Research Article
BibTex RIS Cite

Bibliometric Analysis of Studies on Artificial Intelligence in the Air Transportation Sector

Year 2025, Volume: 9 Issue: 1, 118 - 136, 26.02.2025
https://doi.org/10.30518/jav.1583144

Abstract

The use of artificial intelligence is becoming widespread in almost all sectors. The air transportation sector is naturally where artificial intelligence studies are frequently carried out. In both the application process and academic studies, studies on artificial intelligence have increased significantly in recent years. It is thought that examining the studies conducted in this context will contribute to the understanding of the existing literature on artificial intelligence and help predict the trends that will emerge in the future. For these reasons, this study aims to conduct a bibliometric analysis of studies on artificial intelligence in the air transportation sector. The analysis of 1712 academic studies obtained from the Scopus database was conducted with R Bibliometix and VOSViewer software. In the study, analyses such as the authors and countries with the highest number of publications, the most influential authors and countries, the institutions that contribute the most to the studies, the most influential journals, thematic analysis, co-occurrence, co-citation, and bibliographic coupling analysis were performed. As a result of the analysis, it was determined that most of the studies are from the Asian region, and the rate of cooperation in the studies is high, but the rate of international cooperation is relatively low. On the other hand, it was revealed that the motor themes in studies on artificial intelligence are air traffic control, Unmanned Aerial Vehicle, optimization, eye tracking, and automation, while the basic themes are machine learning, deep learning, aviation safety, neural network, and situation awareness.

References

  • Abedin, M., Ng, V., & Khan, L. (2010). Cause identification from aviation safety incident reports via weakly supervised semantic lexicon construction. Journal of Artificial Intelligence Research, 38, 569-631.
  • Adi, K., Widodo, C., Widodo, A. P., & Margiati, U. (2022). Detection of foreign object debris (Fod) using convolutional neural network (CNN). J. Theor. Appl. Inf. Technol, 100(1), 184-191.
  • Albelo, J. L., & McIntire, S. (2023). How to Embrace Artificial Intelligence in Aviation Education? The Collegiate Aviation Review International, 41(2).
  • Alla, H., Moumoun, L., & Balouki, Y. (2021). A Multilayer Perceptron Neural Network with Selective‐Data Training for Flight Arrival Delay Prediction. Scientific Programming, 2021(1), 5558918.
  • Alves, D., Mendonça, F., Mostafa, S. S., & Morgado-Dias, F. (2023). Automated aviation wind nowcasting: exploring feature-based machine learning methods. Applied Sciences, 13(18), 10221.
  • Aras, M. T., & Guvensan, M. A. (2023). A Multi-Modal Profiling Fraud-Detection System for Capturing Suspicious Airline Ticket Activities. Applied Sciences, 13(24), 13121.
  • Arcúrio, M. S., Nakamura, E. S., & Armborst, T. (2018). Human factors and errors in security aviation: An ergonomic perspective. Journal of Advanced Transportation, 2018(1), 5173253.
  • Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975.
  • ATAG. (2020). Aviation: Benefits Beyond Borders. Retrieved 22.07.2024 from https://aviationbenefits.org/downloads/aviation-benefits-beyond-borders-2020/
  • Bağan, H., & Gerede, E. (2019). Use of a nominal group technique in the exploration of safety hazards arising from the outsourcing of aircraft maintenance. Safety science, 118, 795-804.
  • Bajaj, V., Kumar, P., & Singh, V. K. (2022). Linkage dynamics of sovereign credit risk and financial markets: A bibliometric analysis. Research in International Business and Finance, 59, 101566.
  • Bakır, M., Akan, Ş., Özdemir, E., Nguyen, P.-H., Tsai, J.-F., & Pham, H.-A. (2022). How to achieve passenger satisfaction in the airport? Findings from regression analysis and necessary condition analysis approaches through online airport reviews. Sustainability, 14(4), 2151.
  • Baklacioglu, T., Turan, O., & Aydin, H. (2018). Metaheuristic approach for an artificial neural network: exergetic sustainability and environmental effect of a business aircraft. Transportation Research Part D: Transport and Environment, 63, 445-465.
  • Bareither, C., & Luxhøj, J. T. (2007). Uncertainty and sensitivity analysis in bayesian belief networks: Applications to aviation safety risk assessment. International Journal of Industrial and Systems Engineering, 2(2), 137-158.
  • Bartok, J., Šišan, P., Ivica, L., Bartoková, I., Malkin Ondík, I., & Gaál, L. (2022). Machine learning-based fog nowcasting for aviation with the aid of camera observations. Atmosphere, 13(10), 1684.
  • Baumann, S., & Klingauf, U. (2020). Modeling of aircraft fuel consumption using machine learning algorithms. CEAS Aeronautical Journal, 11(1), 277-287.
  • Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. MIS quarterly, 45(3).
  • Bewlay, B., Nag, S., Suzuki, A., & Weimer, M. (2016). TiAl alloys in commercial aircraft engines. Materials at High Temperatures, 33(4-5), 549-559.
  • Bieger, T., & Wittmer, A. (2006). Air transport and tourism—Perspectives and challenges for destinations, airlines and governments. Journal of Air Transport Management, 12(1), 40-46.
  • Bızel, G. (2023). A bibliometric analysis: Metaverse in education concept. Journal of Metaverse, 3(2), 133-143.
  • Boneh, T., Weymouth, G. T., Newham, P., Potts, R., Bally, J., Nicholson, A. E., & Korb, K. B. (2015). Fog forecasting for Melbourne Airport using a Bayesian decision network. Weather and Forecasting, 30(5), 1218-1233.
  • Brandoli, B., de Geus, A. R., Souza, J. R., Spadon, G., Soares, A., Rodrigues Jr, J. F., Komorowski, J., & Matwin, S. (2021). Aircraft fuselage corrosion detection using artificial intelligence. Sensors, 21(12), 4026.
  • Brown, C., Hicks, J., Rinaudo, C. H., & Burch, R. (2023). The use of augmented reality and virtual reality in ergonomic applications for education, aviation, and maintenance. Ergonomics in Design, 31(4), 23-31.
  • Cai, K.-Q., Zhang, J., Xiao, M.-M., Tang, K., & Du, W.-B. (2017). Simultaneous optimization of airspace congestion and flight delay in air traffic network flow management. IEEE Transactions on Intelligent Transportation Systems, 18(11), 3072-3082.
  • Cao, Y., Wu, Z., & Xu, Z. (2014). Effects of rainfall on aircraft aerodynamics. Progress in Aerospace Sciences, 71, 85-127.
  • Casado, R., & Bermúdez, A. (2020). Neural network-based aircraft conflict prediction in final approach maneuvers. Electronics, 9(10), 1708.
  • Ceylan, H., Gopalakrishnan, K., & Bayrak, M. B. (2008). Neural networks based concrete airfield pavement layer moduli backcalculation. Civil Engineering and Environmental Systems, 25(3), 185-199.
  • Chanpariyavatevong, K., Wipulanusat, W., Champahom, T., Jomnonkwao, S., Chonsalasin, D., & Ratanavaraha, V. (2021). Predicting airline customer loyalty by integrating structural equation modeling and Bayesian networks. Sustainability, 13(13), 7046.
  • Chen, J., Chen, L., & Sun, D. (2017). Air traffic flow management under uncertainty using chance-constrained optimization. Transportation Research Part B: Methodological, 102, 124-141.
  • Chen, J., Zhang, X., & Gao, Y. (2016). Fault detection for turbine engine disk based on an adaptive kernel principal component analysis algorithm. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 230(7), 651-660.
  • Chin, W.-S., Ting, C.-Y., & Cham, C.-L. (2023). No-Show Passenger Prediction for Flights. JOIV: International Journal on Informatics Visualization, 7(3-2), 2056-2064.
  • Chouraqui, E., & Doniat, C. (2003). The s-ethos system: a methodology for systematic flight analysis centered on human factors. Applied Artificial Intelligence, 17(7), 583-629.
  • Chow, Y., Ng, K. K., & Keung, K. (2022). An evolutionary algorithm in static airport gate assignment problem. The open transportation journal, 16.
  • Cruciol, L. L., Weigang, L., de Barros, A. G., & Koendjbiharie, M. W. (2015). Air holding problem solving with reinforcement learning to reduce airspace congestion. Journal of Advanced Transportation, 49(5), 616-633.
  • Daggett, D., Hendricks, R., & Walther, R. (2006). Alternative fuels and their potential impact on aviation. 25th Congress of the International Council of the Aeronautical Sciences (ICAS 2006),
  • Dangut, M. D., Skaf, Z., & Jennions, I. K. (2021). An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA transactions, 113, 127-139.
  • de Riberolles, T., Zou, Y., Silvestre, G., Lochin, E., & Song, J. (2022). Anomaly detection for ICS based on deep learning: a use case for aeronautical radar data. Annals of Telecommunications, 77(11), 749-761.
  • Degife, W. A., & Lin, B.-S. (2023). Deep-Learning-Powered GRU Model for Flight Ticket Fare Forecasting. Applied Sciences, 13(10), 6032.
  • Deng, W., Zhang, L., Zhou, X., Zhou, Y., Sun, Y., Zhu, W., Chen, H., Deng, W., Chen, H., & Zhao, H. (2022). Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. Information Sciences, 612, 576-593.
  • Djavadifar, A., Graham-Knight, J. B., Kӧrber, M., Lasserre, P., & Najjaran, H. (2022). Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks. Journal of Intelligent Manufacturing, 33(8), 2257-2275.
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296.
  • Du‐Harpur, X., Watt, F., Luscombe, N., & Lynch, M. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430.
  • Du, W., Chen, S., Li, H., Li, Z., Cao, X., & Lv, Y. (2022). Airport capacity prediction with multisource features: A temporal deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 24(1), 615-630.
  • Ernst, A., & Weigold, M. (2021). Machine Data-Based Prediction of Blisk Blade Geometry Characteristics. MM Science Journal (Special Issue), 5056-5052.
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB journal, 22(2), 338-342.
  • Fallast, A., & Messnarz, B. (2017). Automated trajectory generation and airport selection for an emergency landing procedure of a CS23 aircraft. CEAS Aeronautical Journal, 8, 481-492.
  • Felkel, R., Barth, T., Schnei, T., & Vieten, B. D. (2021). From laboratory to real life: Fraport’s approach to applying artificial intelligence in airside operations and ground handling. Journal of Airport Management, 15(3), 266-279.
  • Forsyth, P. (2016). Tourism and aviation policy: exploring the links. In Aviation and tourism (pp. 73-82). Routledge.
  • Gandhi, T., Yang, M.-T., Kasturi, R., Camps, O. I., Coraor, L. D., & McCandless, J. (2006). Performance characterization of the dynamic programming obstacle detection algorithm. IEEE Transactions on Image Processing, 15(5), 1202-1214.
  • García, J., Berlanga, A., Molina, J. M., & Casar, J. R. (2005). Optimization of airport ground operations integrating genetic and dynamic flow management algorithms. AI Communications, 18(2), 143-164.
  • Ghienne, M., & Limare, A. (2023). Learning structural stress virtual sensors from on-board instrumentation of a commercial aircraft. Computers & Structures, 289, 107155.
  • Ghoneim, A., & Abbass, H. A. (2016). A multiobjective distance separation methodology to determine sector- level minimum separation for safe air traffic scenarios. European journal of operational research, 253(1), 226- 240.
  • Glänzel, W., Schubert, A., & Czerwon, H. (1999). A bibliometric analysis of international scientific cooperation of the European Union (1985–1995). Scientometrics, 45(2), 185-202.
  • Gomolka, Z., Zeslawska, E., Twarog, B., Kordos, D., & Rzucidlo, P. (2022). Use of a DNN in recording and analysis of operator attention in advanced HMI systems. Applied Sciences, 12(22), 11431.
  • Gu, Y., Yang, J., Wang, C., & Xie, G. (2020). Early warning model for passenger disturbance due to flight delays. Plos one, 15(9), e0239141.
  • Guimin, J., Cheng, F., Jinfeng, Y., & Dan, L. (2018). Intelligent checking model of Chinese radiotelephony read- backs in civil aviation air traffic control. Chinese Journal of Aeronautics, 31(12), 2280-2289.
  • Habler, E., & Shabtai, A. (2018). Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages. Computers & Security, 78, 155-173.
  • Haghani, M., Bliemer, M. C., & Hensher, D. A. (2021). The landscape of econometric discrete choice modelling research. Journal of choice modelling, 40, 100303.
  • Haron, N. H., Mahmood, R., Amin, N. M., Ahmad, A., & Jantan, S. R. (2025). An Artificial Intelligence Approach to Monitor and Predict Student Academic Performance. Journal of Advanced Research in Applied Sciences and Engineering Technology, 44(1), 105-119.
  • Hashemi, S. M., Botez, R. M., & Grigorie, T. L. (2020). New reliability studies of data-driven aircraft trajectory prediction. Aerospace, 7(10), 145.
  • Hassan, W., & Duarte, A. E. (2024). Bibliometric Analysis: A Few Suggestions. Current Problems in Cardiology, 102640.
  • Hatıpoğlu, I., Tosun, Ö., & Tosun, N. (2022). Flight delay prediction based with machine learning. LogForum, 18(1).
  • Herman, G. R., & Schumacher, R. S. (2016). Using reforecasts to improve forecasting of fog and visibility for aviation. Weather and Forecasting, 31(2), 467-482.
  • Hsiao, Y.-L., Drury, C., Wu, C., & Paquet, V. (2013). Predictive models of safety based on audit findings: Part 2: Measurement of model validity. Applied Ergonomics, 44(4), 659-666.
  • Huang, J., Jinjun, R., & Xuefeng, L. (2003). Study on process parameters optimization of sheet metal forming based on PFEA/ANN/GA. Journal of Materials Sciences and Technology, 19(Supl.), 9.
  • Ip, W., Cho, V., Chung, N., & Ho, G. (2010). A multi agent based model for airport service planning. International Journal of Engineering Business Management, 2, 7.
  • Jan, S.-S., & Chen, Y.-T. (2019). Development of a new airport unusual-weather detection system with aircraft surveillance information. IEEE Sensors Journal, 19(20), 9543-9551.
  • Jiao, Z., Bai, N., Sun, D., Liu, X., Li, J., Shi, Y., Hou, Y., & Chen, C. (2023). Aircraft Anti-skid Braking Control Based on Reinforcement Learning. IEEE Transactions on Aerospace and Electronic Systems.
  • Jin, F., Li, Y., Sun, S., & Li, H. (2020). Forecasting air passenger demand with a new hybrid ensemble approach. Journal of Air Transport Management, 83, 101744.
  • Jin, Y., Ying, Y., Li, J., & Zhou, H. (2021). Gas path fault diagnosis of gas turbine engine based on knowledge data- driven artificial intelligence algorithm. IEEE Access, 9, 108932-108941.
  • Juntama, P., Delahaye, D., Chaimatanan, S., & Alam, S. (2022). Hyperheuristic approach based on reinforcement learning for air traffic complexity mitigation. Journal of aerospace information systems, 19(9), 633-648.
  • Kabashkin, I., Misnevs, B., & Zervina, O. (2023). Artificial intelligence in aviation: New professionals for new technologies. Applied Sciences, 13(21), 11660.
  • Kaewunruen, S., Sresakoolchai, J., & Xiang, Y. (2021). Identification of weather influences on flight punctuality using machine learning approach. Climate, 9(8), 127.
  • Kamiya, T., Koizumi, H., Kawano, M., Sawada, S., Shimazu, H. (2010). Automatic airport obstacle detection system. NEC Technical Journal, 5(3), 83-86.
  • Kang, Y., Caveney, D. S., & Hedrick, J. K. (2008). Real-time obstacle map building with target tracking. Journal of Aerospace Computing, Information, and Communication, 5(5), 120-134.
  • Karakavuz, H. (2023). Bibliometric Analysis of Studies on Emissions from Air Transportation Sector: The Case of Journal of Air Transport Management. Journal of International Academic Accumulation, 6(Special Issue), 362- 393.
  • Kaya, O., Rezaei-Tarahomi, A., Ceylan, H., Gopalakrishnan, K., Kim, S., & Brill, D. R. (2018). Neural network-based multiple-slab response models for top-down cracking mode in airfield pavement design. Journal of Transportation Engineering, Part B: Pavements, 144(2), 04018009.
  • Kayhan, S., Ergün, N., & Gerede, E. (2018). Research determining issues on the administrative success of security services at civil airports in Turkey. Security Journal, 31, 470-500.
  • Khazab, M., Lo, S., Kilingaru, K., Tweedale, J. W., Jain, L. C., Thatcher, S., & Ding, L. (2013). Evaluating pilot situation awareness using multi-agent systems. Intelligent Decision Technologies, 7(4), 237-251.
  • Kilingaru, K., Tweedale, J. W., Thatcher, S., & Jain, L. C. (2013). Monitoring pilot “situation awareness”. Journal of intelligent & fuzzy systems, 24(3), 457-466.
  • Kim, J., & Lee, K. (2021). Unscented Kalman filter-aided long short-term memory approach for wind nowcasting. Aerospace, 8(9), 236.
  • Kim, W., Jun, S., Kang, S., & Lee, C. (2020). O-Net: Dangerous Goods Detection in Aviation Security Based on U- Net. IEEE Access, 8, 206289-206302.
  • Kistan, T., Gardi, A., & Sabatini, R. (2018). Machine learning and cognitive ergonomics in air traffic management: Recent developments and considerations for certification. Aerospace, 5(4), 103.
  • Ko, Y. D., Jang, Y. J., & Kim, D. Y. (2017). Strategic airline operation considering the carbon constrained air transport industry. Journal of Air Transport Management, 62, 1-9.
  • Koçak, B. B. (2023). Deep Learning Models for Airport Demand Forecasting with Google Trends: A Case Study of Madrid International Airports. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 13(1), 1-13.
  • Kong, C. (2014). Review on advanced health monitoring methods for aero gas turbines using model based methods and artificial intelligent methods. International Journal of Aeronautical and Space Sciences, 15(2), 123-137.
  • Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062-17076.
  • Koroniotis, N., Moustafa, N., Schiliro, F., Gauravaram, P., & Janicke, H. (2020). A holistic review of cybersecurity and reliability perspectives in smart airports. IEEE Access, 8, 209802-209834.
  • Koshekov, К., Savostin, А., Seidakhmetov, B., Anayatova, R., & Fedorov, I. (2021). Aviation profiling method based on deep learning technology for emotion recognition by speech signal. Transport and Telecommunication Journal, 22(4), 471-481.
  • Kumar, S., & Padture, N. P. (2018). Materials in the aircraft industry. Metallurgical Design and Industry: Prehistory to the Space Age, 271-346.
  • Kushairi, N., & Ahmi, A. (2021). Flipped classroom in the second decade of the Millenia: A Bibliometrics analysis with Lotka’s law. Education and Information Technologies, 26(4), 4401-4431.
  • Laal, M., Naseri, A. S., Laal, M., & Khattami-Kermanshahi, Z. (2013). What do we achieve from learning in collaboration? Procedia-Social and Behavioral Sciences, 93, 1427-1432.
  • Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., & Wolff, S. S. (1997). The past and future history of the Internet. Communications of the ACM, 40(2), 102-108.
  • Li, D., Zhang, R., Dong, Y., Zhu, F., & Pavlovic, D. (2017). A multisecret value access control framework for airliner in multinational air traffic management. IEEE Internet of Things Journal, 4(6), 1853-1867.
  • Li, J., Wang, T., Savai, M., & Hwang, I. (2010). Graph-based algorithm for dynamic airspace configuration. Journal of guidance, control, and dynamics, 33(4), 1082-1094.
  • Li, Q., Ng, K. K., Yiu, C. Y., Yuan, X., So, C. K., & Ho, C. C. (2023). Securing air transportation safety through identifying pilot's risky VFR flying behaviours: An EEG-based neurophysiological modelling using machine learning algorithms. Reliability Engineering & System Safety, 238, 109449.
  • Li, S., Yu, J., & Wang, H. (2023). Damages detection of aeroengine blades via deep learning algorithms. IEEE Transactions on Instrumentation and Measurement, 72, 1-11.
  • Lin, Y., Zhang, J.-w., & Liu, H. (2019). Deep learning based short-term air traffic flow prediction considering temporal–spatial correlation. Aerospace Science and Technology, 93, 105113.
  • Liu, A., Lu, Y., Gong, C., Sun, J., Wang, B., & Jiang, Z. (2023). Bibliometric analysis of research themes and trends of the co-occurrence of autism and ADHD. Neuropsychiatric Disease and Treatment, 985-1002.
  • Liu, H., Lin, Y., Chen, Z., Guo, D., Zhang, J., & Jing, H. (2019). Research on the air traffic flow prediction using a deep learning approach. IEEE Access, 7, 148019-148030.
  • Lu, X.-l., Hu, L., WANG, G.-l., & Zhe, W. (2006). Helicopter sizing based on genetic algorithm optimized neural network. Chinese Journal of Aeronautics, 19(3), 212-218.
  • Lui, G. N., Hon, K. K., & Liem, R. P. (2022). Weather impact quantification on airport arrival on-time performance through a Bayesian statistics modeling approach. Transportation Research Part C: Emerging Technologies, 143, 103811.
  • Lynch, F. T., & Khodadoust, A. (2001). Effects of ice accretions on aircraft aerodynamics. Progress in Aerospace Sciences, 37(8), 669-767.
  • Madeira, T., Melício, R., Valério, D., & Santos, L. (2021). Machine learning and natural language processing for prediction of human factors in aviation incident reports. Aerospace, 8(2), 47.
  • Mamdouh, M., Ezzat, M., & A. Hefny, H. (2023). A novel intelligent approach for flight delay prediction. Journal of Big Data, 10(1), 179.
  • Mangortey, E., Pinon Fischer, O., & Mavris, D. N. (2022). Application of Machine Learning to the Analysis and Assessment of Airport Operations. Journal of aerospace information systems, 19(4), 246-258.
  • Marina, S., Kartini, D., Sari, D., & Padmasasmita, S. (2016). Customer loyalty as the implications of price fairness determined by relationship marketing and service quality of airline services. South East Asia Journal of Contemporary Business, Economics and Law, 11(2), 43-51.
  • Matuszczak, M., Żbikowski, M., & Teodorczyk, A. (2021). Predictive modelling of turbofan engine components condition using machine and deep learning methods. Eksploatacja i Niezawodność, 23(2), 359-370.
  • Meister, S., Wermes, M., Stüve, J., & Groves, R. M. (2021). Investigations on Explainable Artificial Intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Composites Part B: Engineering, 224, 109160.
  • Memarzadeh, M., Akbari Asanjan, A., & Matthews, B. (2022). Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation. Aerospace, 9(8), 437.
  • Menegardo-Souza, F., França, G. B., Menezes, W. F., & de Almeida, V. A. (2022). In-Flight Turbulence Forecast Model Based on Machine Learning for the Santiago (Chile)–Mendoza (Argentina) Air Route. Pure and Applied Geophysics, 179(6), 2591-2608.
  • Mnaoui, Y., Najoua, A., & Ouajji, H. (2022). Artificial intelligence in a communication system for air traffic controllers' emergency training. IAES International Journal of Artificial Intelligence, 11(3), 986.
  • Moed, H. F. (2005). Do US Scientists Overcite Papers from their Own Country? Citation Analysis in Research Evaluation, 291-300.
  • Mohaghegh, Z., Kazemi, R., & Mosleh, A. (2009). Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization. Reliability Engineering & System Safety, 94(5), 1000-1018.
  • Moon, S. K., Park, K. J., & Simpson, T. W. (2014). Platform design variable identification for a product family using multi-objective particle swarm optimization. Research in Engineering Design, 25, 95-108.
  • Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Información, 29(1).
  • Morris, R., Johnson, M., Venable, K. B., & Lindsey, J. (2016). Designing noise-minimal rotorcraft approach trajectories. ACM Transactions on Intelligent Systems and Technology (TIST), 7(4), 1-25.
  • Muñoz-Esparza, D., Sharman, R. D., & Deierling, W. (2020). Aviation turbulence forecasting at upper levels with machine learning techniques based on regression trees. Journal of Applied Meteorology and Climatology, 59(11), 1883-1899.
  • Nivedhitha, G., Kalpana, P., Rajagopal, R., & Singh, A. B. (2024). Novel Deep Learning Neural Networks for Breast Cancer Malignancy Estimation. Journal of Advanced Research in Applied Sciences and Engineering Technology, 47(1), 140-151.
  • Nogueira, R. P., Melicio, R., Valério, D., & Santos, L. F. (2023). Learning methods and predictive modeling to identify failure by human factors in the aviation industry. Applied Sciences, 13(6), 4069.
  • O'Neill, B., Stapleton, L., Carew, P., Shanahan, B. W., Pearson, S., Byrne, D., & Doyle-Kent, M. (2023). Artificial Intelligence and the World Wide Web: Brain and friend? IFAC-PapersOnLine, 56(2), 8982-8987.
  • Okpoti, E. S., Jeong, I.-J., & Moon, S. K. (2019). Decentralized determination of design variables among cooperative designers for product platform design in a product family. Computers & Industrial Engineering, 135, 601-614.
  • Ouf, S. (2023). An optimized deep learning approach for improving airline services. Comput. Mater. Contin, 75(1), 1213-1233.
  • Oza, N., Castle, J. P., & Stutz, J. (2009). Classification of aeronautics system health and safety documents. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(6), 670-680.
  • Öztürk, S., & Kuzucuoğlu, A. E. (2016). A multi-robot coordination approach for autonomous runway Foreign Object Debris (FOD) clearance. Robotics and Autonomous Systems, 75, 244-259.
  • Pandey, D. K., Hassan, M. K., Kumari, V., Zaied, Y. B., & Rai, V. K. (2023). Mapping the landscape of FinTech in banking and finance: a bibliometric review. Research in International Business and Finance, 102116.
  • Pang, Y., Zhao, X., Yan, H., & Liu, Y. (2021). Data-driven trajectory prediction with weather uncertainties: A Bayesian deep learning approach. Transportation Research Part C: Emerging Technologies, 130, 103326.
  • Park, S., Lee, J.-S., & Nicolau, J. L. (2020). Understanding the dynamics of the quality of airline service attributes: Satisfiers and dissatisfiers. Tourism Management, 81, 104163.
  • Parveez, B., Kittur, M., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. (2022). Scientific advancements in composite materials for aircraft applications: a review. Polymers, 14(22), 5007.
  • Pessin, V. Z., Yamane, L. H., & Siman, R. R. (2022). Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics, 127(6), 3695-3718.
  • Pham, D.-T., Alam, S., & Duong, V. (2020). An Air Traffic Controller Action Extraction‐Prediction Model Using Machine Learning Approach. Complexity, 2020(1), 1659103.
  • Pollock, T. M. (2016). Alloy design for aircraft engines. Nature materials, 15(8), 809-815.
  • Puranik, T. G., Rodriguez, N., & Mavris, D. N. (2020). Towards online prediction of safety-critical landing metrics in aviation using supervised machine learning. Transportation Research Part C: Emerging Technologies, 120, 102819.
  • Putrik, Y., Nelzina, O., Borisov, A., Tsapuk, D., & Tretyak, E. (2022). Air Transport Impact on the Development of the Tourism Industry. Nexo Revista Científica, 35(04), 1014-1020.
  • Qiu, P., Zhao, N., & Wang, F. (2016). Optimum microgeometry modifications of herringbone gear by means of fitness predicted genetic algorithm. Journal of Vibroengineering, 18(8), 4964-4979.
  • Qu, J., Zhao, T., Ye, M., Li, J., & Liu, C. (2020). Flight delay prediction using deep convolutional neural network based on fusion of meteorological data. Neural Processing Letters, 52(2), 1461-1484.
  • Quick, J. C. (1992). Crafting an organizational culture: Herb's hand at Soutwest Airlines. Organizational Dynamics, 21(2), 45-56.
  • Ragnarsdottir, M. D., Hvannberg, E. T., & Waage, H. (2006). Using language technology to increase efficiency and safety in ATC communication. Journal of Aerospace Computing, Information, and Communication, 3(12), 587- 602.
  • Raihan, A., Voumik, L. C., Akter, S., Ridzuan, A. R., Fahlevi, M., Aljuaid, M., & Saniuk, S. (2024). Taking flight: Exploring the relationship between air transport and Malaysian economic growth. Journal of Air Transport Management, 115, 102540.
  • Rajendran, S., Srinivas, S., & Grimshaw, T. (2021). Predicting demand for air taxi urban aviation services using machine learning algorithms. Journal of Air Transport Management, 92, 102043.
  • Ramos, M. A., Sankaran, K., Guarro, S., Mosleh, A., Ramezani, R., & Arjounilla, A. (2023). The need for and conceptual design of an AI model-based Integrated Flight Advisory System. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 237(2), 485-507.
  • Rehman, A. (2021). Machine learning based air traffic control strategy. International Journal of Machine Learning and Cybernetics, 12, 2151-2161.
  • Scopus. (2024). Searching for the keyword "artificial intelligence" in Scopus. Retrieved 18.07.2024 from https://www.scopus.com/results/results.uri?sort=plf- f&src=s&st1=Artificial+Intelligence&sid=42f5d240dd5042f4ebca524e42d0ac6e&sot=b&sdt=b&sl=38&s=TITLE- ABS KEY%28%22artificial+intelligence%22%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&year To=Present&sessionSearchId=42f5d240dd5042f4ebca524e42d0ac6e&limit=10
  • Secco, N. R., & Mattos, B. S. d. (2017). Artificial neural networks to predict aerodynamic coefficients of transport airplanes. Aircraft Engineering and Aerospace Technology, 89(2), 211-230.
  • Sellen, A., & Horvitz, E. (2024). The rise of the AI Co-Pilot: Lessons for design from aviation and beyond. Communications of the ACM, 67(7), 18-23.
  • Shankar, A., & Sahana, B. C. (2023). Early warning of low visibility using the ensembling of machine learning approaches for aviation services at Jay Prakash Narayan International (JPNI) Airport Patna. SN Applied Sciences, 5(5), 132.
  • Shen, Z., & Wei, Y. (2021). A high-precision feature extraction network of fatigue speech from air traffic controller radiotelephony based on improved deep learning. ICT Express, 7(4), 403-413.
  • Shijin, W., Qingyun, L., Xi, C., & Haiyun, L. (2016). Optimization of Air Route Network Nodes to Avoid ″Three Areas ″Based on An Adaptive Ant Colony Algorithm. Transactions of Nanjing University of Aeronautics and Astronautics, 4.
  • Shubik, M. (1960). Bibliography on simulation, gaming, artificial intelligence and allied topics. Journal of the American Statistical Association, 55(292), 736-751.
  • Sim, S., Im, J., Park, S., Park, H., Ahn, M. H., & Chan, P.-w. (2018). Icing detection over East Asia from geostationary satellite data using machine learning approaches. Remote Sensing, 10(4), 631.
  • Singh, M., Singh, S., & Partridge, D. (2004). A knowledge-based framework for image enhancement in aviation security. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(6), 2354-2365.
  • Singh, V. (2018). Fuel consumption minimization of transport aircraft using real-coded genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(10), 1925- 1943.
  • Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126, 5113-5142.
  • Siyaev, A., & Jo, G.-S. (2021). Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality. Sensors, 21(6), 2066.
  • Small, H. (1999). Visualizing science by citation mapping. Journal of the American society for Information Science, 50(9), 799-813.
  • Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54-70.
  • Srisaeng, P., Baxter, G. S., & Wild, G. (2015). An adaptive neuro-fuzzy inference system for forecasting Australia's domestic low cost carrier passenger demand. Aviation, 19(3), 150-163.
  • Stroeve, S., Smeltink, J., & Kirwan, B. (2022). Assessing and advancing safety management in aviation. Safety, 8(2), 20.
  • Su, B., An, S., Zhao, X., Chen, J., Li, X., & He, Y. (2023). An aeronautic X-ray image security inspection network for rotation and occlusion. International Journal of Computational Science and Engineering, 26(3), 337-348.
  • Taheri Gorji, H., Wilson, N., VanBree, J., Hoffmann, B., Petros, T., & Tavakolian, K. (2023). Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight. Scientific Reports, 13(1), 2507.
  • Tamasi, G., & Demichela, M. (2011). Risk assessment techniques for civil aviation security. Reliability Engineering & System Safety, 96(8), 892-899.
  • Thatcher, S. J. (2014). The use of artificial intelligence in the learning of flight crew situation awareness in an undergraduate aviation programme. World Transactions on Engineering and Technology Education, 12(4), 764-768.
  • Thelwall, M., & Maflahi, N. (2015). Are scholarly articles disproportionately read in their own country? An analysis of Mendeley readers. Journal of the Association for Information Science and Technology, 66(6), 1124-1135.
  • Tong, C., Yin, X., Li, J., Zhu, T., Lv, R., Sun, L., & Rodrigues, J. J. (2018a). An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data. Applied Soft Computing, 73, 344-349.
  • Tong, C., Yin, X., Wang, S., & Zheng, Z. (2018b). A novel deep learning method for aircraft landing speed prediction based on cloud-based sensor data. Future Generation Computer Systems, 88, 552-558.
  • Tran, P. N., Pham, D.-T., Goh, S. K., Alam, S., & Duong, V. (2020). An interactive conflict solver for learning air traffic conflict resolutions. Journal of aerospace information systems, 17(6), 271-277.
  • Wan, H., Guo, S., Yin, K., Liang, X., & Lin, Y. (2020). CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowledge-Based Systems, 191, 105239.
  • Wang, B., Zhang, X., Sun, C., & Chen, X. (2019). A quantitative intelligent diagnosis method for early weak faults of aviation high-speed bearings. ISA transactions, 93, 370-383.
  • Wang, H., & Gao, J. (2013). Bayesian network assessment method for civil aviation safety based on flight delays. Mathematical Problems in Engineering, 2013(1), 594187.
  • Wang, X., & Feng, X. (2024). Research on the relationships between discourse leading indicators and citations: perspectives from altmetrics indicators of international multidisciplinary academic journals. Library Hi Tech, 42(4), 1165-1190.
  • Wang, X., Xu, Z., & Škare, M. (2020). A bibliometric analysis of Economic Research-Ekonomska Istra zivanja (2007–2019). Economic research-Ekonomska istraživanja, 33(1), 865-886.
  • Wang, Y., Zhang, Z., & Huo, W. (2016). Research on aviation unsafe incidents classification with improved TF-IDF algorithm. Modern Physics Letters B, 30(12), 1650184.
  • Weckman, G. R., Marvel, J. H., & Shell, R. L. (2006). Decision support approach to fleet maintenance requirements in the aviation industry. Journal of Aircraft, 43(5), 1352-1360.
  • Weiszer, M., Chen, J., & Locatelli, G. (2015). An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector. Applied Energy, 157, 567-582.
  • Wu, J., Zhang, P.-w., Wang, Y., & Shi, J. J. (2022). Integrated aviation model and metaheuristic algorithm for hub- and-spoke network design and airline fleet planning. Transportation Research Part E: Logistics and Transportation Review, 164, 102755.
  • Xiao, M., Cai, K., & Abbass, H. A. (2018). Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China. Transportation Research Part E: Logistics and Transportation Review, 115, 35-55.
  • Xiaomei, N., Huawei, W., & Changchang, C. (2019). Risk index prediction of civil aviation based on deep neural network. Transactions of Nanjing University of Aeronautics & Astronautics, 36(2), 313-319.
  • Xu, D., Hui, Z., Liu, Y., & Chen, G. (2019). Morphing control of a new bionic morphing UAV with deep reinforcement learning. Aerospace Science and Technology, 92, 232-243.
  • Xu, Q., Pang, Y., & Liu, Y. (2023). Air traffic density prediction using Bayesian ensemble graph attention network (BEGAN). Transportation Research Part C: Emerging Technologies, 153, 104225.
  • Yang, D., Zhao, W., Du, J., & Yang, Y. (2024). Approaching Artificial Intelligence in business and economics research: a bibliometric panorama (1966–2020). Technology Analysis & Strategic Management, 36(3), 563- 578.
  • Yao, B., Wen, X., & Li, P. (2022). Next Flight Prediction for PKX's Frequent Flyers. International Journal on Artificial Intelligence Tools, 31(08), 2250048.
  • Yayla-Kullu, H. M., Tansitpong, P., Gnanlet, A., McDermott, C. M., & Durgee, J. F. (2015). Impact of national culture on airline operations. Operations Management Research, 8, 101-117.
  • Yu, B., Wu, S., Jiao, Z., & Shang, Y. (2018). Multi-objective optimization design of an electrohydrostatic actuator based on a particle swarm optimization algorithm and an analytic hierarchy process. Energies, 11(9), 2426.
  • Zhang, M., Zhou, X., Zhang, Y., Sun, L., Dun, M., Du, W., & Cao, X. (2019). Propagation index on airport delays. Transportation Research Record, 2673(8), 536-543.
  • Zhang, X., & Mahadevan, S. (2020). Bayesian neural networks for flight trajectory prediction and safety assessment. Decision Support Systems, 131, 113246.
  • Zhang, X., & Mahadevan, S. (2021). Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliability Engineering & System Safety, 209, 107371.
  • Zhang, X., Srinivasan, P., & Mahadevan, S. (2021). Sequential deep learning from NTSB reports for aviation safety prognosis. Safety science, 142, 105390.
  • Zhang, X., Zhong, S., & Mahadevan, S. (2022). Airport surface movement prediction and safety assessment with spatial–temporal graph convolutional neural network. Transportation Research Part C: Emerging Technologies, 144, 103873.
  • Zhao, X., Wang, G., Cai, M., & Zhou, H. (2017). Stereo-vision based obstacle avoidance by finding safe region. International Journal of Control, Automation and Systems, 15(3), 1374-1383.
  • Zheng, Y.-J., Sheng, W.-G., Sun, X.-M., & Chen, S.-Y. (2016). Airline passenger profiling based on fuzzy deep machine learning. IEEE transactions on neural networks and learning systems, 28(12), 2911-2923.
  • Zhu, X., & Li, L. (2021). Flight time prediction for fuel loading decisions with a deep learning approach. Transportation Research Part C: Emerging Technologies, 128, 103179.
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational research methods, 18(3), 429-472. Surname, N.N. (Year). The full title of the article. Journal Name, volume and issue 5(3), first and last page 123-185.
Year 2025, Volume: 9 Issue: 1, 118 - 136, 26.02.2025
https://doi.org/10.30518/jav.1583144

Abstract

References

  • Abedin, M., Ng, V., & Khan, L. (2010). Cause identification from aviation safety incident reports via weakly supervised semantic lexicon construction. Journal of Artificial Intelligence Research, 38, 569-631.
  • Adi, K., Widodo, C., Widodo, A. P., & Margiati, U. (2022). Detection of foreign object debris (Fod) using convolutional neural network (CNN). J. Theor. Appl. Inf. Technol, 100(1), 184-191.
  • Albelo, J. L., & McIntire, S. (2023). How to Embrace Artificial Intelligence in Aviation Education? The Collegiate Aviation Review International, 41(2).
  • Alla, H., Moumoun, L., & Balouki, Y. (2021). A Multilayer Perceptron Neural Network with Selective‐Data Training for Flight Arrival Delay Prediction. Scientific Programming, 2021(1), 5558918.
  • Alves, D., Mendonça, F., Mostafa, S. S., & Morgado-Dias, F. (2023). Automated aviation wind nowcasting: exploring feature-based machine learning methods. Applied Sciences, 13(18), 10221.
  • Aras, M. T., & Guvensan, M. A. (2023). A Multi-Modal Profiling Fraud-Detection System for Capturing Suspicious Airline Ticket Activities. Applied Sciences, 13(24), 13121.
  • Arcúrio, M. S., Nakamura, E. S., & Armborst, T. (2018). Human factors and errors in security aviation: An ergonomic perspective. Journal of Advanced Transportation, 2018(1), 5173253.
  • Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of informetrics, 11(4), 959-975.
  • ATAG. (2020). Aviation: Benefits Beyond Borders. Retrieved 22.07.2024 from https://aviationbenefits.org/downloads/aviation-benefits-beyond-borders-2020/
  • Bağan, H., & Gerede, E. (2019). Use of a nominal group technique in the exploration of safety hazards arising from the outsourcing of aircraft maintenance. Safety science, 118, 795-804.
  • Bajaj, V., Kumar, P., & Singh, V. K. (2022). Linkage dynamics of sovereign credit risk and financial markets: A bibliometric analysis. Research in International Business and Finance, 59, 101566.
  • Bakır, M., Akan, Ş., Özdemir, E., Nguyen, P.-H., Tsai, J.-F., & Pham, H.-A. (2022). How to achieve passenger satisfaction in the airport? Findings from regression analysis and necessary condition analysis approaches through online airport reviews. Sustainability, 14(4), 2151.
  • Baklacioglu, T., Turan, O., & Aydin, H. (2018). Metaheuristic approach for an artificial neural network: exergetic sustainability and environmental effect of a business aircraft. Transportation Research Part D: Transport and Environment, 63, 445-465.
  • Bareither, C., & Luxhøj, J. T. (2007). Uncertainty and sensitivity analysis in bayesian belief networks: Applications to aviation safety risk assessment. International Journal of Industrial and Systems Engineering, 2(2), 137-158.
  • Bartok, J., Šišan, P., Ivica, L., Bartoková, I., Malkin Ondík, I., & Gaál, L. (2022). Machine learning-based fog nowcasting for aviation with the aid of camera observations. Atmosphere, 13(10), 1684.
  • Baumann, S., & Klingauf, U. (2020). Modeling of aircraft fuel consumption using machine learning algorithms. CEAS Aeronautical Journal, 11(1), 277-287.
  • Berente, N., Gu, B., Recker, J., & Santhanam, R. (2021). Managing artificial intelligence. MIS quarterly, 45(3).
  • Bewlay, B., Nag, S., Suzuki, A., & Weimer, M. (2016). TiAl alloys in commercial aircraft engines. Materials at High Temperatures, 33(4-5), 549-559.
  • Bieger, T., & Wittmer, A. (2006). Air transport and tourism—Perspectives and challenges for destinations, airlines and governments. Journal of Air Transport Management, 12(1), 40-46.
  • Bızel, G. (2023). A bibliometric analysis: Metaverse in education concept. Journal of Metaverse, 3(2), 133-143.
  • Boneh, T., Weymouth, G. T., Newham, P., Potts, R., Bally, J., Nicholson, A. E., & Korb, K. B. (2015). Fog forecasting for Melbourne Airport using a Bayesian decision network. Weather and Forecasting, 30(5), 1218-1233.
  • Brandoli, B., de Geus, A. R., Souza, J. R., Spadon, G., Soares, A., Rodrigues Jr, J. F., Komorowski, J., & Matwin, S. (2021). Aircraft fuselage corrosion detection using artificial intelligence. Sensors, 21(12), 4026.
  • Brown, C., Hicks, J., Rinaudo, C. H., & Burch, R. (2023). The use of augmented reality and virtual reality in ergonomic applications for education, aviation, and maintenance. Ergonomics in Design, 31(4), 23-31.
  • Cai, K.-Q., Zhang, J., Xiao, M.-M., Tang, K., & Du, W.-B. (2017). Simultaneous optimization of airspace congestion and flight delay in air traffic network flow management. IEEE Transactions on Intelligent Transportation Systems, 18(11), 3072-3082.
  • Cao, Y., Wu, Z., & Xu, Z. (2014). Effects of rainfall on aircraft aerodynamics. Progress in Aerospace Sciences, 71, 85-127.
  • Casado, R., & Bermúdez, A. (2020). Neural network-based aircraft conflict prediction in final approach maneuvers. Electronics, 9(10), 1708.
  • Ceylan, H., Gopalakrishnan, K., & Bayrak, M. B. (2008). Neural networks based concrete airfield pavement layer moduli backcalculation. Civil Engineering and Environmental Systems, 25(3), 185-199.
  • Chanpariyavatevong, K., Wipulanusat, W., Champahom, T., Jomnonkwao, S., Chonsalasin, D., & Ratanavaraha, V. (2021). Predicting airline customer loyalty by integrating structural equation modeling and Bayesian networks. Sustainability, 13(13), 7046.
  • Chen, J., Chen, L., & Sun, D. (2017). Air traffic flow management under uncertainty using chance-constrained optimization. Transportation Research Part B: Methodological, 102, 124-141.
  • Chen, J., Zhang, X., & Gao, Y. (2016). Fault detection for turbine engine disk based on an adaptive kernel principal component analysis algorithm. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 230(7), 651-660.
  • Chin, W.-S., Ting, C.-Y., & Cham, C.-L. (2023). No-Show Passenger Prediction for Flights. JOIV: International Journal on Informatics Visualization, 7(3-2), 2056-2064.
  • Chouraqui, E., & Doniat, C. (2003). The s-ethos system: a methodology for systematic flight analysis centered on human factors. Applied Artificial Intelligence, 17(7), 583-629.
  • Chow, Y., Ng, K. K., & Keung, K. (2022). An evolutionary algorithm in static airport gate assignment problem. The open transportation journal, 16.
  • Cruciol, L. L., Weigang, L., de Barros, A. G., & Koendjbiharie, M. W. (2015). Air holding problem solving with reinforcement learning to reduce airspace congestion. Journal of Advanced Transportation, 49(5), 616-633.
  • Daggett, D., Hendricks, R., & Walther, R. (2006). Alternative fuels and their potential impact on aviation. 25th Congress of the International Council of the Aeronautical Sciences (ICAS 2006),
  • Dangut, M. D., Skaf, Z., & Jennions, I. K. (2021). An integrated machine learning model for aircraft components rare failure prognostics with log-based dataset. ISA transactions, 113, 127-139.
  • de Riberolles, T., Zou, Y., Silvestre, G., Lochin, E., & Song, J. (2022). Anomaly detection for ICS based on deep learning: a use case for aeronautical radar data. Annals of Telecommunications, 77(11), 749-761.
  • Degife, W. A., & Lin, B.-S. (2023). Deep-Learning-Powered GRU Model for Flight Ticket Fare Forecasting. Applied Sciences, 13(10), 6032.
  • Deng, W., Zhang, L., Zhou, X., Zhou, Y., Sun, Y., Zhu, W., Chen, H., Deng, W., Chen, H., & Zhao, H. (2022). Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem. Information Sciences, 612, 576-593.
  • Djavadifar, A., Graham-Knight, J. B., Kӧrber, M., Lasserre, P., & Najjaran, H. (2022). Automated visual detection of geometrical defects in composite manufacturing processes using deep convolutional neural networks. Journal of Intelligent Manufacturing, 33(8), 2257-2275.
  • Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of business research, 133, 285-296.
  • Du‐Harpur, X., Watt, F., Luscombe, N., & Lynch, M. (2020). What is AI? Applications of artificial intelligence to dermatology. British Journal of Dermatology, 183(3), 423-430.
  • Du, W., Chen, S., Li, H., Li, Z., Cao, X., & Lv, Y. (2022). Airport capacity prediction with multisource features: A temporal deep learning approach. IEEE Transactions on Intelligent Transportation Systems, 24(1), 615-630.
  • Ernst, A., & Weigold, M. (2021). Machine Data-Based Prediction of Blisk Blade Geometry Characteristics. MM Science Journal (Special Issue), 5056-5052.
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, web of science, and Google scholar: strengths and weaknesses. The FASEB journal, 22(2), 338-342.
  • Fallast, A., & Messnarz, B. (2017). Automated trajectory generation and airport selection for an emergency landing procedure of a CS23 aircraft. CEAS Aeronautical Journal, 8, 481-492.
  • Felkel, R., Barth, T., Schnei, T., & Vieten, B. D. (2021). From laboratory to real life: Fraport’s approach to applying artificial intelligence in airside operations and ground handling. Journal of Airport Management, 15(3), 266-279.
  • Forsyth, P. (2016). Tourism and aviation policy: exploring the links. In Aviation and tourism (pp. 73-82). Routledge.
  • Gandhi, T., Yang, M.-T., Kasturi, R., Camps, O. I., Coraor, L. D., & McCandless, J. (2006). Performance characterization of the dynamic programming obstacle detection algorithm. IEEE Transactions on Image Processing, 15(5), 1202-1214.
  • García, J., Berlanga, A., Molina, J. M., & Casar, J. R. (2005). Optimization of airport ground operations integrating genetic and dynamic flow management algorithms. AI Communications, 18(2), 143-164.
  • Ghienne, M., & Limare, A. (2023). Learning structural stress virtual sensors from on-board instrumentation of a commercial aircraft. Computers & Structures, 289, 107155.
  • Ghoneim, A., & Abbass, H. A. (2016). A multiobjective distance separation methodology to determine sector- level minimum separation for safe air traffic scenarios. European journal of operational research, 253(1), 226- 240.
  • Glänzel, W., Schubert, A., & Czerwon, H. (1999). A bibliometric analysis of international scientific cooperation of the European Union (1985–1995). Scientometrics, 45(2), 185-202.
  • Gomolka, Z., Zeslawska, E., Twarog, B., Kordos, D., & Rzucidlo, P. (2022). Use of a DNN in recording and analysis of operator attention in advanced HMI systems. Applied Sciences, 12(22), 11431.
  • Gu, Y., Yang, J., Wang, C., & Xie, G. (2020). Early warning model for passenger disturbance due to flight delays. Plos one, 15(9), e0239141.
  • Guimin, J., Cheng, F., Jinfeng, Y., & Dan, L. (2018). Intelligent checking model of Chinese radiotelephony read- backs in civil aviation air traffic control. Chinese Journal of Aeronautics, 31(12), 2280-2289.
  • Habler, E., & Shabtai, A. (2018). Using LSTM encoder-decoder algorithm for detecting anomalous ADS-B messages. Computers & Security, 78, 155-173.
  • Haghani, M., Bliemer, M. C., & Hensher, D. A. (2021). The landscape of econometric discrete choice modelling research. Journal of choice modelling, 40, 100303.
  • Haron, N. H., Mahmood, R., Amin, N. M., Ahmad, A., & Jantan, S. R. (2025). An Artificial Intelligence Approach to Monitor and Predict Student Academic Performance. Journal of Advanced Research in Applied Sciences and Engineering Technology, 44(1), 105-119.
  • Hashemi, S. M., Botez, R. M., & Grigorie, T. L. (2020). New reliability studies of data-driven aircraft trajectory prediction. Aerospace, 7(10), 145.
  • Hassan, W., & Duarte, A. E. (2024). Bibliometric Analysis: A Few Suggestions. Current Problems in Cardiology, 102640.
  • Hatıpoğlu, I., Tosun, Ö., & Tosun, N. (2022). Flight delay prediction based with machine learning. LogForum, 18(1).
  • Herman, G. R., & Schumacher, R. S. (2016). Using reforecasts to improve forecasting of fog and visibility for aviation. Weather and Forecasting, 31(2), 467-482.
  • Hsiao, Y.-L., Drury, C., Wu, C., & Paquet, V. (2013). Predictive models of safety based on audit findings: Part 2: Measurement of model validity. Applied Ergonomics, 44(4), 659-666.
  • Huang, J., Jinjun, R., & Xuefeng, L. (2003). Study on process parameters optimization of sheet metal forming based on PFEA/ANN/GA. Journal of Materials Sciences and Technology, 19(Supl.), 9.
  • Ip, W., Cho, V., Chung, N., & Ho, G. (2010). A multi agent based model for airport service planning. International Journal of Engineering Business Management, 2, 7.
  • Jan, S.-S., & Chen, Y.-T. (2019). Development of a new airport unusual-weather detection system with aircraft surveillance information. IEEE Sensors Journal, 19(20), 9543-9551.
  • Jiao, Z., Bai, N., Sun, D., Liu, X., Li, J., Shi, Y., Hou, Y., & Chen, C. (2023). Aircraft Anti-skid Braking Control Based on Reinforcement Learning. IEEE Transactions on Aerospace and Electronic Systems.
  • Jin, F., Li, Y., Sun, S., & Li, H. (2020). Forecasting air passenger demand with a new hybrid ensemble approach. Journal of Air Transport Management, 83, 101744.
  • Jin, Y., Ying, Y., Li, J., & Zhou, H. (2021). Gas path fault diagnosis of gas turbine engine based on knowledge data- driven artificial intelligence algorithm. IEEE Access, 9, 108932-108941.
  • Juntama, P., Delahaye, D., Chaimatanan, S., & Alam, S. (2022). Hyperheuristic approach based on reinforcement learning for air traffic complexity mitigation. Journal of aerospace information systems, 19(9), 633-648.
  • Kabashkin, I., Misnevs, B., & Zervina, O. (2023). Artificial intelligence in aviation: New professionals for new technologies. Applied Sciences, 13(21), 11660.
  • Kaewunruen, S., Sresakoolchai, J., & Xiang, Y. (2021). Identification of weather influences on flight punctuality using machine learning approach. Climate, 9(8), 127.
  • Kamiya, T., Koizumi, H., Kawano, M., Sawada, S., Shimazu, H. (2010). Automatic airport obstacle detection system. NEC Technical Journal, 5(3), 83-86.
  • Kang, Y., Caveney, D. S., & Hedrick, J. K. (2008). Real-time obstacle map building with target tracking. Journal of Aerospace Computing, Information, and Communication, 5(5), 120-134.
  • Karakavuz, H. (2023). Bibliometric Analysis of Studies on Emissions from Air Transportation Sector: The Case of Journal of Air Transport Management. Journal of International Academic Accumulation, 6(Special Issue), 362- 393.
  • Kaya, O., Rezaei-Tarahomi, A., Ceylan, H., Gopalakrishnan, K., Kim, S., & Brill, D. R. (2018). Neural network-based multiple-slab response models for top-down cracking mode in airfield pavement design. Journal of Transportation Engineering, Part B: Pavements, 144(2), 04018009.
  • Kayhan, S., Ergün, N., & Gerede, E. (2018). Research determining issues on the administrative success of security services at civil airports in Turkey. Security Journal, 31, 470-500.
  • Khazab, M., Lo, S., Kilingaru, K., Tweedale, J. W., Jain, L. C., Thatcher, S., & Ding, L. (2013). Evaluating pilot situation awareness using multi-agent systems. Intelligent Decision Technologies, 7(4), 237-251.
  • Kilingaru, K., Tweedale, J. W., Thatcher, S., & Jain, L. C. (2013). Monitoring pilot “situation awareness”. Journal of intelligent & fuzzy systems, 24(3), 457-466.
  • Kim, J., & Lee, K. (2021). Unscented Kalman filter-aided long short-term memory approach for wind nowcasting. Aerospace, 8(9), 236.
  • Kim, W., Jun, S., Kang, S., & Lee, C. (2020). O-Net: Dangerous Goods Detection in Aviation Security Based on U- Net. IEEE Access, 8, 206289-206302.
  • Kistan, T., Gardi, A., & Sabatini, R. (2018). Machine learning and cognitive ergonomics in air traffic management: Recent developments and considerations for certification. Aerospace, 5(4), 103.
  • Ko, Y. D., Jang, Y. J., & Kim, D. Y. (2017). Strategic airline operation considering the carbon constrained air transport industry. Journal of Air Transport Management, 62, 1-9.
  • Koçak, B. B. (2023). Deep Learning Models for Airport Demand Forecasting with Google Trends: A Case Study of Madrid International Airports. International Journal of Cyber Behavior, Psychology and Learning (IJCBPL), 13(1), 1-13.
  • Kong, C. (2014). Review on advanced health monitoring methods for aero gas turbines using model based methods and artificial intelligent methods. International Journal of Aeronautical and Space Sciences, 15(2), 123-137.
  • Kong, Y., Zhang, X., & Mahadevan, S. (2022). Bayesian deep learning for aircraft hard landing safety assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062-17076.
  • Koroniotis, N., Moustafa, N., Schiliro, F., Gauravaram, P., & Janicke, H. (2020). A holistic review of cybersecurity and reliability perspectives in smart airports. IEEE Access, 8, 209802-209834.
  • Koshekov, К., Savostin, А., Seidakhmetov, B., Anayatova, R., & Fedorov, I. (2021). Aviation profiling method based on deep learning technology for emotion recognition by speech signal. Transport and Telecommunication Journal, 22(4), 471-481.
  • Kumar, S., & Padture, N. P. (2018). Materials in the aircraft industry. Metallurgical Design and Industry: Prehistory to the Space Age, 271-346.
  • Kushairi, N., & Ahmi, A. (2021). Flipped classroom in the second decade of the Millenia: A Bibliometrics analysis with Lotka’s law. Education and Information Technologies, 26(4), 4401-4431.
  • Laal, M., Naseri, A. S., Laal, M., & Khattami-Kermanshahi, Z. (2013). What do we achieve from learning in collaboration? Procedia-Social and Behavioral Sciences, 93, 1427-1432.
  • Leiner, B. M., Cerf, V. G., Clark, D. D., Kahn, R. E., Kleinrock, L., Lynch, D. C., Postel, J., Roberts, L. G., & Wolff, S. S. (1997). The past and future history of the Internet. Communications of the ACM, 40(2), 102-108.
  • Li, D., Zhang, R., Dong, Y., Zhu, F., & Pavlovic, D. (2017). A multisecret value access control framework for airliner in multinational air traffic management. IEEE Internet of Things Journal, 4(6), 1853-1867.
  • Li, J., Wang, T., Savai, M., & Hwang, I. (2010). Graph-based algorithm for dynamic airspace configuration. Journal of guidance, control, and dynamics, 33(4), 1082-1094.
  • Li, Q., Ng, K. K., Yiu, C. Y., Yuan, X., So, C. K., & Ho, C. C. (2023). Securing air transportation safety through identifying pilot's risky VFR flying behaviours: An EEG-based neurophysiological modelling using machine learning algorithms. Reliability Engineering & System Safety, 238, 109449.
  • Li, S., Yu, J., & Wang, H. (2023). Damages detection of aeroengine blades via deep learning algorithms. IEEE Transactions on Instrumentation and Measurement, 72, 1-11.
  • Lin, Y., Zhang, J.-w., & Liu, H. (2019). Deep learning based short-term air traffic flow prediction considering temporal–spatial correlation. Aerospace Science and Technology, 93, 105113.
  • Liu, A., Lu, Y., Gong, C., Sun, J., Wang, B., & Jiang, Z. (2023). Bibliometric analysis of research themes and trends of the co-occurrence of autism and ADHD. Neuropsychiatric Disease and Treatment, 985-1002.
  • Liu, H., Lin, Y., Chen, Z., Guo, D., Zhang, J., & Jing, H. (2019). Research on the air traffic flow prediction using a deep learning approach. IEEE Access, 7, 148019-148030.
  • Lu, X.-l., Hu, L., WANG, G.-l., & Zhe, W. (2006). Helicopter sizing based on genetic algorithm optimized neural network. Chinese Journal of Aeronautics, 19(3), 212-218.
  • Lui, G. N., Hon, K. K., & Liem, R. P. (2022). Weather impact quantification on airport arrival on-time performance through a Bayesian statistics modeling approach. Transportation Research Part C: Emerging Technologies, 143, 103811.
  • Lynch, F. T., & Khodadoust, A. (2001). Effects of ice accretions on aircraft aerodynamics. Progress in Aerospace Sciences, 37(8), 669-767.
  • Madeira, T., Melício, R., Valério, D., & Santos, L. (2021). Machine learning and natural language processing for prediction of human factors in aviation incident reports. Aerospace, 8(2), 47.
  • Mamdouh, M., Ezzat, M., & A. Hefny, H. (2023). A novel intelligent approach for flight delay prediction. Journal of Big Data, 10(1), 179.
  • Mangortey, E., Pinon Fischer, O., & Mavris, D. N. (2022). Application of Machine Learning to the Analysis and Assessment of Airport Operations. Journal of aerospace information systems, 19(4), 246-258.
  • Marina, S., Kartini, D., Sari, D., & Padmasasmita, S. (2016). Customer loyalty as the implications of price fairness determined by relationship marketing and service quality of airline services. South East Asia Journal of Contemporary Business, Economics and Law, 11(2), 43-51.
  • Matuszczak, M., Żbikowski, M., & Teodorczyk, A. (2021). Predictive modelling of turbofan engine components condition using machine and deep learning methods. Eksploatacja i Niezawodność, 23(2), 359-370.
  • Meister, S., Wermes, M., Stüve, J., & Groves, R. M. (2021). Investigations on Explainable Artificial Intelligence methods for the deep learning classification of fibre layup defect in the automated composite manufacturing. Composites Part B: Engineering, 224, 109160.
  • Memarzadeh, M., Akbari Asanjan, A., & Matthews, B. (2022). Robust and Explainable Semi-Supervised Deep Learning Model for Anomaly Detection in Aviation. Aerospace, 9(8), 437.
  • Menegardo-Souza, F., França, G. B., Menezes, W. F., & de Almeida, V. A. (2022). In-Flight Turbulence Forecast Model Based on Machine Learning for the Santiago (Chile)–Mendoza (Argentina) Air Route. Pure and Applied Geophysics, 179(6), 2591-2608.
  • Mnaoui, Y., Najoua, A., & Ouajji, H. (2022). Artificial intelligence in a communication system for air traffic controllers' emergency training. IAES International Journal of Artificial Intelligence, 11(3), 986.
  • Moed, H. F. (2005). Do US Scientists Overcite Papers from their Own Country? Citation Analysis in Research Evaluation, 291-300.
  • Mohaghegh, Z., Kazemi, R., & Mosleh, A. (2009). Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization. Reliability Engineering & System Safety, 94(5), 1000-1018.
  • Moon, S. K., Park, K. J., & Simpson, T. W. (2014). Platform design variable identification for a product family using multi-objective particle swarm optimization. Research in Engineering Design, 25, 95-108.
  • Moral-Muñoz, J. A., Herrera-Viedma, E., Santisteban-Espejo, A., & Cobo, M. J. (2020). Software tools for conducting bibliometric analysis in science: An up-to-date review. Profesional de la Información, 29(1).
  • Morris, R., Johnson, M., Venable, K. B., & Lindsey, J. (2016). Designing noise-minimal rotorcraft approach trajectories. ACM Transactions on Intelligent Systems and Technology (TIST), 7(4), 1-25.
  • Muñoz-Esparza, D., Sharman, R. D., & Deierling, W. (2020). Aviation turbulence forecasting at upper levels with machine learning techniques based on regression trees. Journal of Applied Meteorology and Climatology, 59(11), 1883-1899.
  • Nivedhitha, G., Kalpana, P., Rajagopal, R., & Singh, A. B. (2024). Novel Deep Learning Neural Networks for Breast Cancer Malignancy Estimation. Journal of Advanced Research in Applied Sciences and Engineering Technology, 47(1), 140-151.
  • Nogueira, R. P., Melicio, R., Valério, D., & Santos, L. F. (2023). Learning methods and predictive modeling to identify failure by human factors in the aviation industry. Applied Sciences, 13(6), 4069.
  • O'Neill, B., Stapleton, L., Carew, P., Shanahan, B. W., Pearson, S., Byrne, D., & Doyle-Kent, M. (2023). Artificial Intelligence and the World Wide Web: Brain and friend? IFAC-PapersOnLine, 56(2), 8982-8987.
  • Okpoti, E. S., Jeong, I.-J., & Moon, S. K. (2019). Decentralized determination of design variables among cooperative designers for product platform design in a product family. Computers & Industrial Engineering, 135, 601-614.
  • Ouf, S. (2023). An optimized deep learning approach for improving airline services. Comput. Mater. Contin, 75(1), 1213-1233.
  • Oza, N., Castle, J. P., & Stutz, J. (2009). Classification of aeronautics system health and safety documents. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 39(6), 670-680.
  • Öztürk, S., & Kuzucuoğlu, A. E. (2016). A multi-robot coordination approach for autonomous runway Foreign Object Debris (FOD) clearance. Robotics and Autonomous Systems, 75, 244-259.
  • Pandey, D. K., Hassan, M. K., Kumari, V., Zaied, Y. B., & Rai, V. K. (2023). Mapping the landscape of FinTech in banking and finance: a bibliometric review. Research in International Business and Finance, 102116.
  • Pang, Y., Zhao, X., Yan, H., & Liu, Y. (2021). Data-driven trajectory prediction with weather uncertainties: A Bayesian deep learning approach. Transportation Research Part C: Emerging Technologies, 130, 103326.
  • Park, S., Lee, J.-S., & Nicolau, J. L. (2020). Understanding the dynamics of the quality of airline service attributes: Satisfiers and dissatisfiers. Tourism Management, 81, 104163.
  • Parveez, B., Kittur, M., Badruddin, I. A., Kamangar, S., Hussien, M., & Umarfarooq, M. (2022). Scientific advancements in composite materials for aircraft applications: a review. Polymers, 14(22), 5007.
  • Pessin, V. Z., Yamane, L. H., & Siman, R. R. (2022). Smart bibliometrics: an integrated method of science mapping and bibliometric analysis. Scientometrics, 127(6), 3695-3718.
  • Pham, D.-T., Alam, S., & Duong, V. (2020). An Air Traffic Controller Action Extraction‐Prediction Model Using Machine Learning Approach. Complexity, 2020(1), 1659103.
  • Pollock, T. M. (2016). Alloy design for aircraft engines. Nature materials, 15(8), 809-815.
  • Puranik, T. G., Rodriguez, N., & Mavris, D. N. (2020). Towards online prediction of safety-critical landing metrics in aviation using supervised machine learning. Transportation Research Part C: Emerging Technologies, 120, 102819.
  • Putrik, Y., Nelzina, O., Borisov, A., Tsapuk, D., & Tretyak, E. (2022). Air Transport Impact on the Development of the Tourism Industry. Nexo Revista Científica, 35(04), 1014-1020.
  • Qiu, P., Zhao, N., & Wang, F. (2016). Optimum microgeometry modifications of herringbone gear by means of fitness predicted genetic algorithm. Journal of Vibroengineering, 18(8), 4964-4979.
  • Qu, J., Zhao, T., Ye, M., Li, J., & Liu, C. (2020). Flight delay prediction using deep convolutional neural network based on fusion of meteorological data. Neural Processing Letters, 52(2), 1461-1484.
  • Quick, J. C. (1992). Crafting an organizational culture: Herb's hand at Soutwest Airlines. Organizational Dynamics, 21(2), 45-56.
  • Ragnarsdottir, M. D., Hvannberg, E. T., & Waage, H. (2006). Using language technology to increase efficiency and safety in ATC communication. Journal of Aerospace Computing, Information, and Communication, 3(12), 587- 602.
  • Raihan, A., Voumik, L. C., Akter, S., Ridzuan, A. R., Fahlevi, M., Aljuaid, M., & Saniuk, S. (2024). Taking flight: Exploring the relationship between air transport and Malaysian economic growth. Journal of Air Transport Management, 115, 102540.
  • Rajendran, S., Srinivas, S., & Grimshaw, T. (2021). Predicting demand for air taxi urban aviation services using machine learning algorithms. Journal of Air Transport Management, 92, 102043.
  • Ramos, M. A., Sankaran, K., Guarro, S., Mosleh, A., Ramezani, R., & Arjounilla, A. (2023). The need for and conceptual design of an AI model-based Integrated Flight Advisory System. Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability, 237(2), 485-507.
  • Rehman, A. (2021). Machine learning based air traffic control strategy. International Journal of Machine Learning and Cybernetics, 12, 2151-2161.
  • Scopus. (2024). Searching for the keyword "artificial intelligence" in Scopus. Retrieved 18.07.2024 from https://www.scopus.com/results/results.uri?sort=plf- f&src=s&st1=Artificial+Intelligence&sid=42f5d240dd5042f4ebca524e42d0ac6e&sot=b&sdt=b&sl=38&s=TITLE- ABS KEY%28%22artificial+intelligence%22%29&origin=searchbasic&editSaveSearch=&yearFrom=Before+1960&year To=Present&sessionSearchId=42f5d240dd5042f4ebca524e42d0ac6e&limit=10
  • Secco, N. R., & Mattos, B. S. d. (2017). Artificial neural networks to predict aerodynamic coefficients of transport airplanes. Aircraft Engineering and Aerospace Technology, 89(2), 211-230.
  • Sellen, A., & Horvitz, E. (2024). The rise of the AI Co-Pilot: Lessons for design from aviation and beyond. Communications of the ACM, 67(7), 18-23.
  • Shankar, A., & Sahana, B. C. (2023). Early warning of low visibility using the ensembling of machine learning approaches for aviation services at Jay Prakash Narayan International (JPNI) Airport Patna. SN Applied Sciences, 5(5), 132.
  • Shen, Z., & Wei, Y. (2021). A high-precision feature extraction network of fatigue speech from air traffic controller radiotelephony based on improved deep learning. ICT Express, 7(4), 403-413.
  • Shijin, W., Qingyun, L., Xi, C., & Haiyun, L. (2016). Optimization of Air Route Network Nodes to Avoid ″Three Areas ″Based on An Adaptive Ant Colony Algorithm. Transactions of Nanjing University of Aeronautics and Astronautics, 4.
  • Shubik, M. (1960). Bibliography on simulation, gaming, artificial intelligence and allied topics. Journal of the American Statistical Association, 55(292), 736-751.
  • Sim, S., Im, J., Park, S., Park, H., Ahn, M. H., & Chan, P.-w. (2018). Icing detection over East Asia from geostationary satellite data using machine learning approaches. Remote Sensing, 10(4), 631.
  • Singh, M., Singh, S., & Partridge, D. (2004). A knowledge-based framework for image enhancement in aviation security. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 34(6), 2354-2365.
  • Singh, V. (2018). Fuel consumption minimization of transport aircraft using real-coded genetic algorithm. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 232(10), 1925- 1943.
  • Singh, V. K., Singh, P., Karmakar, M., Leta, J., & Mayr, P. (2021). The journal coverage of Web of Science, Scopus and Dimensions: A comparative analysis. Scientometrics, 126, 5113-5142.
  • Siyaev, A., & Jo, G.-S. (2021). Towards aircraft maintenance metaverse using speech interactions with virtual objects in mixed reality. Sensors, 21(6), 2066.
  • Small, H. (1999). Visualizing science by citation mapping. Journal of the American society for Information Science, 50(9), 799-813.
  • Soori, M., Arezoo, B., & Dastres, R. (2023). Artificial intelligence, machine learning and deep learning in advanced robotics, a review. Cognitive Robotics, 3, 54-70.
  • Srisaeng, P., Baxter, G. S., & Wild, G. (2015). An adaptive neuro-fuzzy inference system for forecasting Australia's domestic low cost carrier passenger demand. Aviation, 19(3), 150-163.
  • Stroeve, S., Smeltink, J., & Kirwan, B. (2022). Assessing and advancing safety management in aviation. Safety, 8(2), 20.
  • Su, B., An, S., Zhao, X., Chen, J., Li, X., & He, Y. (2023). An aeronautic X-ray image security inspection network for rotation and occlusion. International Journal of Computational Science and Engineering, 26(3), 337-348.
  • Taheri Gorji, H., Wilson, N., VanBree, J., Hoffmann, B., Petros, T., & Tavakolian, K. (2023). Using machine learning methods and EEG to discriminate aircraft pilot cognitive workload during flight. Scientific Reports, 13(1), 2507.
  • Tamasi, G., & Demichela, M. (2011). Risk assessment techniques for civil aviation security. Reliability Engineering & System Safety, 96(8), 892-899.
  • Thatcher, S. J. (2014). The use of artificial intelligence in the learning of flight crew situation awareness in an undergraduate aviation programme. World Transactions on Engineering and Technology Education, 12(4), 764-768.
  • Thelwall, M., & Maflahi, N. (2015). Are scholarly articles disproportionately read in their own country? An analysis of Mendeley readers. Journal of the Association for Information Science and Technology, 66(6), 1124-1135.
  • Tong, C., Yin, X., Li, J., Zhu, T., Lv, R., Sun, L., & Rodrigues, J. J. (2018a). An innovative deep architecture for aircraft hard landing prediction based on time-series sensor data. Applied Soft Computing, 73, 344-349.
  • Tong, C., Yin, X., Wang, S., & Zheng, Z. (2018b). A novel deep learning method for aircraft landing speed prediction based on cloud-based sensor data. Future Generation Computer Systems, 88, 552-558.
  • Tran, P. N., Pham, D.-T., Goh, S. K., Alam, S., & Duong, V. (2020). An interactive conflict solver for learning air traffic conflict resolutions. Journal of aerospace information systems, 17(6), 271-277.
  • Wan, H., Guo, S., Yin, K., Liang, X., & Lin, Y. (2020). CTS-LSTM: LSTM-based neural networks for correlatedtime series prediction. Knowledge-Based Systems, 191, 105239.
  • Wang, B., Zhang, X., Sun, C., & Chen, X. (2019). A quantitative intelligent diagnosis method for early weak faults of aviation high-speed bearings. ISA transactions, 93, 370-383.
  • Wang, H., & Gao, J. (2013). Bayesian network assessment method for civil aviation safety based on flight delays. Mathematical Problems in Engineering, 2013(1), 594187.
  • Wang, X., & Feng, X. (2024). Research on the relationships between discourse leading indicators and citations: perspectives from altmetrics indicators of international multidisciplinary academic journals. Library Hi Tech, 42(4), 1165-1190.
  • Wang, X., Xu, Z., & Škare, M. (2020). A bibliometric analysis of Economic Research-Ekonomska Istra zivanja (2007–2019). Economic research-Ekonomska istraživanja, 33(1), 865-886.
  • Wang, Y., Zhang, Z., & Huo, W. (2016). Research on aviation unsafe incidents classification with improved TF-IDF algorithm. Modern Physics Letters B, 30(12), 1650184.
  • Weckman, G. R., Marvel, J. H., & Shell, R. L. (2006). Decision support approach to fleet maintenance requirements in the aviation industry. Journal of Aircraft, 43(5), 1352-1360.
  • Weiszer, M., Chen, J., & Locatelli, G. (2015). An integrated optimisation approach to airport ground operations to foster sustainability in the aviation sector. Applied Energy, 157, 567-582.
  • Wu, J., Zhang, P.-w., Wang, Y., & Shi, J. J. (2022). Integrated aviation model and metaheuristic algorithm for hub- and-spoke network design and airline fleet planning. Transportation Research Part E: Logistics and Transportation Review, 164, 102755.
  • Xiao, M., Cai, K., & Abbass, H. A. (2018). Hybridized encoding for evolutionary multi-objective optimization of air traffic network flow: A case study on China. Transportation Research Part E: Logistics and Transportation Review, 115, 35-55.
  • Xiaomei, N., Huawei, W., & Changchang, C. (2019). Risk index prediction of civil aviation based on deep neural network. Transactions of Nanjing University of Aeronautics & Astronautics, 36(2), 313-319.
  • Xu, D., Hui, Z., Liu, Y., & Chen, G. (2019). Morphing control of a new bionic morphing UAV with deep reinforcement learning. Aerospace Science and Technology, 92, 232-243.
  • Xu, Q., Pang, Y., & Liu, Y. (2023). Air traffic density prediction using Bayesian ensemble graph attention network (BEGAN). Transportation Research Part C: Emerging Technologies, 153, 104225.
  • Yang, D., Zhao, W., Du, J., & Yang, Y. (2024). Approaching Artificial Intelligence in business and economics research: a bibliometric panorama (1966–2020). Technology Analysis & Strategic Management, 36(3), 563- 578.
  • Yao, B., Wen, X., & Li, P. (2022). Next Flight Prediction for PKX's Frequent Flyers. International Journal on Artificial Intelligence Tools, 31(08), 2250048.
  • Yayla-Kullu, H. M., Tansitpong, P., Gnanlet, A., McDermott, C. M., & Durgee, J. F. (2015). Impact of national culture on airline operations. Operations Management Research, 8, 101-117.
  • Yu, B., Wu, S., Jiao, Z., & Shang, Y. (2018). Multi-objective optimization design of an electrohydrostatic actuator based on a particle swarm optimization algorithm and an analytic hierarchy process. Energies, 11(9), 2426.
  • Zhang, M., Zhou, X., Zhang, Y., Sun, L., Dun, M., Du, W., & Cao, X. (2019). Propagation index on airport delays. Transportation Research Record, 2673(8), 536-543.
  • Zhang, X., & Mahadevan, S. (2020). Bayesian neural networks for flight trajectory prediction and safety assessment. Decision Support Systems, 131, 113246.
  • Zhang, X., & Mahadevan, S. (2021). Bayesian network modeling of accident investigation reports for aviation safety assessment. Reliability Engineering & System Safety, 209, 107371.
  • Zhang, X., Srinivasan, P., & Mahadevan, S. (2021). Sequential deep learning from NTSB reports for aviation safety prognosis. Safety science, 142, 105390.
  • Zhang, X., Zhong, S., & Mahadevan, S. (2022). Airport surface movement prediction and safety assessment with spatial–temporal graph convolutional neural network. Transportation Research Part C: Emerging Technologies, 144, 103873.
  • Zhao, X., Wang, G., Cai, M., & Zhou, H. (2017). Stereo-vision based obstacle avoidance by finding safe region. International Journal of Control, Automation and Systems, 15(3), 1374-1383.
  • Zheng, Y.-J., Sheng, W.-G., Sun, X.-M., & Chen, S.-Y. (2016). Airline passenger profiling based on fuzzy deep machine learning. IEEE transactions on neural networks and learning systems, 28(12), 2911-2923.
  • Zhu, X., & Li, L. (2021). Flight time prediction for fuel loading decisions with a deep learning approach. Transportation Research Part C: Emerging Technologies, 128, 103179.
  • Zupic, I., & Čater, T. (2015). Bibliometric methods in management and organization. Organizational research methods, 18(3), 429-472. Surname, N.N. (Year). The full title of the article. Journal Name, volume and issue 5(3), first and last page 123-185.
There are 192 citations in total.

Details

Primary Language English
Subjects Air Transportation and Freight Services
Journal Section Research Articles
Authors

Harun Karakavuz 0000-0002-3989-5249

Early Pub Date February 24, 2025
Publication Date February 26, 2025
Submission Date November 11, 2024
Acceptance Date December 21, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Karakavuz, H. (2025). Bibliometric Analysis of Studies on Artificial Intelligence in the Air Transportation Sector. Journal of Aviation, 9(1), 118-136. https://doi.org/10.30518/jav.1583144

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence