Research Article
BibTex RIS Cite

Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft

Year 2018, Volume: 2 Issue: 2, 77 - 86, 23.12.2018
https://doi.org/10.30518/jav.482507

Abstract

In this paper, effectiveness of twist varied wing
configurations for aircraft control and performance is described. The primary
variables investigated involved changing wing twist angle of a comparable
Airbus A320 wing structure by identifying the ideal angle of twist. The
aerodynamic performance and control of the morphing wing is characterised in
AVL (Athena Vortex Lattice Method). In order to better understand the
aerodynamic performance and control of twist morphing wing for diverse flight
regimes, predetermined values of twist (-8°< ϕ <8°, in steps of ±2°) were
examined. The results from this work indicate that if morphing wings were
employed on aircraft, performance benefits could be achieved.

References

  • Reference 1 D. McRuer and D. Graham, “Flight Control Century: Triumphs of the Systems Approach,” J. Guid. Control. Dyn., vol. 27, no. 2, pp. 161–173, 2004.
  • Reference 2 S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A Review of Morphing Aircraft,” J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, Aug. 2011.
  • Reference 3 T. a. Weisshaar, “Morphing Aircraft Systems: Historical Perspectives and Future Challenges,” J. Aircr., vol. 50, no. 2, pp. 337–353, 2013.
  • Reference 4 R. M. Ajaj, C. S. Beaverstock, and M. I. Friswell, “Morphing aircraft: The need for a new design philosophy,” Aerosp. Sci. Technol., vol. 49, no. December 2017, pp. 154–166, 2015.
  • Reference 5 A. K. Jha and J. N. Kudva, “Morphing Aircraft Concepts, Classifications, and Challanges,” vol. 5388, pp. 213–224, Jul. 2004.
  • Reference 6 L. Prandtl, “Application of Modern Hydrodynamics to Aeronautics,” Naca, vol. 116, no. 116. 1923.
  • Reference 7 W. F. Phillips, “Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings,” J. Aircr., vol. 41, no. 1, pp. 128–136, 2004.
  • Reference 8 W. F. Phillips, N. R. Alley, and W. D. Goodrich, “Lifting-Line Analysis of Roll Control and Variable Twist,” J. Aircr., vol. 41, no. 5, pp. 1169–1176, 2004.
  • Reference 9 R. Barrett, “Active aeroelastic tailoring of an adaptive Flexspar stabilator,” Smart Mater. Struct., vol. 5, no. 6, pp. 723–730, 1996.
  • Reference 10 D. Sahoo and C. Cesnik, “Roll maneuver control of UCAV wing using anisotropic piezoelectric actuators,” 43rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., no. April, pp. 1–11, 2002.
  • Reference 11 D. A. N. Iii, D. J. Inman, and C. Woolsey, “Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation by Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation,” 2006.
  • Reference 12 H. Garcia, M. Abdulrahim, and R. Lind, “Roll Control for a Micro Air Vehicle Using Active Wing Morphing,” in AIAA Guidance, Navigation and Control Conference (Austin, TX), 2003, pp. 1–12.
  • Reference 13 B. Stanford, M. Abdulrahim, R. Lind, and P. Ifju, “Investigation of Membrane Actuation for Roll Control of a Micro Air Vehicle,” J. Aircr., vol. 44, no. 3, pp. 741–749, 2007.
  • Reference 14 M. Abdulrahim, H. Garcia, G. F. Ivey, and R. Lind, “Flight Testing A Micro Air Vehicle Using Morphing For Aeroservoelastic Control,” J. Aircr., vol. 42, No 1, no. January-February, pp. 1–17, 2005.
  • Reference 15 M. Majji, O. Rediniotis, and J. Junkins, “Design of a Morphing Wing : Modeling and Experiments,” AIAA Atmos. Flight Mech. Conf. Exhib., pp. 1–9, Aug. 2007.
  • Reference 16 R. Vos, Z. Gurdal, and M. Abdalla, “Mechanism for Warp-Controlled Twist of a Morphing Wing,” J. Aircr., vol. 47, no. 2, pp. 450–457, Mar. 2010.
  • Reference 17 D. M. Elzey, A. Y. N. Sofla, and H. N. G. Wadley, “A bio-inspired, high-authority actuator for shape morphing structures,” Proc. SPIE, vol. 5053, pp. 92–100, 2003.
  • Reference 18 A. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley, “Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect,” J. Intell. Mater. Syst. Struct., vol. 19, no. 9, pp. 1017–1027, 2008.
  • Reference 19 H. Lv, J. Leng, and S. Du, “A Survey of Adaptive Materials and Structures Research in China,” in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009, no. May, pp. 1–8.
  • Reference 20 P. Bourdin, A. Gatto, and M. I. Friswell, “Performing co-ordinated turns with articulated wing-tips as multi-axis control effectors,” Aeronaut. J., vol. 114, no. 1151, pp. 35–47, 2010.
  • Reference 21 P. Bourdin, A. Gatto, and M. I. Friswell, “Potential of Articulated Split Wingtips for Morphing-Based Control of a Flying Wing,” in 25th AIAA Applied Aerodynamics Conference, 2007, no. June, pp. 1–16.
  • Reference 22 A. Gatto, P. Bourdin, and M. I. Friswell, “Experimental Investigation into Articulated Winglet Effects on Flying Wing Surface Pressure Aerodynamics,” J. Aircr., vol. 47, no. 5, pp. 1811–1815, 2010.
  • Reference 23 D. D. Smith, M. H. Lowenberg, D. P. Jones, and M. I. Friswell, “Computational and Experimental Validation of the Active Morphing Wing,” J. Aircr., vol. 51, no. 3, pp. 925–937, May 2014.
  • Reference 24 B. K. Woods, O. Bilgen, and M. I. Friswell, “Wind tunnel testing of the fish bone active camber morphing concept,” J. Intell. Mater. Syst. Struct., vol. 25, no. 7, pp. 772–785, Feb. 2014.
  • Reference 25 E. Kaygan and A. Gatto, “Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance,” in Greener Aviation 2016, 2016, no. October.
  • Reference 26 A. Gatto, “BLADE OR WING,” WO/2018/046936.
  • Reference 27 G. Molinari, E. T. H. Zurich, W. Lafayette, and M. Guillaume, “Aerostructural Performance of Distributed Compliance Morphing Wings : Wind Tunnel and Flight Testing,” AIAA J., vol. 54, pp. 1–13, 2016.
  • Reference 28 A. Y. N. Sofla, S. a. Meguid, K. T. Tan, and W. K. Yeo, “Shape morphing of aircraft wing: Status and challenges,” Mater. Des., vol. 31, no. 3, pp. 1284–1292, Mar. 2010.
  • Reference 29 C. Thill, J. Etches, I. Bond, K. Potter, and P. Weaver, “Morphing skins,” no. 3216, pp. 1–23, 2008.
  • Reference 30 AIRBUS, “Aircraft Characteristics Airport and Maintenance A320”AIRBUS Report, 2018.
  • Reference 31 H. H. Açıkel, “An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers,” Exp. Therm. Fluid Sci., vol. 39, pp. 252–264, 2012.
  • Reference 32 H. Y. Mark Drela, “AVL 3.30 User Primer.”
  • Reference 33 P. G. Saffman, Vortex Dynamics Cambridge. England, U.K.: Cambridge Univ. Press, 1992.
  • Reference 34 E. Kaygan and A. Gatto, “Investigation of Adaptable Winglets for Improved UAV Control and Performance,” Int. J. Mech. Aerospace, Ind. Mechatronics Eng., vol. 8, no. 7, pp. 1281–1286, 2014.
  • Reference 35 E. Kaygan and A. Gatto, “Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance,” Int. J. Aerosp. Mech. Eng., vol. 9, no. 7, pp. 1127–1133, 2015.
  • Reference 36 D. D. Smith, M. H. Lowenberg, D. P. Jones, M. I. Friswell, and S. Park, “Computational And Experimental Analysis Of The Active Morphing Wing Concept,” 2012, pp. 1–9.
  • Reference 37 A. Bolonkin and G. Gilyard, “Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft,” Tech. Memo. NASA Dryden Flight Res. Cent., no. October 1999, 2018.
  • Reference 38 Q. Wang, Y. Chen, and H. Tang, “Mechanism Design for Aircraft Morphing Wing,” 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. AIAA/ASME/AHS Adapt. Struct. Conf. AIAA, no. October, 2012.
  • Reference 39 S. Esdu, “Rolling moment derivative , L ξ for plain ailerons at subsonic speeds,” no. August 1988, 1992.

Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft

Year 2018, Volume: 2 Issue: 2, 77 - 86, 23.12.2018
https://doi.org/10.30518/jav.482507

Abstract

Bu makalede, uçak kontrolü ve performansı için büküm çeşitli kanat konfigürasyonlarının etkinliği tanımlanmıştır. İncelenen birincil değişkenler, ideal bir büküm açısını tanımlayarak, benzer bir Airbus A320 kanat yapısının kanat bükülme açısının değişmesini içermektedir. Aerodinamik performans ve morphing kanadının kontrolü AVL (Athena Vortex Lattice Method) ile çözümlenmiştir. Farklı uçuş rejimleri için aerodinamik performansın ve büküm geçiş kanadının kontrolünün daha iyi anlaşılması için, önceden belirlenmiş büküm değerleri (± 8 ° <ϕ <8 °, ± 2 ° adımlarla) incelenmiştir. Bu çalışmadan elde edilen sonuçlar, eğer uçaklarda  bükülebilen kanatlar kullanılırsa, performans avantajlarının elde edilebileceğini göstermektedir.

References

  • Reference 1 D. McRuer and D. Graham, “Flight Control Century: Triumphs of the Systems Approach,” J. Guid. Control. Dyn., vol. 27, no. 2, pp. 161–173, 2004.
  • Reference 2 S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell, and D. J. Inman, “A Review of Morphing Aircraft,” J. Intell. Mater. Syst. Struct., vol. 22, no. 9, pp. 823–877, Aug. 2011.
  • Reference 3 T. a. Weisshaar, “Morphing Aircraft Systems: Historical Perspectives and Future Challenges,” J. Aircr., vol. 50, no. 2, pp. 337–353, 2013.
  • Reference 4 R. M. Ajaj, C. S. Beaverstock, and M. I. Friswell, “Morphing aircraft: The need for a new design philosophy,” Aerosp. Sci. Technol., vol. 49, no. December 2017, pp. 154–166, 2015.
  • Reference 5 A. K. Jha and J. N. Kudva, “Morphing Aircraft Concepts, Classifications, and Challanges,” vol. 5388, pp. 213–224, Jul. 2004.
  • Reference 6 L. Prandtl, “Application of Modern Hydrodynamics to Aeronautics,” Naca, vol. 116, no. 116. 1923.
  • Reference 7 W. F. Phillips, “Lifting-Line Analysis for Twisted Wings and Washout-Optimized Wings,” J. Aircr., vol. 41, no. 1, pp. 128–136, 2004.
  • Reference 8 W. F. Phillips, N. R. Alley, and W. D. Goodrich, “Lifting-Line Analysis of Roll Control and Variable Twist,” J. Aircr., vol. 41, no. 5, pp. 1169–1176, 2004.
  • Reference 9 R. Barrett, “Active aeroelastic tailoring of an adaptive Flexspar stabilator,” Smart Mater. Struct., vol. 5, no. 6, pp. 723–730, 1996.
  • Reference 10 D. Sahoo and C. Cesnik, “Roll maneuver control of UCAV wing using anisotropic piezoelectric actuators,” 43rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf., no. April, pp. 1–11, 2002.
  • Reference 11 D. A. N. Iii, D. J. Inman, and C. Woolsey, “Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation by Design , Development , and Analysis of a Morphing Aircraft Model for Wind Tunnel Experimentation,” 2006.
  • Reference 12 H. Garcia, M. Abdulrahim, and R. Lind, “Roll Control for a Micro Air Vehicle Using Active Wing Morphing,” in AIAA Guidance, Navigation and Control Conference (Austin, TX), 2003, pp. 1–12.
  • Reference 13 B. Stanford, M. Abdulrahim, R. Lind, and P. Ifju, “Investigation of Membrane Actuation for Roll Control of a Micro Air Vehicle,” J. Aircr., vol. 44, no. 3, pp. 741–749, 2007.
  • Reference 14 M. Abdulrahim, H. Garcia, G. F. Ivey, and R. Lind, “Flight Testing A Micro Air Vehicle Using Morphing For Aeroservoelastic Control,” J. Aircr., vol. 42, No 1, no. January-February, pp. 1–17, 2005.
  • Reference 15 M. Majji, O. Rediniotis, and J. Junkins, “Design of a Morphing Wing : Modeling and Experiments,” AIAA Atmos. Flight Mech. Conf. Exhib., pp. 1–9, Aug. 2007.
  • Reference 16 R. Vos, Z. Gurdal, and M. Abdalla, “Mechanism for Warp-Controlled Twist of a Morphing Wing,” J. Aircr., vol. 47, no. 2, pp. 450–457, Mar. 2010.
  • Reference 17 D. M. Elzey, A. Y. N. Sofla, and H. N. G. Wadley, “A bio-inspired, high-authority actuator for shape morphing structures,” Proc. SPIE, vol. 5053, pp. 92–100, 2003.
  • Reference 18 A. Y. N. Sofla, D. M. Elzey, and H. N. G. Wadley, “Two-way Antagonistic Shape Actuation Based on the One-way Shape Memory Effect,” J. Intell. Mater. Syst. Struct., vol. 19, no. 9, pp. 1017–1027, 2008.
  • Reference 19 H. Lv, J. Leng, and S. Du, “A Survey of Adaptive Materials and Structures Research in China,” in 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009, no. May, pp. 1–8.
  • Reference 20 P. Bourdin, A. Gatto, and M. I. Friswell, “Performing co-ordinated turns with articulated wing-tips as multi-axis control effectors,” Aeronaut. J., vol. 114, no. 1151, pp. 35–47, 2010.
  • Reference 21 P. Bourdin, A. Gatto, and M. I. Friswell, “Potential of Articulated Split Wingtips for Morphing-Based Control of a Flying Wing,” in 25th AIAA Applied Aerodynamics Conference, 2007, no. June, pp. 1–16.
  • Reference 22 A. Gatto, P. Bourdin, and M. I. Friswell, “Experimental Investigation into Articulated Winglet Effects on Flying Wing Surface Pressure Aerodynamics,” J. Aircr., vol. 47, no. 5, pp. 1811–1815, 2010.
  • Reference 23 D. D. Smith, M. H. Lowenberg, D. P. Jones, and M. I. Friswell, “Computational and Experimental Validation of the Active Morphing Wing,” J. Aircr., vol. 51, no. 3, pp. 925–937, May 2014.
  • Reference 24 B. K. Woods, O. Bilgen, and M. I. Friswell, “Wind tunnel testing of the fish bone active camber morphing concept,” J. Intell. Mater. Syst. Struct., vol. 25, no. 7, pp. 772–785, Feb. 2014.
  • Reference 25 E. Kaygan and A. Gatto, “Development of an Active Morphing Wing With Adaptive Skin for Enhanced Aircraft Control and Performance,” in Greener Aviation 2016, 2016, no. October.
  • Reference 26 A. Gatto, “BLADE OR WING,” WO/2018/046936.
  • Reference 27 G. Molinari, E. T. H. Zurich, W. Lafayette, and M. Guillaume, “Aerostructural Performance of Distributed Compliance Morphing Wings : Wind Tunnel and Flight Testing,” AIAA J., vol. 54, pp. 1–13, 2016.
  • Reference 28 A. Y. N. Sofla, S. a. Meguid, K. T. Tan, and W. K. Yeo, “Shape morphing of aircraft wing: Status and challenges,” Mater. Des., vol. 31, no. 3, pp. 1284–1292, Mar. 2010.
  • Reference 29 C. Thill, J. Etches, I. Bond, K. Potter, and P. Weaver, “Morphing skins,” no. 3216, pp. 1–23, 2008.
  • Reference 30 AIRBUS, “Aircraft Characteristics Airport and Maintenance A320”AIRBUS Report, 2018.
  • Reference 31 H. H. Açıkel, “An experimental study on aerodynamics of NACA2415 aerofoil at low Re numbers,” Exp. Therm. Fluid Sci., vol. 39, pp. 252–264, 2012.
  • Reference 32 H. Y. Mark Drela, “AVL 3.30 User Primer.”
  • Reference 33 P. G. Saffman, Vortex Dynamics Cambridge. England, U.K.: Cambridge Univ. Press, 1992.
  • Reference 34 E. Kaygan and A. Gatto, “Investigation of Adaptable Winglets for Improved UAV Control and Performance,” Int. J. Mech. Aerospace, Ind. Mechatronics Eng., vol. 8, no. 7, pp. 1281–1286, 2014.
  • Reference 35 E. Kaygan and A. Gatto, “Computational Analysis of Adaptable Winglets for Improved Morphing Aircraft Performance,” Int. J. Aerosp. Mech. Eng., vol. 9, no. 7, pp. 1127–1133, 2015.
  • Reference 36 D. D. Smith, M. H. Lowenberg, D. P. Jones, M. I. Friswell, and S. Park, “Computational And Experimental Analysis Of The Active Morphing Wing Concept,” 2012, pp. 1–9.
  • Reference 37 A. Bolonkin and G. Gilyard, “Estimated Benefits of Variable-Geometry Wing Camber Control for Transport Aircraft,” Tech. Memo. NASA Dryden Flight Res. Cent., no. October 1999, 2018.
  • Reference 38 Q. Wang, Y. Chen, and H. Tang, “Mechanism Design for Aircraft Morphing Wing,” 53rd AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. AIAA/ASME/AHS Adapt. Struct. Conf. AIAA, no. October, 2012.
  • Reference 39 S. Esdu, “Rolling moment derivative , L ξ for plain ailerons at subsonic speeds,” no. August 1988, 1992.
There are 39 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering
Journal Section Research Articles
Authors

Erdoğan Kaygan

Ceren Ulusoy This is me

Publication Date December 23, 2018
Submission Date November 14, 2018
Acceptance Date December 10, 2018
Published in Issue Year 2018 Volume: 2 Issue: 2

Cite

APA Kaygan, E., & Ulusoy, C. (2018). Effectiveness of Twist Morphing Wing on Aerodynamic Performance and Control of an Aircraft. Journal of Aviation, 2(2), 77-86. https://doi.org/10.30518/jav.482507

Cited By











Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence