatigue in air traffic control based on stress management. Journal of Engineering and Science, 6(4), 48-57
  • Truitt, T. R., Zingale, C. M., & Konkel, A. (2016). UAS Operational Assessment: Visual compliance. Humanin-the- loop simulation to assess how UAS integration in Class C airspace will affect Air Traffic Control Specialists. DOT/FAA/TC-16/11
  • Valavanis, K. P., & Vachtsevanos, G. J. (2015). UAV integration into the national airspace: Introduction. Handbook of Unmanned Aerial Vehicles, 2113-16.
  • Van Der Veeken, S., Wubben, J., Calafate, C. T., Cano, J. C., Manzoni, P., & Marquez-Barja, J. (2021). A collision avoidance strategy for multirotor UAVs based on artificial potential fields. In Proceedings of the 18th ACM Symposium on Performance Evaluation of Wireless Ad Hoc, Sensor, & Ubiquitous Networks (pp. 95-102).
  • Vasile, P., Cioaca, C., Luculescu, D., Luchian, A., & Pop, S. (2019). Consideration about UAV command and control. Ground Control Station. Journal of Physics: Conference Series, 1297.
  • Vidovic, A., Mihetec, T., Wang, B., & Štimac, I. (2019). Operations Of Drones in Controlled Airspace in Europe. International Journal for Traffic and Transport Engineering. 623.746.2-519(4)
  • Yamane, T. (1967). Statistics: An Introductory Analysis. Harper & Row.
  • Wang, H., Dattel, A., Mummert, E., & Haris, S. (2022). Assessing Air Traffic Controllers’ Stress and Performance with UAV Integration in Future Air Traffic Management. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 66, 38 - 38.
  • Wilson, I. (2018). Integration of UAS in existing air traffic management systems connotations and consequences. 2018 Integrated Communications, Navigation, Surveillance Conference (ICNS), 2G3-1-2G3-7.
  • Yılmaz, A., & Ulvi, H. (2022). Some Services to Be Provided and Technologies to Be Used for UAS Traffic Management (UTM) in Urban Airspace. Turkish Journal of Unmanned Aerial Vehicles, 4(1), 8-18.
  • Zeier, H., Brauchli, P., & Joller-jemelka, H. (1996). Effects of work demands on immunoglobulin A and cortisol in air traffic controllers. Biological Psychology, 42, 413-423.
  • Zhang, Z., Shi, Z., Li, N., Zhang, Y., & Xu, X. (2023, July). Study of Psychological Stress Among Air Traffic Controllers. In International Conference on Human-Computer Interaction (pp. 501-519). Cham: Springer Nature Switzerland
  • Zhu, G., & Wei, P. (2016). Low-altitude UAS traffic coordination with dynamic geofencing. In 16th AIAA Aviation Technology, Integration, And Operations Conference (p. 3453).
There are 108 citations in total.

Details

Primary Language English
Subjects Air-Space Transportation
Journal Section Research Articles
Authors

Arif Tuncal 0000-0003-4343-6261

Early Pub Date June 25, 2024
Publication Date June 27, 2024
Submission Date April 30, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024

Cite

APA Tuncal, A. (2024). Air Traffic Controllers’ Perspectives on Unmanned Aerial Vehicles Integration into Non-Segregated Airspace. Journal of Aviation, 8(2), 153-165. https://doi.org/10.30518/jav.1475735

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence