Research Article
BibTex RIS Cite

Forecasting Turkey’s Air Cargo Tonnage: A Comparative Analysis of Statistical Techniques and Machine Learning Methods

Year 2025, Volume: 9 Issue: 1, 109 - 117, 26.02.2025
https://doi.org/10.30518/jav.1582814

Abstract

With the expanding global economy, the demand for air logistics continues to grow, further emphasizing its significance. However, this increased demand also presents a barrier to the growth of the air transportation sector, which is marked by a high degree of vulnerability. This study aims to forecast cargo volumes in the air logistics sector, which holds considerable growth potential. To achieve this, two statistical models (SARIMA and ARIMAX) and three machine learning methods (Gradient Boosting Regression Tree, Random Forest, and Support Vector Regression) were utilized in a comparative analysis, and forecasts for air cargo volumes were generated using the model with the best performance. The findings reveal that machine learning-based models outperform statistical models when applied to time series data. Specifically, the Random Forest model demonstrated superior performance in forecasting 1-10 month periods, while the Gradient Boosting Regressor (GBR) outperformed other models in 5-month periods. Additionally, the SARIMA model was found to be highly competitive for short-term forecasts. Based on these results, it was determined that the Random Forest model provides higher accuracy for 1-10 month periods, whereas the GBR model excels in 5-month periods. The results further indicate that dynamic modelling strategies achieved through machine learning methods yield more accurate predictions compared to statistical models.

References

  • Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2022). House price prediction using random forest machine learning technique. Procedia Computer Science, 199, 806-813.
  • Anggraeni, W., et al. (2017). The performance of ARIMAX model and Vector Autoregressive (VAR) model in forecasting strategic commodity price in Indonesia. Procedia Computer Science, 124, 189-196.
  • Bakırcı, M. (2013). Ulaşım Coğrafyası Açısından Türkiye’de Havayolu Ulaşımının Tarihsel Gelişimi ve Yapısı [The Historical Development and Structure of Air Transportation in Turkey from the Perspective of Transport Geography]. Marmara Coğrafya Dergisi, (27). URL:https://dergipark.org.tr/en/pub/marucog/issue/472/3869
  • Bierens, H. J. (1987). ARMAX model specification testing, with an application to unemployment in the Netherlands. Journal of Econometrics, 35(1), 161-190.
  • Bowerman, B. L., & O’Connell, R. T. (1993). Forecasting and time series: An applied approach (3rd ed.). Duxbury Press.
  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
  • Bozkurt, H. Y. (2013). Zaman serileri analizi [Time series analysis]. Ekin Yayınevi.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth & Brooks/Cole.
  • Burger, C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting—A case study of Durban, South Africa. Tourism Management, 22, 403–409.
  • Çubukcuoğlu, B., et al. (2013). OECD Ülkeleri İçin Genişbant Abone Sayısını Etkileyen Faktörlerin Çoklu Regresyon Modeli ile Analizi [Analysis of Factors Affecting Broadband Subscriber Numbers in OECD Countries with Multiple Regression Model]. Sosyal Bilimler Araştırmaları Dergisi, 8(2), 26-41.
  • Ekinler, F. (2022). Sürdürülebilirlik ile İşletme Maliyeti Arasındaki İlişki [The Relationship Between Sustainability and Business Cost]. International Social Mentality and Researcher Thinkers Journal, 8(61), 1224-1230.
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
  • Gujarati, D. N. (2014). Econometrics by example (2nd ed.). Palgrave Macmillan.
  • Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522.
  • Kılıç, S. (2013). Doğrusal regresyon analizi [Linear Regression Analysis]. Journal of Mood Disorders, 3(2), 90-92.
  • Kongcharoen, C., & Kruangpradit, T. (2013). Autoregressive integrated moving average with explanatory variable (ARIMAX) model for Thailand export. Proceedings of the 33rd International Symposium on Forecasting. South Korea.
  • Lee, Y. S., & Tong, L. I. (2011). Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-Based Systems, 24, 66–72.
  • Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
  • Majkovic, D., O’Kiely, P., Kramberger, B., Vracko, M., Turk, J., Pazek, K., & Rozman, C. (2016). Comparison of using regression modeling and an artificial neural network for herbage dry matter yield forecasting. Journal of Chemometrics, 30, 203–209.
  • Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S. (2017). A statistical approach to predict flight delay using gradient boosted decision tree. 2017 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1–5). IEEE.
  • Meltzer, R. (2023). What is Random Forest? [Beginner's Guide Examples]. CareerFoundry. https://careerfoundry.com/ en/blog/data-analytics/what-is-random-forest/
  • Moslemi, Z., Clark, L., Kernal, S., Rehome, S., Sprengel, S., Tamizifar, A., & Hodgett, M. (2024). Comprehensive forecasting of California's energy consumption: A multi-source and sectoral analysis using ARIMA and ARIMAX models. arXiv preprint arXiv:2402.04432.
  • Nacar, E. N., & Erdebilli, B. (2021). Makine Öğrenmesi Algoritmaları ile Satış Tahmini [Sales Forecasting with Machine Learning Algorithms]. Endüstri Mühendisliği, 32(2), 307-320.
  • Nalçacıgil, E. (2023). Hava kargo servis ve hizmetlerinin firmaların genel ve pazarlama performansı üzerindeki etkisi [The effect of air cargo services on companies' general and marketing performance]. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 25(2), 637–654.
  • Nikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368.
  • Önen, V. (2020). Arima yöntemiyle Türkiye’nin hava yolu kargo talep tahmin modellemesi ve öngörüsü [Modeling and Forecasting of Turkey's Air Cargo Demand with ARIMA Method]. Journal of Management and Economics Research, 18(4), 29-53.
  • Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models: Concepts and cases. Wiley.
  • Papatya, G., & Uygur, M. N. (2019). Stratejik Karar Verme Sürecini Etkileyen Faktörler: Uluslararası Taşımacılık Sektörü İşletmelerinde Bir Araştırma [Factors Affecting the Strategic Decision-Making Process: A Research in International Transportation Sector Businesses]. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(19), 338-358.
  • Pepple, S. U., & Harrison, E. E. (2017). Comparative performance of Garch and Sarima techniques in the modeling of Nigerian broad money. CARD International Journal of Social Science and Conflict Management, 2(4), 258–270.
  • Persson, C., Bacher, P., Shiga, T., & Madsen, H. (2017). Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy, 150, 423–436.
  • Peter, D., & Silvia, P. (2012). ARIMA Vs. ARIMAX – Which Approach is Better to Analyze and Forecast Macroeconomic Time Series. Proceedings of 30th International Conference Mathematical Methods in Economics (pp. 136-140).
  • Pinheiro, D. A. M. (2021). The impact of machine learning models in the prediction of air cargo (Master's thesis). Universidade NOVA de Lisboa, Portugal.
  • Pinheiro, D. A. M. (2021). The impact of machine learning models in the prediction of air cargo (Master's thesis). Universidade NOVA de Lisboa, Portugal.
  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
  • Rahul, R., Kameshwari, S., & Pradip Kumar, R. (2022). In flight delay prediction using random forest classifier. Proceedings of the International Conference on [Conference Name] (pp. 67–72). Springer.
  • Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given task. Proceedings of the First International Conference on Knowledge Discovery and Data Mining (pp. 144–152). AAAI Press.
  • Tortum, A., et al. (2014). Türkiye’de Hava Ulaşım Talebinin ARIMA Modelleri ile Tahmin Edilmesi [Forecasting Air Transportation Demand in Turkey with ARIMA Models]. Journal of the Institute of Science and Technology, 4(2), 39-54.
  • Vapnik, V. (1998). Statistical learning theory. Wiley.
  • Vapnik, V., Golowich, S., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9 (pp. 281–287). MIT Press.
  • Vergil, H., & Özkan, F. (2007). Döviz Kurları Öngörüsünde Parasal Model ve Arima Modelleri: Türkiye Örneği [Monetary Model and ARIMA Models in Exchange Rate Forecasting: The Case of Turkey]. Kocaeli Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (13), 211-231.
  • Yang, C. H., Shao, J. C., Liu, Y. H., Jou, P. H., & Lin, Y. D. (2022). Application of fuzzy-based support vector regression to forecast of international airport freight volumes. Mathematics, 10(14), 2399.
  • Yavuz, S. (2009). Hataları Ardışık Bağımlı (Otokorelasyonlu) Olan Regresyon Modellerinin Tahmin Edilmesi [Estimating Regression Models with Serially Dependent Errors (Autocorrelation)]. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23(3), [Page Numbers].
Year 2025, Volume: 9 Issue: 1, 109 - 117, 26.02.2025
https://doi.org/10.30518/jav.1582814

Abstract

References

  • Adetunji, A. B., Akande, O. N., Ajala, F. A., Oyewo, O., Akande, Y. F., & Oluwadara, G. (2022). House price prediction using random forest machine learning technique. Procedia Computer Science, 199, 806-813.
  • Anggraeni, W., et al. (2017). The performance of ARIMAX model and Vector Autoregressive (VAR) model in forecasting strategic commodity price in Indonesia. Procedia Computer Science, 124, 189-196.
  • Bakırcı, M. (2013). Ulaşım Coğrafyası Açısından Türkiye’de Havayolu Ulaşımının Tarihsel Gelişimi ve Yapısı [The Historical Development and Structure of Air Transportation in Turkey from the Perspective of Transport Geography]. Marmara Coğrafya Dergisi, (27). URL:https://dergipark.org.tr/en/pub/marucog/issue/472/3869
  • Bierens, H. J. (1987). ARMAX model specification testing, with an application to unemployment in the Netherlands. Journal of Econometrics, 35(1), 161-190.
  • Bowerman, B. L., & O’Connell, R. T. (1993). Forecasting and time series: An applied approach (3rd ed.). Duxbury Press.
  • Box, G. E. P., & Jenkins, G. M. (1970). Time series analysis: Forecasting and control. Holden-Day.
  • Bozkurt, H. Y. (2013). Zaman serileri analizi [Time series analysis]. Ekin Yayınevi.
  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
  • Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (1984). Classification and regression trees. Wadsworth & Brooks/Cole.
  • Burger, C., Dohnal, M., Kathrada, M., & Law, R. (2001). A practitioners guide to time-series methods for tourism demand forecasting—A case study of Durban, South Africa. Tourism Management, 22, 403–409.
  • Çubukcuoğlu, B., et al. (2013). OECD Ülkeleri İçin Genişbant Abone Sayısını Etkileyen Faktörlerin Çoklu Regresyon Modeli ile Analizi [Analysis of Factors Affecting Broadband Subscriber Numbers in OECD Countries with Multiple Regression Model]. Sosyal Bilimler Araştırmaları Dergisi, 8(2), 26-41.
  • Ekinler, F. (2022). Sürdürülebilirlik ile İşletme Maliyeti Arasındaki İlişki [The Relationship Between Sustainability and Business Cost]. International Social Mentality and Researcher Thinkers Journal, 8(61), 1224-1230.
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.
  • Friedman, J. H. (2002). Stochastic gradient boosting. Computational Statistics & Data Analysis, 38(4), 367–378.
  • Gujarati, D. N. (2014). Econometrics by example (2nd ed.). Palgrave Macmillan.
  • Huang, W., Nakamori, Y., & Wang, S. Y. (2005). Forecasting stock market movement direction with support vector machine. Computers & Operations Research, 32(10), 2513–2522.
  • Kılıç, S. (2013). Doğrusal regresyon analizi [Linear Regression Analysis]. Journal of Mood Disorders, 3(2), 90-92.
  • Kongcharoen, C., & Kruangpradit, T. (2013). Autoregressive integrated moving average with explanatory variable (ARIMAX) model for Thailand export. Proceedings of the 33rd International Symposium on Forecasting. South Korea.
  • Lee, Y. S., & Tong, L. I. (2011). Forecasting time series using a methodology based on autoregressive integrated moving average and genetic programming. Knowledge-Based Systems, 24, 66–72.
  • Lewis, C. D. (1982). Industrial and business forecasting methods: A practical guide to exponential smoothing and curve fitting. Butterworth-Heinemann.
  • Majkovic, D., O’Kiely, P., Kramberger, B., Vracko, M., Turk, J., Pazek, K., & Rozman, C. (2016). Comparison of using regression modeling and an artificial neural network for herbage dry matter yield forecasting. Journal of Chemometrics, 30, 203–209.
  • Manna, S., Biswas, S., Kundu, R., Rakshit, S., Gupta, P., & Barman, S. (2017). A statistical approach to predict flight delay using gradient boosted decision tree. 2017 International Conference on Computational Intelligence in Data Science (ICCIDS) (pp. 1–5). IEEE.
  • Meltzer, R. (2023). What is Random Forest? [Beginner's Guide Examples]. CareerFoundry. https://careerfoundry.com/ en/blog/data-analytics/what-is-random-forest/
  • Moslemi, Z., Clark, L., Kernal, S., Rehome, S., Sprengel, S., Tamizifar, A., & Hodgett, M. (2024). Comprehensive forecasting of California's energy consumption: A multi-source and sectoral analysis using ARIMA and ARIMAX models. arXiv preprint arXiv:2402.04432.
  • Nacar, E. N., & Erdebilli, B. (2021). Makine Öğrenmesi Algoritmaları ile Satış Tahmini [Sales Forecasting with Machine Learning Algorithms]. Endüstri Mühendisliği, 32(2), 307-320.
  • Nalçacıgil, E. (2023). Hava kargo servis ve hizmetlerinin firmaların genel ve pazarlama performansı üzerindeki etkisi [The effect of air cargo services on companies' general and marketing performance]. Afyon Kocatepe Üniversitesi Sosyal Bilimler Dergisi, 25(2), 637–654.
  • Nikolopoulos, K., Goodwin, P., Patelis, A., & Assimakopoulos, V. (2007). Forecasting with cue information: A comparison of multiple regression with alternative forecasting approaches. European Journal of Operational Research, 180(1), 354–368.
  • Önen, V. (2020). Arima yöntemiyle Türkiye’nin hava yolu kargo talep tahmin modellemesi ve öngörüsü [Modeling and Forecasting of Turkey's Air Cargo Demand with ARIMA Method]. Journal of Management and Economics Research, 18(4), 29-53.
  • Pankratz, A. (1983). Forecasting with univariate Box-Jenkins models: Concepts and cases. Wiley.
  • Papatya, G., & Uygur, M. N. (2019). Stratejik Karar Verme Sürecini Etkileyen Faktörler: Uluslararası Taşımacılık Sektörü İşletmelerinde Bir Araştırma [Factors Affecting the Strategic Decision-Making Process: A Research in International Transportation Sector Businesses]. Kafkas Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 10(19), 338-358.
  • Pepple, S. U., & Harrison, E. E. (2017). Comparative performance of Garch and Sarima techniques in the modeling of Nigerian broad money. CARD International Journal of Social Science and Conflict Management, 2(4), 258–270.
  • Persson, C., Bacher, P., Shiga, T., & Madsen, H. (2017). Multi-site solar power forecasting using gradient boosted regression trees. Solar Energy, 150, 423–436.
  • Peter, D., & Silvia, P. (2012). ARIMA Vs. ARIMAX – Which Approach is Better to Analyze and Forecast Macroeconomic Time Series. Proceedings of 30th International Conference Mathematical Methods in Economics (pp. 136-140).
  • Pinheiro, D. A. M. (2021). The impact of machine learning models in the prediction of air cargo (Master's thesis). Universidade NOVA de Lisboa, Portugal.
  • Pinheiro, D. A. M. (2021). The impact of machine learning models in the prediction of air cargo (Master's thesis). Universidade NOVA de Lisboa, Portugal.
  • Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1(1), 81–106.
  • Rahul, R., Kameshwari, S., & Pradip Kumar, R. (2022). In flight delay prediction using random forest classifier. Proceedings of the International Conference on [Conference Name] (pp. 67–72). Springer.
  • Schölkopf, B., Burges, C., & Vapnik, V. (1995). Extracting support data for a given task. Proceedings of the First International Conference on Knowledge Discovery and Data Mining (pp. 144–152). AAAI Press.
  • Tortum, A., et al. (2014). Türkiye’de Hava Ulaşım Talebinin ARIMA Modelleri ile Tahmin Edilmesi [Forecasting Air Transportation Demand in Turkey with ARIMA Models]. Journal of the Institute of Science and Technology, 4(2), 39-54.
  • Vapnik, V. (1998). Statistical learning theory. Wiley.
  • Vapnik, V., Golowich, S., & Smola, A. (1997). Support vector method for function approximation, regression estimation, and signal processing. Advances in Neural Information Processing Systems 9 (pp. 281–287). MIT Press.
  • Vergil, H., & Özkan, F. (2007). Döviz Kurları Öngörüsünde Parasal Model ve Arima Modelleri: Türkiye Örneği [Monetary Model and ARIMA Models in Exchange Rate Forecasting: The Case of Turkey]. Kocaeli Üniversitesi Sosyal Bilimler Enstitüsü Dergisi, (13), 211-231.
  • Yang, C. H., Shao, J. C., Liu, Y. H., Jou, P. H., & Lin, Y. D. (2022). Application of fuzzy-based support vector regression to forecast of international airport freight volumes. Mathematics, 10(14), 2399.
  • Yavuz, S. (2009). Hataları Ardışık Bağımlı (Otokorelasyonlu) Olan Regresyon Modellerinin Tahmin Edilmesi [Estimating Regression Models with Serially Dependent Errors (Autocorrelation)]. Atatürk Üniversitesi İktisadi ve İdari Bilimler Dergisi, 23(3), [Page Numbers].
There are 44 citations in total.

Details

Primary Language English
Subjects Air Transportation and Freight Services
Journal Section Research Articles
Authors

Cüneyt Çatuk 0000-0002-9843-7037

Early Pub Date February 24, 2025
Publication Date February 26, 2025
Submission Date November 11, 2024
Acceptance Date December 23, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Çatuk, C. (2025). Forecasting Turkey’s Air Cargo Tonnage: A Comparative Analysis of Statistical Techniques and Machine Learning Methods. Journal of Aviation, 9(1), 109-117. https://doi.org/10.30518/jav.1582814

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence