Research Article
BibTex RIS Cite

Değişken Sertlik Konsepti ile Havacılık ve Uzay Çift Eğimli Panel Yapılarının Temel Frekans Optimizasyonu

Year 2020, , 36 - 47, 28.12.2020
https://doi.org/10.30518/jav.787455

Abstract

Bu çalışmada, eğrisel fiber kompozit çift eğimli panelin temel doğal frekansları optimize edilmiştir. Hava-uzay araçlarının yapısal çerçevelerinin çeşitli bileşenlerinde çift kıvrımlı paneller kullanılmaktadır. Değişken sertlik davranışı, kompozit laminatlarda eğrisel fiber yol fonksiyonuna göre fiber açılarının sürekli olarak değiştirilmesiyle elde edilir. Yapısal model sanal çalışma prensibine dayalı olarak kullanılmaktadır. Amaç, kompozit paneller için maksimize edilmiş temel frekanslar veya düzlem içi güçler ile en iyi fiber yollarını elde etmektir. Bu araştırmada, iki tür sınır koşuluna sahip sekiz katmanlı bir kompozit çift eğimli panel bir vaka çalışması olarak kabul edilir. Sınır koşulları şunları içerir; CCCC, FCFC burada C kelepçeli anlamına gelir ve F serbest kenarlar için. Von-Karman kinematik gerinim ilişkileri kullanılır ve enine kesme etkileri dahil orta derecede kalın çift eğimli panel için formülasyonu genelleştirmek için birinci dereceden kesme deformasyon teorisi (FSDT) kullanılır. Genelleştirilmiş Diferansiyel Quadrature (GDQ) çözüm yöntemi, hareketin yönetim denklemlerini çözmek için kullanılır. Sayısal sonuçlar, kompozit panelin doğal frekansları üzerindeki fiber açı yolu ve sınır koşullarının etkinliğini gösterir. Her katmanın optimum fiber açısı yolları, yukarıdaki durumlar için serbest titreşim analizinde sunulmuştur.

References

  • [1] Abdalla, M. M., Setoodeh, S., & Gürdal, Z. (2007). Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Composite structures, 81(2), 283-291.
  • [2] Labans, E., & Bisagni, C. (2019). Buckling and free vibration study of variable and constant-stiffness cylindrical shells. Composite Structures, 210, 446-457.
  • [3] Narita, Y., & Robinson, P. (2006). Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization. International Journal of Mechanical Sciences, 48(12), 1516-1524.
  • [4] Serhat, G., & Basdogan, I. (2019). Lamination parameter interpolation method for design of manufacturable variable-stiffness composite panels. AIAA Journal, 3052-3065.
  • [5] Blom AW. Structural performance of fiber-placed, variable-stiffness composite conical and cylindrical shells. PhD Thesis, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands, 2010.
  • [6] Blom, A. W., Stickler, P. B., & Gürdal, Z. (2010). Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction. Composites Part B: Engineering, 41(2), 157-165.
  • [7] Blom, A. W., Setoodeh, S., Hol, J. M., & Gürdal, Z. (2008). Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Computers & structures, 86(9), 870-878.
  • [8] Honda, S., Igarashi, T., & Narita, Y. (2013). Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Composites Part B: Engineering, 45(1), 1071-1078.
  • [9] Tornabene, F., Fantuzzi, N., Bacciocchi, M., & Viola, E. (2015). Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method. Composites Part B: Engineering, 81, 196-230.
  • [10] Zhao, W., & Kapania, R. K. (2019). Prestressed vibration of stiffened variable-angle tow laminated plates. AIAA Journal, 57(6), 2575-2593.
  • [11] Wu, C. P., & Lee, C. Y. (2001). Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. International Journal of Mechanical Sciences, 43(8), 1853-1869.
  • [12] Luersen, M. A., Steeves, C. A., & Nair, P. B. (2015). Curved fiber paths optimization of a composite cylindrical shell via Kriging-based approach. Journal of Composite Materials, 49(29), 3583-3597.
  • [13] Hao, P., Yuan, X., Liu, C., Wang, B., Liu, H., Li, G., & Niu, F. (2018). An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Computer Methods in Applied Mechanics and Engineering, 339, 205-238.
  • [14] Houmat, A. (2018). Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique. Engineering Optimization, 50(2), 205-217.
  • [15] Pitton, S. F., Ricci, S., & Bisagni, C. (2019). Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques. Composite Structures, 230, 111513.
  • [16] Ameri, E., Aghdam, M. M., & Shakeri, M. (2012). Global optimization of laminated cylindrical panels based on fundamental natural frequency. Composite Structures, 94(9), 2697-2705.
  • [17] Koide, R. M., & Luersen, M. A. (2013). Maximization of fundamental frequency of laminated composite cylindrical shells by ant colony algorithm. Journal of Aerospace Technology and Management, 5(1), 75-82.
  • [18] Farsadi, T., Asadi, D., & Kurtaran, H. (2020). Fundamental frequency optimization of variable stiffness composite skew plates. Acta Mechanica, 1-19.
  • [19] Ghashochi-Bargh, H., & Sadr, M. H. (2013). PSO algorithm for fundamental frequency optimization of fiber metal laminated panels. Structural Engineering and Mechanics, 47(5), 713-727.
  • [20] Farsadi, T., Rahmanian, M., & Kurtaran, H. Nonlinear analysis of functionally graded skewed and tapered wing-like plates including porosities: A bifurcation study. Thin-Walled Structures, 160, 107341.
  • [21] Farsadi, T., Asadi, D., & Kurtaran, H. (2020). Nonlinear flutter response of a composite plate applying curvilinear fiber paths. Acta Mechanica, 231(2), 715-731.
  • [22] Song, Z. G., & Li, F. M. (2014). Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels. Journal of Vibration and Control, 20(14), 2118-2132.
  • [23] Akhavan, H., & Ribeiro, P. (2011). Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Composite Structures, 93(11), 3040-3047.
  • [24] Ribeiro, P. (2008). Non-linear free periodic vibrations of open cylindrical shallow shells. Journal of sound and vibration, 313(1-2), 224-245.
  • [25] Javanshir, J., Farsadi, T., & Yuceoglu, U. (2012). Free vibrations of composite base plates stiffened by two adhesively bonded plate strips. Journal of aircraft, 49(4), 1135-1152.
  • [26] Javanshir, J., Farsadi, T., & Yuceoglu, U. (2014). Free flexural vibration response of integrally-stiffened and/or stepped-thickness composite plates or panels. Int J Acoust Vib, 19(2), 114-126.
  • [27] Farsadi, T., Heydarnia, E., & Amani, P. (2012). Buckling behavior of composite triangular plates. A A, 1(2), 3.

Fundamental Frequency Optimization of Doubly Curved Aerospace Structural Panels via Variable Stiffness Concept

Year 2020, , 36 - 47, 28.12.2020
https://doi.org/10.30518/jav.787455

Abstract

In the present study, the fundamental natural frequencies of curvilinear fiber composite doubly curved panel are optimized. Doubly curved panels are used in various components of the structural frames of the aerospace vehicles. The variable stiffness behavior is obtained by altering the fiber angles continuously according to curvilinear fiber path function in the composite laminates. Structural model is utilized based on the virtual work principle. The aim is to achieve the best fiber paths with maximized fundamental frequencies or in-plane strengths for a composite panels. An eight-layer composite doubly curved panel with two types of boundary conditions are considered as a case study in this research. The boundary conditions include; CCCC, FCFC where C stands for clamped, and F for free edges. Von-Karman kinematic strain relations are used and the first order shear deformation theory (FSDT) is employed to generalize the formulation for the moderately thick doubly curved panel including transverse shear effects. Generalized Differential Quadrature (GDQ) method of solution is employed to solve the governing equations of motion. Numerical results demonstrate the effectiveness fiber angle path and boundary conditions on the natural frequencies of the composite panel. The optimal fiber angle paths of each layer are presented for the above cases in free vibration analysis.

References

  • [1] Abdalla, M. M., Setoodeh, S., & Gürdal, Z. (2007). Design of variable stiffness composite panels for maximum fundamental frequency using lamination parameters. Composite structures, 81(2), 283-291.
  • [2] Labans, E., & Bisagni, C. (2019). Buckling and free vibration study of variable and constant-stiffness cylindrical shells. Composite Structures, 210, 446-457.
  • [3] Narita, Y., & Robinson, P. (2006). Maximizing the fundamental frequency of laminated cylindrical panels using layerwise optimization. International Journal of Mechanical Sciences, 48(12), 1516-1524.
  • [4] Serhat, G., & Basdogan, I. (2019). Lamination parameter interpolation method for design of manufacturable variable-stiffness composite panels. AIAA Journal, 3052-3065.
  • [5] Blom AW. Structural performance of fiber-placed, variable-stiffness composite conical and cylindrical shells. PhD Thesis, Faculty of Aerospace Engineering, Delft University of Technology, Delft, The Netherlands, 2010.
  • [6] Blom, A. W., Stickler, P. B., & Gürdal, Z. (2010). Optimization of a composite cylinder under bending by tailoring stiffness properties in circumferential direction. Composites Part B: Engineering, 41(2), 157-165.
  • [7] Blom, A. W., Setoodeh, S., Hol, J. M., & Gürdal, Z. (2008). Design of variable-stiffness conical shells for maximum fundamental eigenfrequency. Computers & structures, 86(9), 870-878.
  • [8] Honda, S., Igarashi, T., & Narita, Y. (2013). Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II. Composites Part B: Engineering, 45(1), 1071-1078.
  • [9] Tornabene, F., Fantuzzi, N., Bacciocchi, M., & Viola, E. (2015). Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method. Composites Part B: Engineering, 81, 196-230.
  • [10] Zhao, W., & Kapania, R. K. (2019). Prestressed vibration of stiffened variable-angle tow laminated plates. AIAA Journal, 57(6), 2575-2593.
  • [11] Wu, C. P., & Lee, C. Y. (2001). Differential quadrature solution for the free vibration analysis of laminated conical shells with variable stiffness. International Journal of Mechanical Sciences, 43(8), 1853-1869.
  • [12] Luersen, M. A., Steeves, C. A., & Nair, P. B. (2015). Curved fiber paths optimization of a composite cylindrical shell via Kriging-based approach. Journal of Composite Materials, 49(29), 3583-3597.
  • [13] Hao, P., Yuan, X., Liu, C., Wang, B., Liu, H., Li, G., & Niu, F. (2018). An integrated framework of exact modeling, isogeometric analysis and optimization for variable-stiffness composite panels. Computer Methods in Applied Mechanics and Engineering, 339, 205-238.
  • [14] Houmat, A. (2018). Optimal lay-up design of variable stiffness laminated composite plates by a layer-wise optimization technique. Engineering Optimization, 50(2), 205-217.
  • [15] Pitton, S. F., Ricci, S., & Bisagni, C. (2019). Buckling optimization of variable stiffness cylindrical shells through artificial intelligence techniques. Composite Structures, 230, 111513.
  • [16] Ameri, E., Aghdam, M. M., & Shakeri, M. (2012). Global optimization of laminated cylindrical panels based on fundamental natural frequency. Composite Structures, 94(9), 2697-2705.
  • [17] Koide, R. M., & Luersen, M. A. (2013). Maximization of fundamental frequency of laminated composite cylindrical shells by ant colony algorithm. Journal of Aerospace Technology and Management, 5(1), 75-82.
  • [18] Farsadi, T., Asadi, D., & Kurtaran, H. (2020). Fundamental frequency optimization of variable stiffness composite skew plates. Acta Mechanica, 1-19.
  • [19] Ghashochi-Bargh, H., & Sadr, M. H. (2013). PSO algorithm for fundamental frequency optimization of fiber metal laminated panels. Structural Engineering and Mechanics, 47(5), 713-727.
  • [20] Farsadi, T., Rahmanian, M., & Kurtaran, H. Nonlinear analysis of functionally graded skewed and tapered wing-like plates including porosities: A bifurcation study. Thin-Walled Structures, 160, 107341.
  • [21] Farsadi, T., Asadi, D., & Kurtaran, H. (2020). Nonlinear flutter response of a composite plate applying curvilinear fiber paths. Acta Mechanica, 231(2), 715-731.
  • [22] Song, Z. G., & Li, F. M. (2014). Optimal locations of piezoelectric actuators and sensors for supersonic flutter control of composite laminated panels. Journal of Vibration and Control, 20(14), 2118-2132.
  • [23] Akhavan, H., & Ribeiro, P. (2011). Natural modes of vibration of variable stiffness composite laminates with curvilinear fibers. Composite Structures, 93(11), 3040-3047.
  • [24] Ribeiro, P. (2008). Non-linear free periodic vibrations of open cylindrical shallow shells. Journal of sound and vibration, 313(1-2), 224-245.
  • [25] Javanshir, J., Farsadi, T., & Yuceoglu, U. (2012). Free vibrations of composite base plates stiffened by two adhesively bonded plate strips. Journal of aircraft, 49(4), 1135-1152.
  • [26] Javanshir, J., Farsadi, T., & Yuceoglu, U. (2014). Free flexural vibration response of integrally-stiffened and/or stepped-thickness composite plates or panels. Int J Acoust Vib, 19(2), 114-126.
  • [27] Farsadi, T., Heydarnia, E., & Amani, P. (2012). Buckling behavior of composite triangular plates. A A, 1(2), 3.
There are 27 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Touraj Farsadi 0000-0002-9363-3805

Hasan Kurtaran 0000-0002-2552-8616

Publication Date December 28, 2020
Submission Date August 28, 2020
Acceptance Date December 26, 2020
Published in Issue Year 2020

Cite

APA Farsadi, T., & Kurtaran, H. (2020). Fundamental Frequency Optimization of Doubly Curved Aerospace Structural Panels via Variable Stiffness Concept. Journal of Aviation, 4(2), 36-47. https://doi.org/10.30518/jav.787455

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence