Research Article
BibTex RIS Cite

Impact of Aspect Ratio on Structural Integrity and Aerodynamic Performance in Fixed-Wing UAV

Year 2025, Volume: 9 Issue: 1, 19 - 27, 26.02.2025
https://doi.org/10.30518/jav.1583881

Abstract

This research is a systematic investigation of the effect of aspect ratio on the structural integrity and aerodynamic performance of fixed-wing unmanned aerial vehicles (UAVs). Higher aspect ratios are generally associated with greater aerodynamic efficiency, primarily through improved lift-to-drag (L/D) ratios, which are essential for extending flight endurance and optimising fuel consumption. Nonetheless, increased aspect ratios impose significant structural demands, including increased bending moments and torsional stresses. This study uses computational fluid dynamics (CFD) and finite element analysis (FEA) within ANSYS FLUENT to analyse variations in aspect ratios and flight speeds, assessing both aerodynamic lift performance and structural deformation under various conditions. The results highlight a critical balance between aerodynamic optimisation and structural rigidity, and suggest that UAV configurations with high aspect ratios and structurally rigid materials achieve superior endurance and stability.

References

  • Anderson, J. D. (2017). Fundamentals of Aerodynamics. McGraw-Hill Education.
  • Armanini, S. F., et al. (2017). Aerodynamic performance of high aspect ratio wings in UAV applications. Aerospace Science and Technology, 63, 145-152.
  • Austin, R. (2011). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley.
  • Han, J. H., Han, Y. J., Yang, H. H., Lee, S. G., & Lee, E. H. (2023). A review of flapping mechanisms for avian- inspired flapping-wing air vehicles. Aerospace, 10(6), 554.
  • Hargreaves, B. O., de Freitas Pinto, R. L. U., & Frágola, L. M. B. (2018). Design study of high aspect ratio wings for unmanned air vehicles (UAV's) (No. 2018-36-0073). SAE Technical Paper.
  • Jang, J. H., & Ahn, S. H. (2022). Optimum design of UAV wing skin structure with a high aspect ratio using variable laminate stiffness. Applied Sciences, 12(19), 9436.
  • Jones, K., & Platzer, M. (2006). Bio-inspired design of flapping-wing micro air vehicles-an engineer's perspective. In: 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 37).
  • Kilimtzidis, S., & Kostopoulos, V. (2023). Multidisciplinary structural optimization of novel high-aspect ratio composite aircraft wings. Structural and Multidisciplinary Optimization, 66(7), 150.
  • Ma, Y., & Elham, A. (2024). Designing high aspect ratio wings: A review of concepts and approaches. Progress in Aerospace Sciences, 145, 100983.
  • Martins, J. R. R. A., Kennedy, G. J., & Kenway, G. K. W. (2014). High aspect ratio wing design: Optimal aerostructural tradeoffs for the next generation of materials. In: Proceedings of the 52nd Aerospace Sciences Meeting. Vol. 52 (AIAA, National Harbor, MD, p. 0596).
  • Meng, Y. S., Yan, L., Huang, W., Zhang, T. T., & Du, Z. B. (2019). Structural design and analysis of a composite wing with high aspect ratio. Journal of Zhejiang University-SCIENCE A, 20(10), 781-793.
  • Oktay, T., Uzun, M., & Kanat, Ö. Ö. (2018). Maximum lift/drag ratio improvement of TUAVs via small aerodynamic modifications. Aircraft Engineering and Aerospace Technology, 90(9), 1438-1444.
  • Rivas-Padilla, J. R., Boston, D. M., Boddapati, K., & Arrieta, A. F. (2023). Aero-structural optimization and actuation analysis of a morphing wing section with embedded selectively stiff bistable elements. Journal of Composite Materials, 57(4), 737-757.
  • Sahraoui, M., Boutemedjet, A., Mekadem, M., & Scholz, D. (2024). Automated design process of a fixed wing UAV maximizing endurance. Journal of Applied Fluid Mechanics, 17(11), 2299-2312.
  • Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Giguère, P. (1995). Summary of low-speed airfoil data, Volume 1. 2. SoarTech Publications.
  • Sofla, A. Y. N., Meguid, S. A., Tan, K. T., & Yeo, W. K. (2010). Morphing aircraft: A review of the state of the art. Aerospace Science and Technology, 11(6), 468-478.
  • Sun, Y., Li, S., & Wang, X. (2021). Fatigue life analysis of UAV wings under dynamic loading. Journal of Aerospace Engineering, 34(4), 123-136.
  • Uzun, M., Bilgiç, H. H., Çopur, E. H., & Çoban, S. (2024). The aerodynamic force estimation of a swept-wing UAV using ANFIS based on metaheuristic algorithms. The Aeronautical Journal, 128(1322), 739-755.
  • Uzun, M., & Oktay, T. (2023). Simultaneous UAV having actively sweep angle morphing wing and flight control system design. Aircraft Engineering and Aerospace Technology, 95(7), 1062-1068.
  • Uzun, M., Özdemir, M., Yıldırım, Ç. V., & Çoban, S. (2022). A novel biomimetic wing design and optimizing aerodynamic performance. Journal of Aviation, 6(1), 12-25.
  • Vale, J., Leite, A., Lau, F., & Suleman, A. (2011). Aero-structural optimization and performance evaluation of a morphing wing with variable span and camber. Journal of Intelligent Material Systems and Structures, 22(10), 1057-1073.
  • Valavanis, K., & Vachtsevanos, G. (2015). Handbook of Unmanned Aerial Vehicles. Springer.
  • Wickenheiser, A. M., & Garcia, E. (2007). Aerodynamic modeling of morphing wings using an extended lifting-line analysis. Journal of Aircraft, 44(1), 10-16.
Year 2025, Volume: 9 Issue: 1, 19 - 27, 26.02.2025
https://doi.org/10.30518/jav.1583881

Abstract

References

  • Anderson, J. D. (2017). Fundamentals of Aerodynamics. McGraw-Hill Education.
  • Armanini, S. F., et al. (2017). Aerodynamic performance of high aspect ratio wings in UAV applications. Aerospace Science and Technology, 63, 145-152.
  • Austin, R. (2011). Unmanned Aircraft Systems: UAVS Design, Development and Deployment. Wiley.
  • Han, J. H., Han, Y. J., Yang, H. H., Lee, S. G., & Lee, E. H. (2023). A review of flapping mechanisms for avian- inspired flapping-wing air vehicles. Aerospace, 10(6), 554.
  • Hargreaves, B. O., de Freitas Pinto, R. L. U., & Frágola, L. M. B. (2018). Design study of high aspect ratio wings for unmanned air vehicles (UAV's) (No. 2018-36-0073). SAE Technical Paper.
  • Jang, J. H., & Ahn, S. H. (2022). Optimum design of UAV wing skin structure with a high aspect ratio using variable laminate stiffness. Applied Sciences, 12(19), 9436.
  • Jones, K., & Platzer, M. (2006). Bio-inspired design of flapping-wing micro air vehicles-an engineer's perspective. In: 44th AIAA Aerospace Sciences Meeting and Exhibit (p. 37).
  • Kilimtzidis, S., & Kostopoulos, V. (2023). Multidisciplinary structural optimization of novel high-aspect ratio composite aircraft wings. Structural and Multidisciplinary Optimization, 66(7), 150.
  • Ma, Y., & Elham, A. (2024). Designing high aspect ratio wings: A review of concepts and approaches. Progress in Aerospace Sciences, 145, 100983.
  • Martins, J. R. R. A., Kennedy, G. J., & Kenway, G. K. W. (2014). High aspect ratio wing design: Optimal aerostructural tradeoffs for the next generation of materials. In: Proceedings of the 52nd Aerospace Sciences Meeting. Vol. 52 (AIAA, National Harbor, MD, p. 0596).
  • Meng, Y. S., Yan, L., Huang, W., Zhang, T. T., & Du, Z. B. (2019). Structural design and analysis of a composite wing with high aspect ratio. Journal of Zhejiang University-SCIENCE A, 20(10), 781-793.
  • Oktay, T., Uzun, M., & Kanat, Ö. Ö. (2018). Maximum lift/drag ratio improvement of TUAVs via small aerodynamic modifications. Aircraft Engineering and Aerospace Technology, 90(9), 1438-1444.
  • Rivas-Padilla, J. R., Boston, D. M., Boddapati, K., & Arrieta, A. F. (2023). Aero-structural optimization and actuation analysis of a morphing wing section with embedded selectively stiff bistable elements. Journal of Composite Materials, 57(4), 737-757.
  • Sahraoui, M., Boutemedjet, A., Mekadem, M., & Scholz, D. (2024). Automated design process of a fixed wing UAV maximizing endurance. Journal of Applied Fluid Mechanics, 17(11), 2299-2312.
  • Selig, M. S., Guglielmo, J. J., Broeren, A. P., & Giguère, P. (1995). Summary of low-speed airfoil data, Volume 1. 2. SoarTech Publications.
  • Sofla, A. Y. N., Meguid, S. A., Tan, K. T., & Yeo, W. K. (2010). Morphing aircraft: A review of the state of the art. Aerospace Science and Technology, 11(6), 468-478.
  • Sun, Y., Li, S., & Wang, X. (2021). Fatigue life analysis of UAV wings under dynamic loading. Journal of Aerospace Engineering, 34(4), 123-136.
  • Uzun, M., Bilgiç, H. H., Çopur, E. H., & Çoban, S. (2024). The aerodynamic force estimation of a swept-wing UAV using ANFIS based on metaheuristic algorithms. The Aeronautical Journal, 128(1322), 739-755.
  • Uzun, M., & Oktay, T. (2023). Simultaneous UAV having actively sweep angle morphing wing and flight control system design. Aircraft Engineering and Aerospace Technology, 95(7), 1062-1068.
  • Uzun, M., Özdemir, M., Yıldırım, Ç. V., & Çoban, S. (2022). A novel biomimetic wing design and optimizing aerodynamic performance. Journal of Aviation, 6(1), 12-25.
  • Vale, J., Leite, A., Lau, F., & Suleman, A. (2011). Aero-structural optimization and performance evaluation of a morphing wing with variable span and camber. Journal of Intelligent Material Systems and Structures, 22(10), 1057-1073.
  • Valavanis, K., & Vachtsevanos, G. (2015). Handbook of Unmanned Aerial Vehicles. Springer.
  • Wickenheiser, A. M., & Garcia, E. (2007). Aerodynamic modeling of morphing wings using an extended lifting-line analysis. Journal of Aircraft, 44(1), 10-16.
There are 23 citations in total.

Details

Primary Language English
Subjects Air-Space Transportation, Aerospace Structures, Aircraft Performance and Flight Control Systems
Journal Section Research Articles
Authors

Metin Uzun 0000-0002-0744-3491

Early Pub Date February 24, 2025
Publication Date February 26, 2025
Submission Date November 12, 2024
Acceptance Date December 15, 2024
Published in Issue Year 2025 Volume: 9 Issue: 1

Cite

APA Uzun, M. (2025). Impact of Aspect Ratio on Structural Integrity and Aerodynamic Performance in Fixed-Wing UAV. Journal of Aviation, 9(1), 19-27. https://doi.org/10.30518/jav.1583881

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence