Review
BibTex RIS Cite

Multirotor Unmanned Aerial Vehicle Systems: An In-Depth Analysis of Hardware, Software, And Communication Systems

Year 2025, Volume: 9 Issue: 1, 225 - 240, 26.02.2025
https://doi.org/10.30518/jav.1567696

Abstract

This paper presents a comprehensive overview of multirotor unmanned aerial vehicle (UAV) systems, focusing on the mechanical integration of quadcopters. The rapid advancement and widespread adoption of UAVs have established them as a significant research and development field. This review examines the key components and technologies in UAV design and operation, including frame types, flight control boards, motors, electronic speed controllers, batteries, propellers, communication systems, and software. It analyzes various frame materials and configurations, detailing their advantages and limitations. The paper examines the essential role of flight control boards and inertial measurement units in maintaining stability and enabling autonomous flight. It explores motors, propellers, and power systems selection criteria and characteristics in detail. The review evaluates UAV communication technologies, including radio frequency, WIFI, Bluetooth, and infrared, comparing their capabilities and limitations. It also covers autopilot software and ground control stations for mission planning and execution. This comprehensive analysis serves as a valuable resource for researchers, engineers, and enthusiasts working with design, development, and application of multirotor UAV systems.

References

  • A. Junid, S. A. Zaki, S. Susilawati, and Y. A. Abakr. (2017). Efficiency of brushed and brushless electronic speed control systems and Lithium batteries. 2017 IEEE 15th Student Conference on Research and Development (SCOReD), 332–337.
  • A. Zul Azfar and D. Hazry. (2011). A simple approach on implementing IMU sensor fusion in PID controller for stabilizing quadrotor flight control. 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, 28–32.
  • Al-Haddad, L. A., Jaber, A. A., Giernacki, W., Khan, Z. H., Ali, K. M., Tawafik, M. A. and Humaidi, A. J. (2024). Quadcopter Unmanned Aerial Vehicle Structural Design Using an Integrated Approach of Topology Optimization and Additive Manufacturing. Designs, 8(3), 58.
  • Aliane, N. (2024). A Survey of Open-Source UAV Autopilots. Electronics, 13(23), 4785.
  • Altın, C. (2013). Multirotor unmanned aerial vehicle attitude and altitude control [Dört rotorlu insansiz hava aracinin yükseklik ve konum kontrolü]. Bozok University (Master of Science).
  • Altınışık, N. S. (2019). The investigation of the use of the underwater air vehicle (UAV) in the studies of the renovation of the cadastreal padches: Corum-Osmancik-Karaköy [Kadastro güncelleme çalışmalarında insansız hava aracı (İHA)’nın kullanımının irdelenmesi: Çorum-Osmancık-Karaköy örneği]. Aksaray University (Master of Science)
  • ArduPilot. (2020). Bluetooth Telemetry radio—Copter documentation. https://ardupilot.org/copter/docs/common-mission-planner-bluetooth-connectivity.html
  • Asif, G. A., Ariffin, N. H., Aziz, N. A., Mukhtar, M. H. H. and Arsad, N. (2024). True north measurement: A comprehensive review of Carouseling and Maytagging methods of gyrocompassing. Measurement, 226, 114- 121.
  • B B V L, D. and Singh, P. (2016). A survey on design and development of an unmanned aerial vehicle (quadcopter). International Journal of Intelligent Unmanned Systems, 4(2), 70–106.
  • Balamurugan, C., Revathy, S. and Vijayakumar, P. (2020). Quadcopter based emergency medikit delivery system for hill stations. International Journal of Reconfigurable and Embedded Systems, 9(3), 201.
  • Başaran, E. (2017). Propeller performance analysis with analytical and numerical methods [Pervane Performansının Analitik ve Sayısal Yöntemlerle Hesabı]. TOBB University of Economics and Technology (Master of Science).
  • Batmaz, A. U. (2013). Design of multi-rotor unmanned aerial vehicle and optimization of resource allocation in wireless sensor networks [Çok rotorlu insansız hava aracı tasarımı ve kablosuz algılayıcı ağlarda kaynak ataması eniyilemesi]. TOBB University of Economics and Technology (Master of Science).
  • Bin Junaid, A., Diaz De Cerio Sanchez, A., Betancor Bosch, J., Vitzilaios, N. and Zweiri, Y. (2018). Design and implementation of a dual-axis tilting quadcopter. Robotics, 7(4), 65.
  • Borah, D. R., Debnath, L. and Gogoi, M. (2016). A review on Quadcopter Surveillance and Control. ADBU Journal of Engineering Technology, 4(1), 116-119.
  • Bretterbauer, K. and Weber, R. (2003). A primer of geodesy for GIS users. (Vol. 64). Inst. of Geodesy and Geophysics, Dept. of Advanced Geodesy.
  • Bulut, E. (2019). A study about behavior of four rotors ummanned aerial vehicle (Quadrotor) in the different weather conditions [Dört rotorlu insansız hava aracının (Quadrotor) farklı hava koşullarındaki davranışı üzerine bir inceleme]. Osmaniye Korkut Ata University (Master of Science).
  • Çabuk, N. and Yıldırım, Ş. (2021). Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems. Journal of Aviation, 5(2), 72–81.
  • Çakıcı, E. (2019). Development of a brushless motor test system for mini unmanned air vehicles [Mini İnsansız Hava Araçları İçin Bir Fırçasız Motor Test Sistemi Geliştirilmesi]. Eskişehir Osmangazi University (Master of Science).
  • Carvalho, I. D. de S. B. (2013). Low Reynolds propellers for increased quadcopters endurance. University of da Beira Interior (Master of Science).
  • Çelebi, Y. and Cengiz, M. (2024). Verification and Validation of UAV Propeller using CFD. 47–59.
  • Çelebi, Y., Cengiz, M. and Aydın, H. (2024). Propeller Design of UAV Under Low Reynolds Numbers. In Article and Reviews in Engineering Sciences. 407–438. Platanus Publishing.
  • Çetin, O. (2019). From aerial photographs and different unmanned aerial vehicle images, measurement of land topography, analysis of results and comparison (The study of Haymana Yeşilyurt village) [Hava fotoğrafları ve insansız hava aracı görüntülerinden arazi topoğrafyası ölçümü, sonuçların analizi ve karşılaştırması]. Konya Technical University (Master of Science).
  • Çetinkaya, Ö. (2017). An experimental and theoretical i̇nvestigation unmanned air vehicle goes the remotely given coordinates [Uzaktan verilen koordinatlara insansız gidebilen hava araının tasarımı ve deneysel araştırılması]. Trakya University (Doctoral Dissertation).
  • Çetinsoy, E., Öner, K. T., Kandemir, İ., Akşit, M. F., Ünel, M. and Gülez, K. (2008). Yeni bir insansız hava aracının (SUAVi) mekanik ve aerodinamik tasarımı. 36.
  • Chen, Z., Yan, J., Ma, B., Shi, K., Yu, Q. and Yuan, W. (2023). A Survey on Open-Source Simulation Platforms for Multi-Copter UAV Swarms. Robotics, 12(2), 53.
  • Colombo, O. L. and Evans, A. G. (1998). Testing decimeter-level, kinematic, differential GPS over great distances at sea and on land. 1257–1264.
  • D. A. Gandhi and M. Ghosal. (2018). Novel Low Cost Quadcopter for Surveillance Application. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 412–414.
  • D. Erdos, A. Erdos, and S. E. Watkins. (2013). An experimental UAV system for search and rescue challenge. IEEE Aerospace and Electronic Systems Magazine, 28(5), 32–37.
  • Elmas, E. E. (2019). An unmanned aerial vehicle realization and its use in detecting and tracking moving objects [Bir insansız hava aracı gerçekleştirme ve hareketli nesnelerin tespit ve takibinde kullanımı]. Gazi University (Master of Science).
  • Elmeseiry, N., Alshaer, N. and Ismail, T. (2021). A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace, 8(12), 363.
  • Eugene, C., Lim, J., Nirmal, U. and Lau, S. T. (2019). Battery powered RC boats: A review of its developments for various applications. Current Journal of Applied Science and Technology, 33(5), 1–29.
  • Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E. and Stricker, D. (2017). Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors, 17(6), 12-57.
  • Fu, Q., Chen, X.-Y. and He, W. (2019). A Survey on 3D Visual Tracking of Multicopters. International Journal of Automation and Computing, 16(6), 707–719.
  • G. Özdoğan and K. Leblebicioğlu. (2022). Design, Modeling, and Control Allocation of a Heavy-Lift Aerial Vehicle Consisting of Large Fixed Rotors and Small Tiltrotors. IEEE/ASME Transactions on Mechatronics, 27(5), 4011–4021.
  • Gajula, R. and Tara, S. (2023). Design and implementation of high efficient UAV quadcopter. AIP Conference Proceedings, 2477(1), 030-052.
  • Genç, M. S., Özışık, G. and Kahraman, N. (2008). Investigation Of Aerodynamics Performance of Naca0012 Aerofoil With Plain. J. of Thermal Science and Technology, 28(1), 1–8.
  • Goli, S., Kurtuluş, D. F., Alhems, L. M., Memon, A. M. and Imran, I. H. (2023). Experimental study on efficient propulsion system for multicopter UAV design applications. Results in Engineering, 20, 101555.
  • Green, C. R. and McDonald, R. A. (2015). Modeling and test of the efficiency of electronic speed controllers for brushless dc motors. 3191.
  • Gülçat, Ü. (2010). Fundamentals of modern unsteady aerodynamics. (Vol. 2010). Springer.
  • H. N. P. Wisudawan, A. Nugraha, and A. M. Akmal. (2024). An Efficient Automatic Packet Delivery Using Quadcopter Drone. 2024 4th International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 170–174.
  • Hairi, S. M. F. B. S., Saleh, S. J. M. B. M., Ariffin, A. H. and Omar, Z. B. (2023). A Review on Composite Aerostructure Development for UAV Application. In T. Khan and M. Jawaid (Eds.), Green Hybrid Composite in Engineering and Non-Engineering Applications. 137–157. Springer Nature Singapore.
  • Hell, M., Bolam, R. C., Vagapov, Y. and Anuchin, A. (2018). Design of a portable drone for educational purposes. 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), 1–5.
  • Henderson, J., Condell, J., Connolly, J., Kelly, D. and Curran, K. (2021). Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors, 21(5), 1576.
  • Hoang, M. and Poon, K. (2013). Final Report Design, Implementationt, and Testing of a UAV Quadcopter.
  • Kaymak, A. M. (2019). An example of the use of unmanned aerial vehicle (drone) and image processing technologies in fruit gardens [İnsansız hava aracı (drone) ve görüntü işleme teknolojilerinin meyve bahçelerinde kullanım örneği]. Selçuk University (Master of Science).
  • Kılıç, B. (2014). Dynamic Analysis and Design of Quadcopter [Quadcopter’in Dinamik Analizi ve Tasarımı]. Bulent Ecevit University (Master of Science).
  • Kumar Nagothu, S., Anitha, G., Siranthini, B., Anandi, V. and Siva Prasad, P. (2023). Weed detection in agriculture crop using unmanned aerial vehicle and machine learning. Materials Today: Proceedings.
  • Kumar, P., Raj Kumar, A., Anand, S., Ganesh, E. and Prithiviraj, V. (2015). Measurement of Power Radiation in Base Transceiver Station Using Quad Phone and Quadcopter. Journal of Green Engineering, 5, 107–128.
  • Kutlu, Ö. (2019). Analysis of images obtained by unmanned aerial vehicle by deep learning methods [İnsansız hava aracı ile elde edilen görüntülerin derin öğrenme yöntemleri ile analizi]. Marmara University (Master of Science).
  • Kuzu, F. (2018). Application of different control methods to unmanned aerial vehicle quadcopter [Dört pervaneli (quadcopter) insansız hava aracına farklı kontrol yöntemlerinin uygulanması]. Fırat University (Master of Science).
  • M. B. Swedan, A. J. Abougarair, and A. S. Emhemmed. (2023). Stabilizing of Quadcopter Flight Model. 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), 254–260.
  • M. Varun, M. N. Joel, M. Naveen, and J. V. Haran. (2023). Quadcopter Navigation using Telemetry Data. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1–6.
  • Magnussen, Ø., Hovland, G. and Ottestad, M. (2014). Multicopter UAV design optimization. 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1–6.
  • McKelvey, N., Diver, C. and Curran, K. (2019). Drones and Privacy. In I. R. Management Association (Ed.), Unmanned Aerial Vehicles: Breakthroughs in Research and Practice. 540–554.
  • Metz, B. and Tarpy, D. (2022). Variation in the reproductive quality of honey bee males affects their age of flight attempt. PeerJ, 10, 13859.
  • Mohsan, S. A., Khan, M. A., Noor, F., Ullah, I. and Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6)3 147.
  • N. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen. (2023). AI for UAV-Assisted IoT Applications: A Comprehensive Review. IEEE Internet of Things Journal, 10(16), 14438–14461.
  • Neumann, P. P. and Bartholmai, M. (2015). Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sensors and Actuators A: Physical, 235, 300–310.
  • Öngül, Y. S. (2017). Variable pitch and variable speed controlled four rotary unmanned air vehiclhe design and production [Değişken hatve ve değişken hız kontrollü dört rotorlu insansız hava aracı tasarımı ve üretimi]. Gebze Technical University (Master of Science).
  • Özen, E. (2019). Design of unmmanned aerial vehicle and gorund terminal. Gaziantep University (Master of Science).
  • Özen, E. and Oktay, T. (2022). Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight. Journal of Aviation, 6(3), 251–259.
  • Özen, E. and Oktay, T. (2024). Maximization of Flight Performance of Eight-Rotor Multirotor with Differentiated Hub Angle. Journal of Aviation, 8(3), 206–213.
  • Pala, E. (2018). Design, control and manufacturing of a fixed wing vtol aerial vehicle [Dikey kalkış ve iniş yapabilen sabit kanatlı hava aracı tasarımı, kontrolü ve imalatı]. Gebze Technical University (Master of Science).
  • Peksa, J. and Mamchur, D. (2024). A Review on the State of the Art in Copter Drones and Flight Control Systems. Sensors, 24(11), 33-49.
  • Podhradsky, M. (2012). Visual Servoing for a Quadcopter Flight Control.: Vol. Independent thesis Advanced level. Lulea University of Technology (Master of Science).
  • Pütsep, K. and Rassõlkin, A. (2021). Methodology for flight controllers for nano, micro and mini drones classification. 1–8.
  • Quan, Q. (2017). Introduction to Multicopter Design and Control.
  • Raimundo, A. S. L. (2016). Autonomous obstacle collision avoidance system for uavs in rescue operations. University Institute of Lisbon (Master of Science).
  • Romano, S. (2018). Implementation of an Ultralight Autopilot Drone for Service Robotics. Politecnico di Torino (Master of Science).
  • S. Rezwan and W. Choi. (2022). Artificial Intelligence Approaches for UAV Navigation: Recent Advances and Future Challenges. IEEE Access, 10, 26320–26339.
  • Scott, M. T. U., Scott, T. J. and Kelly, V. G. (2016). The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. The Journal of Strength & Conditioning Research, 30(5), 1470-1490.
  • Seidu, I., Olowu, B. and Olowu, S. (2024). Advancements in quadcopter development through additive manufacturing: A comprehensive review. International Journal of Scientific Research in Science, Engineering and Technology, 11(4), 92–124.
  • Shaeffer, D. K. (2013). MEMS inertial sensors: A tutorial overview. IEEE Communications Magazine, 51(4), 100– 109.
  • Studiawan, H., Grispos, G. and Choo, K.-K. R. (2023). Unmanned Aerial Vehicle (UAV) Forensics: The Good, The Bad, and the Unaddressed. Computers & Security, 132, 103340.
  • Suparta, W., Basuki, A. and Arsyad, M. (2023). The development of quadcopter using Arducopter APM 2.8 with autopilot for tracking point of drop-off goods. IOP Conference Series: Earth and Environmental Science, 1151(1), 012-032.
  • T. Dardoize, N. Ciochetto, J. -H. Hong, and H. -S. Shin. (2019). Implementation of Ground Control System for Autonomous Multi-agents using QGroundControl. 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), 24–30.
  • T. Kidd, Z. Yu, S. Dobbs, K. R. Anderson, G. Oetting, J. Kim, and M. O’Connell. (2020). UAV Power Management, Generation, and Storage System Principles and Design. 2020 IEEE Conference on Technologies for Sustainability (SusTech), 1–8.
  • Tomaszewski, D., Rapiński, J. and Pelc-Mieczkowska, R. (2017). Concept of AHRS algorithm designed for platform independent IMU attitude alignment. Reports on Geodesy and Geoinformatics, 104(1), 33–47.
  • Ural Bayrak, Z., Tanyeri, B. and Uçar, U. U. (2022). The Experimental Study of Attitude Stabilization Control for Programmable Nano Quadcopter. Journal of Aviation, 6(1), 1–11.
  • URL. (2022a). RC ESC Çeşitleri. ESC ler ne işe yarar. ESC nasıl seçilir. https://www.promodelhobby.com/blog/icerik/rc-esc-ne-ise-yarar-ozellikleri-ve-cesitleri-nelerdir
  • URL. (2022b). The Differences Between UAV, UAS, and Autonomous Drones—Percepto. https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/
  • URL. (2022c). Wi-Fi—Vikipedi. https://tr.wikipedia.org/wiki/Wi-Fi
  • Uz, U. (2019). The production of electronic pharmaceutical/irrigation system with an unmanned aerial vehicle in hexacopter structure [Hexacopter yapısında bir insansız hava aracı ile elektronik ilaçlama/sulama sisteminin oluşturulması]. İstanbul Gelişim University (Master of Science).
  • Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M. and Choi, J.-G. (2022). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217.
  • Wibisono, A., Piran, Md. J., Song, H.-K. and Lee, B. M. (2023). A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions. Sensors, 23(17), 7321.
  • Y. Bai, H. Zhao, X. Zhang, Z. Chang, R. Jäntti, and K. Yang. (2023). Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches. IEEE Communications Surveys & Tutorials, 25(4), 3038–3067.
  • Yazid, Y., Ez-Zazi, I., Guerrero-González, A., El Oualkadi, A. and Arioua, M. (2021). UAV-Enabled Mobile Edge- Computing for IoT Based on AI: A Comprehensive Review. Drones, 5(4), 148.
  • Yürek, E. E. (2018). Unmanned aerial vehicle supported vehicle routing problem [İnsansız hava aracı destekli araç rotalama problemi]. Bursa Uludağ University (Master of Science).
Year 2025, Volume: 9 Issue: 1, 225 - 240, 26.02.2025
https://doi.org/10.30518/jav.1567696

Abstract

References

  • A. Junid, S. A. Zaki, S. Susilawati, and Y. A. Abakr. (2017). Efficiency of brushed and brushless electronic speed control systems and Lithium batteries. 2017 IEEE 15th Student Conference on Research and Development (SCOReD), 332–337.
  • A. Zul Azfar and D. Hazry. (2011). A simple approach on implementing IMU sensor fusion in PID controller for stabilizing quadrotor flight control. 2011 IEEE 7th International Colloquium on Signal Processing and Its Applications, 28–32.
  • Al-Haddad, L. A., Jaber, A. A., Giernacki, W., Khan, Z. H., Ali, K. M., Tawafik, M. A. and Humaidi, A. J. (2024). Quadcopter Unmanned Aerial Vehicle Structural Design Using an Integrated Approach of Topology Optimization and Additive Manufacturing. Designs, 8(3), 58.
  • Aliane, N. (2024). A Survey of Open-Source UAV Autopilots. Electronics, 13(23), 4785.
  • Altın, C. (2013). Multirotor unmanned aerial vehicle attitude and altitude control [Dört rotorlu insansiz hava aracinin yükseklik ve konum kontrolü]. Bozok University (Master of Science).
  • Altınışık, N. S. (2019). The investigation of the use of the underwater air vehicle (UAV) in the studies of the renovation of the cadastreal padches: Corum-Osmancik-Karaköy [Kadastro güncelleme çalışmalarında insansız hava aracı (İHA)’nın kullanımının irdelenmesi: Çorum-Osmancık-Karaköy örneği]. Aksaray University (Master of Science)
  • ArduPilot. (2020). Bluetooth Telemetry radio—Copter documentation. https://ardupilot.org/copter/docs/common-mission-planner-bluetooth-connectivity.html
  • Asif, G. A., Ariffin, N. H., Aziz, N. A., Mukhtar, M. H. H. and Arsad, N. (2024). True north measurement: A comprehensive review of Carouseling and Maytagging methods of gyrocompassing. Measurement, 226, 114- 121.
  • B B V L, D. and Singh, P. (2016). A survey on design and development of an unmanned aerial vehicle (quadcopter). International Journal of Intelligent Unmanned Systems, 4(2), 70–106.
  • Balamurugan, C., Revathy, S. and Vijayakumar, P. (2020). Quadcopter based emergency medikit delivery system for hill stations. International Journal of Reconfigurable and Embedded Systems, 9(3), 201.
  • Başaran, E. (2017). Propeller performance analysis with analytical and numerical methods [Pervane Performansının Analitik ve Sayısal Yöntemlerle Hesabı]. TOBB University of Economics and Technology (Master of Science).
  • Batmaz, A. U. (2013). Design of multi-rotor unmanned aerial vehicle and optimization of resource allocation in wireless sensor networks [Çok rotorlu insansız hava aracı tasarımı ve kablosuz algılayıcı ağlarda kaynak ataması eniyilemesi]. TOBB University of Economics and Technology (Master of Science).
  • Bin Junaid, A., Diaz De Cerio Sanchez, A., Betancor Bosch, J., Vitzilaios, N. and Zweiri, Y. (2018). Design and implementation of a dual-axis tilting quadcopter. Robotics, 7(4), 65.
  • Borah, D. R., Debnath, L. and Gogoi, M. (2016). A review on Quadcopter Surveillance and Control. ADBU Journal of Engineering Technology, 4(1), 116-119.
  • Bretterbauer, K. and Weber, R. (2003). A primer of geodesy for GIS users. (Vol. 64). Inst. of Geodesy and Geophysics, Dept. of Advanced Geodesy.
  • Bulut, E. (2019). A study about behavior of four rotors ummanned aerial vehicle (Quadrotor) in the different weather conditions [Dört rotorlu insansız hava aracının (Quadrotor) farklı hava koşullarındaki davranışı üzerine bir inceleme]. Osmaniye Korkut Ata University (Master of Science).
  • Çabuk, N. and Yıldırım, Ş. (2021). Design, Modelling and Control of an Eight-Rotors UAV with Asymmetric Configuration for Use in Remote Sensing Systems. Journal of Aviation, 5(2), 72–81.
  • Çakıcı, E. (2019). Development of a brushless motor test system for mini unmanned air vehicles [Mini İnsansız Hava Araçları İçin Bir Fırçasız Motor Test Sistemi Geliştirilmesi]. Eskişehir Osmangazi University (Master of Science).
  • Carvalho, I. D. de S. B. (2013). Low Reynolds propellers for increased quadcopters endurance. University of da Beira Interior (Master of Science).
  • Çelebi, Y. and Cengiz, M. (2024). Verification and Validation of UAV Propeller using CFD. 47–59.
  • Çelebi, Y., Cengiz, M. and Aydın, H. (2024). Propeller Design of UAV Under Low Reynolds Numbers. In Article and Reviews in Engineering Sciences. 407–438. Platanus Publishing.
  • Çetin, O. (2019). From aerial photographs and different unmanned aerial vehicle images, measurement of land topography, analysis of results and comparison (The study of Haymana Yeşilyurt village) [Hava fotoğrafları ve insansız hava aracı görüntülerinden arazi topoğrafyası ölçümü, sonuçların analizi ve karşılaştırması]. Konya Technical University (Master of Science).
  • Çetinkaya, Ö. (2017). An experimental and theoretical i̇nvestigation unmanned air vehicle goes the remotely given coordinates [Uzaktan verilen koordinatlara insansız gidebilen hava araının tasarımı ve deneysel araştırılması]. Trakya University (Doctoral Dissertation).
  • Çetinsoy, E., Öner, K. T., Kandemir, İ., Akşit, M. F., Ünel, M. and Gülez, K. (2008). Yeni bir insansız hava aracının (SUAVi) mekanik ve aerodinamik tasarımı. 36.
  • Chen, Z., Yan, J., Ma, B., Shi, K., Yu, Q. and Yuan, W. (2023). A Survey on Open-Source Simulation Platforms for Multi-Copter UAV Swarms. Robotics, 12(2), 53.
  • Colombo, O. L. and Evans, A. G. (1998). Testing decimeter-level, kinematic, differential GPS over great distances at sea and on land. 1257–1264.
  • D. A. Gandhi and M. Ghosal. (2018). Novel Low Cost Quadcopter for Surveillance Application. 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 412–414.
  • D. Erdos, A. Erdos, and S. E. Watkins. (2013). An experimental UAV system for search and rescue challenge. IEEE Aerospace and Electronic Systems Magazine, 28(5), 32–37.
  • Elmas, E. E. (2019). An unmanned aerial vehicle realization and its use in detecting and tracking moving objects [Bir insansız hava aracı gerçekleştirme ve hareketli nesnelerin tespit ve takibinde kullanımı]. Gazi University (Master of Science).
  • Elmeseiry, N., Alshaer, N. and Ismail, T. (2021). A Detailed Survey and Future Directions of Unmanned Aerial Vehicles (UAVs) with Potential Applications. Aerospace, 8(12), 363.
  • Eugene, C., Lim, J., Nirmal, U. and Lau, S. T. (2019). Battery powered RC boats: A review of its developments for various applications. Current Journal of Applied Science and Technology, 33(5), 1–29.
  • Filippeschi, A., Schmitz, N., Miezal, M., Bleser, G., Ruffaldi, E. and Stricker, D. (2017). Survey of Motion Tracking Methods Based on Inertial Sensors: A Focus on Upper Limb Human Motion. Sensors, 17(6), 12-57.
  • Fu, Q., Chen, X.-Y. and He, W. (2019). A Survey on 3D Visual Tracking of Multicopters. International Journal of Automation and Computing, 16(6), 707–719.
  • G. Özdoğan and K. Leblebicioğlu. (2022). Design, Modeling, and Control Allocation of a Heavy-Lift Aerial Vehicle Consisting of Large Fixed Rotors and Small Tiltrotors. IEEE/ASME Transactions on Mechatronics, 27(5), 4011–4021.
  • Gajula, R. and Tara, S. (2023). Design and implementation of high efficient UAV quadcopter. AIP Conference Proceedings, 2477(1), 030-052.
  • Genç, M. S., Özışık, G. and Kahraman, N. (2008). Investigation Of Aerodynamics Performance of Naca0012 Aerofoil With Plain. J. of Thermal Science and Technology, 28(1), 1–8.
  • Goli, S., Kurtuluş, D. F., Alhems, L. M., Memon, A. M. and Imran, I. H. (2023). Experimental study on efficient propulsion system for multicopter UAV design applications. Results in Engineering, 20, 101555.
  • Green, C. R. and McDonald, R. A. (2015). Modeling and test of the efficiency of electronic speed controllers for brushless dc motors. 3191.
  • Gülçat, Ü. (2010). Fundamentals of modern unsteady aerodynamics. (Vol. 2010). Springer.
  • H. N. P. Wisudawan, A. Nugraha, and A. M. Akmal. (2024). An Efficient Automatic Packet Delivery Using Quadcopter Drone. 2024 4th International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS), 170–174.
  • Hairi, S. M. F. B. S., Saleh, S. J. M. B. M., Ariffin, A. H. and Omar, Z. B. (2023). A Review on Composite Aerostructure Development for UAV Application. In T. Khan and M. Jawaid (Eds.), Green Hybrid Composite in Engineering and Non-Engineering Applications. 137–157. Springer Nature Singapore.
  • Hell, M., Bolam, R. C., Vagapov, Y. and Anuchin, A. (2018). Design of a portable drone for educational purposes. 2018 25th International Workshop on Electric Drives: Optimization in Control of Electric Drives (IWED), 1–5.
  • Henderson, J., Condell, J., Connolly, J., Kelly, D. and Curran, K. (2021). Review of Wearable Sensor-Based Health Monitoring Glove Devices for Rheumatoid Arthritis. Sensors, 21(5), 1576.
  • Hoang, M. and Poon, K. (2013). Final Report Design, Implementationt, and Testing of a UAV Quadcopter.
  • Kaymak, A. M. (2019). An example of the use of unmanned aerial vehicle (drone) and image processing technologies in fruit gardens [İnsansız hava aracı (drone) ve görüntü işleme teknolojilerinin meyve bahçelerinde kullanım örneği]. Selçuk University (Master of Science).
  • Kılıç, B. (2014). Dynamic Analysis and Design of Quadcopter [Quadcopter’in Dinamik Analizi ve Tasarımı]. Bulent Ecevit University (Master of Science).
  • Kumar Nagothu, S., Anitha, G., Siranthini, B., Anandi, V. and Siva Prasad, P. (2023). Weed detection in agriculture crop using unmanned aerial vehicle and machine learning. Materials Today: Proceedings.
  • Kumar, P., Raj Kumar, A., Anand, S., Ganesh, E. and Prithiviraj, V. (2015). Measurement of Power Radiation in Base Transceiver Station Using Quad Phone and Quadcopter. Journal of Green Engineering, 5, 107–128.
  • Kutlu, Ö. (2019). Analysis of images obtained by unmanned aerial vehicle by deep learning methods [İnsansız hava aracı ile elde edilen görüntülerin derin öğrenme yöntemleri ile analizi]. Marmara University (Master of Science).
  • Kuzu, F. (2018). Application of different control methods to unmanned aerial vehicle quadcopter [Dört pervaneli (quadcopter) insansız hava aracına farklı kontrol yöntemlerinin uygulanması]. Fırat University (Master of Science).
  • M. B. Swedan, A. J. Abougarair, and A. S. Emhemmed. (2023). Stabilizing of Quadcopter Flight Model. 2023 IEEE 3rd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA), 254–260.
  • M. Varun, M. N. Joel, M. Naveen, and J. V. Haran. (2023). Quadcopter Navigation using Telemetry Data. 2023 International Conference on Computer Communication and Informatics (ICCCI), 1–6.
  • Magnussen, Ø., Hovland, G. and Ottestad, M. (2014). Multicopter UAV design optimization. 2014 IEEE/ASME 10th International Conference on Mechatronic and Embedded Systems and Applications (MESA), 1–6.
  • McKelvey, N., Diver, C. and Curran, K. (2019). Drones and Privacy. In I. R. Management Association (Ed.), Unmanned Aerial Vehicles: Breakthroughs in Research and Practice. 540–554.
  • Metz, B. and Tarpy, D. (2022). Variation in the reproductive quality of honey bee males affects their age of flight attempt. PeerJ, 10, 13859.
  • Mohsan, S. A., Khan, M. A., Noor, F., Ullah, I. and Alsharif, M. H. (2022). Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review. Drones, 6(6)3 147.
  • N. Cheng, S. Wu, X. Wang, Z. Yin, C. Li, W. Chen, and F. Chen. (2023). AI for UAV-Assisted IoT Applications: A Comprehensive Review. IEEE Internet of Things Journal, 10(16), 14438–14461.
  • Neumann, P. P. and Bartholmai, M. (2015). Real-time wind estimation on a micro unmanned aerial vehicle using its inertial measurement unit. Sensors and Actuators A: Physical, 235, 300–310.
  • Öngül, Y. S. (2017). Variable pitch and variable speed controlled four rotary unmanned air vehiclhe design and production [Değişken hatve ve değişken hız kontrollü dört rotorlu insansız hava aracı tasarımı ve üretimi]. Gebze Technical University (Master of Science).
  • Özen, E. (2019). Design of unmmanned aerial vehicle and gorund terminal. Gaziantep University (Master of Science).
  • Özen, E. and Oktay, T. (2022). Effects of Shape Changing of Morphing Rotary Wing Aircraft on Longitudinal and Lateral Flight. Journal of Aviation, 6(3), 251–259.
  • Özen, E. and Oktay, T. (2024). Maximization of Flight Performance of Eight-Rotor Multirotor with Differentiated Hub Angle. Journal of Aviation, 8(3), 206–213.
  • Pala, E. (2018). Design, control and manufacturing of a fixed wing vtol aerial vehicle [Dikey kalkış ve iniş yapabilen sabit kanatlı hava aracı tasarımı, kontrolü ve imalatı]. Gebze Technical University (Master of Science).
  • Peksa, J. and Mamchur, D. (2024). A Review on the State of the Art in Copter Drones and Flight Control Systems. Sensors, 24(11), 33-49.
  • Podhradsky, M. (2012). Visual Servoing for a Quadcopter Flight Control.: Vol. Independent thesis Advanced level. Lulea University of Technology (Master of Science).
  • Pütsep, K. and Rassõlkin, A. (2021). Methodology for flight controllers for nano, micro and mini drones classification. 1–8.
  • Quan, Q. (2017). Introduction to Multicopter Design and Control.
  • Raimundo, A. S. L. (2016). Autonomous obstacle collision avoidance system for uavs in rescue operations. University Institute of Lisbon (Master of Science).
  • Romano, S. (2018). Implementation of an Ultralight Autopilot Drone for Service Robotics. Politecnico di Torino (Master of Science).
  • S. Rezwan and W. Choi. (2022). Artificial Intelligence Approaches for UAV Navigation: Recent Advances and Future Challenges. IEEE Access, 10, 26320–26339.
  • Scott, M. T. U., Scott, T. J. and Kelly, V. G. (2016). The Validity and Reliability of Global Positioning Systems in Team Sport: A Brief Review. The Journal of Strength & Conditioning Research, 30(5), 1470-1490.
  • Seidu, I., Olowu, B. and Olowu, S. (2024). Advancements in quadcopter development through additive manufacturing: A comprehensive review. International Journal of Scientific Research in Science, Engineering and Technology, 11(4), 92–124.
  • Shaeffer, D. K. (2013). MEMS inertial sensors: A tutorial overview. IEEE Communications Magazine, 51(4), 100– 109.
  • Studiawan, H., Grispos, G. and Choo, K.-K. R. (2023). Unmanned Aerial Vehicle (UAV) Forensics: The Good, The Bad, and the Unaddressed. Computers & Security, 132, 103340.
  • Suparta, W., Basuki, A. and Arsyad, M. (2023). The development of quadcopter using Arducopter APM 2.8 with autopilot for tracking point of drop-off goods. IOP Conference Series: Earth and Environmental Science, 1151(1), 012-032.
  • T. Dardoize, N. Ciochetto, J. -H. Hong, and H. -S. Shin. (2019). Implementation of Ground Control System for Autonomous Multi-agents using QGroundControl. 2019 Workshop on Research, Education and Development of Unmanned Aerial Systems (RED UAS), 24–30.
  • T. Kidd, Z. Yu, S. Dobbs, K. R. Anderson, G. Oetting, J. Kim, and M. O’Connell. (2020). UAV Power Management, Generation, and Storage System Principles and Design. 2020 IEEE Conference on Technologies for Sustainability (SusTech), 1–8.
  • Tomaszewski, D., Rapiński, J. and Pelc-Mieczkowska, R. (2017). Concept of AHRS algorithm designed for platform independent IMU attitude alignment. Reports on Geodesy and Geoinformatics, 104(1), 33–47.
  • Ural Bayrak, Z., Tanyeri, B. and Uçar, U. U. (2022). The Experimental Study of Attitude Stabilization Control for Programmable Nano Quadcopter. Journal of Aviation, 6(1), 1–11.
  • URL. (2022a). RC ESC Çeşitleri. ESC ler ne işe yarar. ESC nasıl seçilir. https://www.promodelhobby.com/blog/icerik/rc-esc-ne-ise-yarar-ozellikleri-ve-cesitleri-nelerdir
  • URL. (2022b). The Differences Between UAV, UAS, and Autonomous Drones—Percepto. https://percepto.co/what-are-the-differences-between-uav-uas-and-autonomous-drones/
  • URL. (2022c). Wi-Fi—Vikipedi. https://tr.wikipedia.org/wiki/Wi-Fi
  • Uz, U. (2019). The production of electronic pharmaceutical/irrigation system with an unmanned aerial vehicle in hexacopter structure [Hexacopter yapısında bir insansız hava aracı ile elektronik ilaçlama/sulama sisteminin oluşturulması]. İstanbul Gelişim University (Master of Science).
  • Velusamy, P., Rajendran, S., Mahendran, R. K., Naseer, S., Shafiq, M. and Choi, J.-G. (2022). Unmanned Aerial Vehicles (UAV) in Precision Agriculture: Applications and Challenges. Energies, 15(1), 217.
  • Wibisono, A., Piran, Md. J., Song, H.-K. and Lee, B. M. (2023). A Survey on Unmanned Underwater Vehicles: Challenges, Enabling Technologies, and Future Research Directions. Sensors, 23(17), 7321.
  • Y. Bai, H. Zhao, X. Zhang, Z. Chang, R. Jäntti, and K. Yang. (2023). Toward Autonomous Multi-UAV Wireless Network: A Survey of Reinforcement Learning-Based Approaches. IEEE Communications Surveys & Tutorials, 25(4), 3038–3067.
  • Yazid, Y., Ez-Zazi, I., Guerrero-González, A., El Oualkadi, A. and Arioua, M. (2021). UAV-Enabled Mobile Edge- Computing for IoT Based on AI: A Comprehensive Review. Drones, 5(4), 148.
  • Yürek, E. E. (2018). Unmanned aerial vehicle supported vehicle routing problem [İnsansız hava aracı destekli araç rotalama problemi]. Bursa Uludağ University (Master of Science).
There are 88 citations in total.

Details

Primary Language English
Subjects Aerospace Engineering (Other)
Journal Section Review
Authors

Yahya Çelebi 0000-0002-4686-9794

Hüseyin Aydın 0000-0002-5415-0405

Early Pub Date February 25, 2025
Publication Date February 26, 2025
Submission Date October 15, 2024
Acceptance Date January 14, 2025
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Çelebi, Y., & Aydın, H. (2025). Multirotor Unmanned Aerial Vehicle Systems: An In-Depth Analysis of Hardware, Software, And Communication Systems. Journal of Aviation, 9(1), 225-240. https://doi.org/10.30518/jav.1567696

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence