Research Article
BibTex RIS Cite
Year 2025, Volume: 9 Issue: 2, 260 - 269, 28.06.2025
https://doi.org/10.30518/jav.1546277

Abstract

References

  • Alyassi, R., Khonji, M., Karapetyan, A., Chau, S. C. K., Elbassioni, K., & Tseng, C. M. (2023). Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones. IEEE Transactions on Automation Science and Engineering, 20(2).
  • An, D., Krzysiak, R., Hollenbeck, D., & Chen, Y. Q. (2023). Battery-health-aware UAV mission planning using a cognitive battery management system. 2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023.
  • Andrioaia, D. A., Gaitan, V. G., Culea, G., & Banu, I. V. (2024). Predicting the RUL of Li-Ion Batteries in UAVs Using Machine Learning Techniques. Computers 2024, Vol. 13, Page 64, 13(3), 64.
  • Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., & Van Den Bossche, P. (2016). Critical review of state of health estimation methods of Li-ion batteries for real applications. In Renewable and Sustainable Energy Reviews (Vol. 56).
  • Boriboonsomsin, K., Barth, M. J., Zhu, W., & Vu, A. (2012). Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Transactions on Intelligent Transportation Systems, 13(4).
  • Catelani, M., Ciani, L., Fantacci, R., Patrizi, G., & Picano, B. (2021). Remaining Useful Life Estimation for Prognostics of Lithium-Ion Batteries Based on Recurrent Neural Network. IEEE Transactions on Instrumentation and Measurement, 70.
  • Chang, C., Wu, Y., Jiang, J., Jiang, Y., Tian, A., Li, T., & Gao, Y. (2022). Prognostics of the state of health for lithium-ion battery packs in energy storage applications. Energy, 239, 122189.
  • Che, C., Wang, H., Fu, Q., & Ni, X. (2019). Combining multiple deep learning algorithms for prognostic and health management of aircraft. Aerospace Science and Technology, 94, 105423.
  • Conte, C., Rufino, G., de Alteriis, G., Bottino, V., & Accardo, D. (2022). A data-driven learning method for online prediction of drone battery discharge. Aerospace Science and Technology, 130, 107921.
  • Dai, W., Zhang, M., & Low, K. H. (2024). Data-efficient modeling for power consumption estimation of quadrotor operations using ensemble learning. Aerospace Science and Technology, 144, 108791.
  • Darrah, T., Quiñones-Grueiro, M., Biswas, G., & Kulkarni, C. (2021). Prognostics based decision making for safe and optimal uav operations. AIAA Scitech 2021 Forum.
  • Galar, D., & Kumar, U. (2023). Robotics and artificial intelligence (AI) for maintenance. In Monitoring and Protection of Critical Infrastructure by Unmanned Systems.
  • Garay, F., Huaman, W., Atoche, W., & Franco, E. (2022). Condition-Based Maintenance Program on Lithium-Ion Batteries Using Artificial Intelligence for Aeronautical Operations Management. Springer Proceedings in Mathematics and Statistics, 391.
  • Gupta, A., & Manthiram, A. (2020). Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions. In Advanced Energy Materials (Vol. 10, Issue 38).
  • Hashemi, S. R., Mahajan, A. M., & Farhad, S. (2021). Online estimation of battery model parameters and state of health in electric and hybrid aircraft application. Energy, 229.
  • Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery Lifetime Prognostics. In Joule (Vol. 4, Issue 2).
  • Kosanoglu, F., Atmis, M., & Turan, H. H. (2022). A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem. Annals of Operations Research.
  • Kulkarni, C., & Corbetta, M. (2019). Health management and prognostics for electric aircraft powertrain. 2019 AIAA/IEEE Electric Aircraft Technologies Symposium, EATS 2019.
  • Kulkarni, C., Schumann, J., & Roychoudhury, I. (2018). On-Board Battery Monitoring and Prognostics for Electric-Propulsion Aircraft. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, EATS 2018.
  • Liu, W., Placke, T., & Chau, K. T. (2022). Overview of batteries and battery management for electric vehicles. In Energy Reports (Vol. 8).
  • Lombardo, T., Duquesnoy, M., El-Bouysidy, H., Årén, F., Gallo-Bueno, A., Jørgensen, P. B., Bhowmik, A., Demortière, A., Ayerbe, E., Alcaide, F., Reynaud, M., Carrasco, J., Grimaud, A., Zhang, C., Vegge, T., Johansson, P., & Franco, A. A. (2022). Artificial Intelligence Applied to Battery Research: Hype or Reality? In Chemical Reviews (Vol. 122, Issue 12).
  • Mansouri, S. S., Karvelis, P., Georgoulas, G., & Nikolakopoulos, G. (2017). Remaining Useful Battery Life Prediction for UAVs based on Machine Learning. IFAC-PapersOnLine, 50(1).
  • Mathieu, R., Baghdadi, I., Briat, O., Gyan, P., & Vinassa, J. M. (2017). D-optimal design of experiments applied to lithium battery for ageing model calibration. Energy, 141.
  • Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 214, 107812.
  • Meng, Q., Huang, Y., Li, L., Wu, F., & Chen, R. (2024). Smart batteries for powering the future. In Joule (Vol. 8, Issue 2).
  • Pan, H., Lü, Z., Wang, H., Wei, H., & Chen, L. (2018). Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy, 160, 466–477.
  • Pavel, M. D. (2022). Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility. Aerospace Science and Technology, 125, 107143.
  • Richardson, R. R., Osborne, M. A., & Howey, D. A. (2019). Battery health prediction under generalized conditions using a Gaussian process transition model. Journal of Energy Storage, 23.
  • Saravanakumar, Y. N., Sultan, M. T. H., Shahar, F. S., Giernacki, W., Łukaszewicz, A., Nowakowski, M., Holovatyy, A., & Stępień, S. (2023). Power Sources for Unmanned Aerial Vehicles: A State-of-the Art. Applied Sciences, 13(21).
  • Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run- to-failure simulation. 2008 International Conference on Prognostics and Health Management, PHM 2008.
  • Schumann, J., Kulkarni, C., Lowry, M., Bajwa, A., Teubert, C., & Watkins, J. (2021). Prognostics for autonomous electric-propulsion aircraft. International Journal of Prognostics and Health Management, 12(3).
  • Shibl, M. M., Ismail, L. S., & Massoud, A. M. (2023). A machine learning-based battery management system for state-of-charge prediction and state-of-health estimation for unmanned aerial vehicles. Journal of Energy Storage, 66.
  • Sun, J., Yuan, G., Song, L., & Zhang, H. (2024). Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. In Drones (Vol. 8, Issue 1).
  • Wang, B., Liu, D., Wang, W., & Peng, X. (2018). A hybrid approach for UAV flight data estimation and prediction based on flight mode recognition. Microelectronics Reliability, 84(April), 253–262.
  • Zhang, C., Qiu, Y., Chen, J., Li, Y., Liu, Z., Liu, Y., Zhang, J., & Hwa, C. S. (2022). A comprehensive review of electrochemical hybrid power supply systems and intelligent energy managements for unmanned aerial vehicles in public services. Energy and AI, 9.
  • Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. In Journal of Power Sources (Vol. 196, Issue 15).

Predictive UAV Battery Maintenance Planning with Artificial Intelligence

Year 2025, Volume: 9 Issue: 2, 260 - 269, 28.06.2025
https://doi.org/10.30518/jav.1546277

Abstract

This research paper explores the use of artificial intelligence (AI) in the maintenance planning of electric batteries for unmanned aerial vehicles (UAVs). Traditional maintenance strategies are challenged by the impact on battery performance and the complexity of battery degradation, highlighting the importance of an AI-assisted predictive maintenance approach. The research predicts battery degradation using machine learning techniques, specifically Artificial Neural Networks (ANN) model, in combination with MATLAB's Remaining Useful Life (RUL) Prediction Toolbox. The AI model is designed to accurately predict remaining flight time and perform maintenance only when needed. This prevents premature battery replacement, reduces environmental pollution, and contributes to sustainable aviation. The AI-powered maintenance model helps transform maintenance strategy, optimize operational costs, and increase the safety of UAV systems while reducing unexpected battery failures. Refined predictive methodologies for UAV battery diagnostics and maintenance demonstrate the importance of UAV battery health on operational efficiency. Statistical analysis of the AI model demonstrates robust predictive capability, achieving a mean absolute percentage error (MAPE) of 3.2% for battery capacity degradation and 2.9% for flight time prediction, supporting high prediction accuracy. The study’s originality lies in its use of ANN within the MATLAB RUL Prediction Toolbox to provide a data-driven predictive maintenance framework for UAV batteries, addressing a gap in the literature by offering a scalable solution that enhances prediction accuracy over traditional methods. The study proposes the integration of real-time operational data and advanced AI algorithms and demonstrates a significant advance in predictive maintenance to improve UAV reliability and sustainability.

References

  • Alyassi, R., Khonji, M., Karapetyan, A., Chau, S. C. K., Elbassioni, K., & Tseng, C. M. (2023). Autonomous Recharging and Flight Mission Planning for Battery-Operated Autonomous Drones. IEEE Transactions on Automation Science and Engineering, 20(2).
  • An, D., Krzysiak, R., Hollenbeck, D., & Chen, Y. Q. (2023). Battery-health-aware UAV mission planning using a cognitive battery management system. 2023 International Conference on Unmanned Aircraft Systems, ICUAS 2023.
  • Andrioaia, D. A., Gaitan, V. G., Culea, G., & Banu, I. V. (2024). Predicting the RUL of Li-Ion Batteries in UAVs Using Machine Learning Techniques. Computers 2024, Vol. 13, Page 64, 13(3), 64.
  • Berecibar, M., Gandiaga, I., Villarreal, I., Omar, N., Van Mierlo, J., & Van Den Bossche, P. (2016). Critical review of state of health estimation methods of Li-ion batteries for real applications. In Renewable and Sustainable Energy Reviews (Vol. 56).
  • Boriboonsomsin, K., Barth, M. J., Zhu, W., & Vu, A. (2012). Eco-routing navigation system based on multisource historical and real-time traffic information. IEEE Transactions on Intelligent Transportation Systems, 13(4).
  • Catelani, M., Ciani, L., Fantacci, R., Patrizi, G., & Picano, B. (2021). Remaining Useful Life Estimation for Prognostics of Lithium-Ion Batteries Based on Recurrent Neural Network. IEEE Transactions on Instrumentation and Measurement, 70.
  • Chang, C., Wu, Y., Jiang, J., Jiang, Y., Tian, A., Li, T., & Gao, Y. (2022). Prognostics of the state of health for lithium-ion battery packs in energy storage applications. Energy, 239, 122189.
  • Che, C., Wang, H., Fu, Q., & Ni, X. (2019). Combining multiple deep learning algorithms for prognostic and health management of aircraft. Aerospace Science and Technology, 94, 105423.
  • Conte, C., Rufino, G., de Alteriis, G., Bottino, V., & Accardo, D. (2022). A data-driven learning method for online prediction of drone battery discharge. Aerospace Science and Technology, 130, 107921.
  • Dai, W., Zhang, M., & Low, K. H. (2024). Data-efficient modeling for power consumption estimation of quadrotor operations using ensemble learning. Aerospace Science and Technology, 144, 108791.
  • Darrah, T., Quiñones-Grueiro, M., Biswas, G., & Kulkarni, C. (2021). Prognostics based decision making for safe and optimal uav operations. AIAA Scitech 2021 Forum.
  • Galar, D., & Kumar, U. (2023). Robotics and artificial intelligence (AI) for maintenance. In Monitoring and Protection of Critical Infrastructure by Unmanned Systems.
  • Garay, F., Huaman, W., Atoche, W., & Franco, E. (2022). Condition-Based Maintenance Program on Lithium-Ion Batteries Using Artificial Intelligence for Aeronautical Operations Management. Springer Proceedings in Mathematics and Statistics, 391.
  • Gupta, A., & Manthiram, A. (2020). Designing Advanced Lithium-Based Batteries for Low-Temperature Conditions. In Advanced Energy Materials (Vol. 10, Issue 38).
  • Hashemi, S. R., Mahajan, A. M., & Farhad, S. (2021). Online estimation of battery model parameters and state of health in electric and hybrid aircraft application. Energy, 229.
  • Hu, X., Xu, L., Lin, X., & Pecht, M. (2020). Battery Lifetime Prognostics. In Joule (Vol. 4, Issue 2).
  • Kosanoglu, F., Atmis, M., & Turan, H. H. (2022). A deep reinforcement learning assisted simulated annealing algorithm for a maintenance planning problem. Annals of Operations Research.
  • Kulkarni, C., & Corbetta, M. (2019). Health management and prognostics for electric aircraft powertrain. 2019 AIAA/IEEE Electric Aircraft Technologies Symposium, EATS 2019.
  • Kulkarni, C., Schumann, J., & Roychoudhury, I. (2018). On-Board Battery Monitoring and Prognostics for Electric-Propulsion Aircraft. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium, EATS 2018.
  • Liu, W., Placke, T., & Chau, K. T. (2022). Overview of batteries and battery management for electric vehicles. In Energy Reports (Vol. 8).
  • Lombardo, T., Duquesnoy, M., El-Bouysidy, H., Årén, F., Gallo-Bueno, A., Jørgensen, P. B., Bhowmik, A., Demortière, A., Ayerbe, E., Alcaide, F., Reynaud, M., Carrasco, J., Grimaud, A., Zhang, C., Vegge, T., Johansson, P., & Franco, A. A. (2022). Artificial Intelligence Applied to Battery Research: Hype or Reality? In Chemical Reviews (Vol. 122, Issue 12).
  • Mansouri, S. S., Karvelis, P., Georgoulas, G., & Nikolakopoulos, G. (2017). Remaining Useful Battery Life Prediction for UAVs based on Machine Learning. IFAC-PapersOnLine, 50(1).
  • Mathieu, R., Baghdadi, I., Briat, O., Gyan, P., & Vinassa, J. M. (2017). D-optimal design of experiments applied to lithium battery for ageing model calibration. Energy, 141.
  • Meissner, R., Rahn, A., & Wicke, K. (2021). Developing prescriptive maintenance strategies in the aviation industry based on a discrete-event simulation framework for post-prognostics decision making. Reliability Engineering & System Safety, 214, 107812.
  • Meng, Q., Huang, Y., Li, L., Wu, F., & Chen, R. (2024). Smart batteries for powering the future. In Joule (Vol. 8, Issue 2).
  • Pan, H., Lü, Z., Wang, H., Wei, H., & Chen, L. (2018). Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy, 160, 466–477.
  • Pavel, M. D. (2022). Understanding the control characteristics of electric vertical take-off and landing (eVTOL) aircraft for urban air mobility. Aerospace Science and Technology, 125, 107143.
  • Richardson, R. R., Osborne, M. A., & Howey, D. A. (2019). Battery health prediction under generalized conditions using a Gaussian process transition model. Journal of Energy Storage, 23.
  • Saravanakumar, Y. N., Sultan, M. T. H., Shahar, F. S., Giernacki, W., Łukaszewicz, A., Nowakowski, M., Holovatyy, A., & Stępień, S. (2023). Power Sources for Unmanned Aerial Vehicles: A State-of-the Art. Applied Sciences, 13(21).
  • Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008). Damage propagation modeling for aircraft engine run- to-failure simulation. 2008 International Conference on Prognostics and Health Management, PHM 2008.
  • Schumann, J., Kulkarni, C., Lowry, M., Bajwa, A., Teubert, C., & Watkins, J. (2021). Prognostics for autonomous electric-propulsion aircraft. International Journal of Prognostics and Health Management, 12(3).
  • Shibl, M. M., Ismail, L. S., & Massoud, A. M. (2023). A machine learning-based battery management system for state-of-charge prediction and state-of-health estimation for unmanned aerial vehicles. Journal of Energy Storage, 66.
  • Sun, J., Yuan, G., Song, L., & Zhang, H. (2024). Unmanned Aerial Vehicles (UAVs) in Landslide Investigation and Monitoring: A Review. In Drones (Vol. 8, Issue 1).
  • Wang, B., Liu, D., Wang, W., & Peng, X. (2018). A hybrid approach for UAV flight data estimation and prediction based on flight mode recognition. Microelectronics Reliability, 84(April), 253–262.
  • Zhang, C., Qiu, Y., Chen, J., Li, Y., Liu, Z., Liu, Y., Zhang, J., & Hwa, C. S. (2022). A comprehensive review of electrochemical hybrid power supply systems and intelligent energy managements for unmanned aerial vehicles in public services. Energy and AI, 9.
  • Zhang, J., & Lee, J. (2011). A review on prognostics and health monitoring of Li-ion battery. In Journal of Power Sources (Vol. 196, Issue 15).
There are 36 citations in total.

Details

Primary Language English
Subjects Air-Space Transportation, Avionics
Journal Section Research Articles
Authors

Hüseyin Şahin 0000-0003-0464-2644

Publication Date June 28, 2025
Submission Date September 9, 2024
Acceptance Date May 22, 2025
Published in Issue Year 2025 Volume: 9 Issue: 2

Cite

APA Şahin, H. (2025). Predictive UAV Battery Maintenance Planning with Artificial Intelligence. Journal of Aviation, 9(2), 260-269. https://doi.org/10.30518/jav.1546277

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence