Research Article
BibTex RIS Cite

Machine Learning-Based Approach for Predicting Hard Landings in Commercial Aircraft

Year 2025, Volume: 9 Issue: 3, 609 - 613
https://doi.org/10.30518/jav.1683966

Abstract

The landing phase, one of the flight phases, is considered the most critical phase due to its significantly higher accident rate compared to other flight phases. A large portion of accidents occurring during the landing phase consists of hard landings. A hard landing is a landing incident defined as the main landing gear impacting the ground with a greater vertical speed and force than a normal landing. The severity of hard landings can vary from minor passenger discomfort to serious aircraft damage, structural failure, or even loss of life. In this study, the decision-making process regarding go-around maneuvers based on hard landing prediction is addressed using Machine Learning methods, specifically Logistic Regression and Random Forest models. Modeling was conducted using a dataset composed of real-time flight parameters, aiming to prevent hard landing incidents and even landing accidents. The calculation results indicate that the developed models provide accurate predictions for hard landing events.

References

  • Bonaccorso, G. (2017). Machine Learning Algorithms, Packt Publishing, Birmingham.
  • Cavcar, M. and Cavcar, A. (2003). Türkiye Hava Sahası Ticari Hava Taşımacılığı Kazalarına Genel Bakış: 1950- 2003. Mühendis ve Makine, 44(518), 21-29.
  • Donmez, K. (2017). Türk Hava Sahasında Meydana Gelen Ölümcül Uçak Kazalarına İnsan Faktörleri Analiz Ve Sınıflandırma Sisteminin (HFACS) Uygulanması. The Journal of Academic Social Science Studies, 6(59), 229 253.
  • Gil, D., Hernandez-Sabate, A., Enconniere, J., Asmayawati, S., Folch, P., Borrego-Carazo, J. and Piera, M. À. (2021). E-pilots: A System to Predict Hard Landing During The Approach Phase of Commercial Flights. IEEE Access, 10, 7489-7503.
  • Harrison, R. L. (2010). Introduction to Monte Carlo Simulation. AIP Conference Proceedings, 1204(1), 17-21.
  • Holmes, G., Sartor, P., Reed, S., Southern, P., Worden, K. and Cross, E. (2016). Prediction of Landing Gear Loads Using Machine Learning Techniques. Structural Health Monitoring, 15(5), 568-582.
  • Hu, C., Zhou, S. H., Xie, Y. and Chang, W. B. (2016). The Study on Hard Landing Prediction Model with Optimized Parameter SVM Method. 35th Chinese Control Conference (CCC), July 27-29, 2016, Chengdu, China, 4283- 4287.
  • IATA. (2015). 2010–2014 Runway Safety Accident Analysis Report, Int. Air Transp. Assoc., Montreal, QC, Canada. https://www.iata.org/contentassets/7a5cd514de9c4c63ba0a7ac21547477a/rsar-1st-2015-final-version.pdf (Accessed on April 22, 2025)
  • IATA. (2021). Safety Report 2020. https://libraryonline.erau.edu/online-full-text/iata-safety-reports/IATA- Safety-Report-2020.pdf (Accessed on April 22, 2025)
  • James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R, Springer, New York.
  • Jeong, S. H., Park, E. G., Cho, J. Y. and Kim, J. H. (2023). Development of Automatic Hard Landing Detection Model Using Autoencoder. International Journal of Aeronautical and Space Sciences, 24(3), 778-791.
  • Kong, Y., Zhang, X. and Mahadevan, S. (2022). Bayesian Deep Learning for Aircraft Hard Landing Safety Assessment. IEEE Transactions on Intelligent Transportation Systems, 23(10), 17062-17076.
  • Korkem, E. (2013). Mikroarray Gen Ekspresyon Veri Setlerinde Random Forest ve Naive Bayes Sınıflama Yöntemleri Yaklaşımı. Yüksek Lisans Tezi, Hacettepe Üniversitesi, Ankara, 65p.
  • Meltem, A. (2020). Havacılık Kazası ve Pilot Hatası Kavramı Üzerine Bir Değerlendirme. The Journal of Social Science, 4(7), 251-264.
  • Park, S. H., Goo, J. M. and Jo, C. H. (2004). Receiver Operating Characteristic (ROC) Curve: Practical Review for Radiologists. Korean Journal of Radiology, 5(1), 11-18.
  • Sartor, P., Becker, W., Worden, K., Schmidt, R. K. and Bond, D. (2016). Bayesian Sensitivity Analysis of Flight Parameters in a Hard-Landing Analysis Process. Journal of Aircraft, 53(5), 1317-1331.
  • Sartor, P., Schmidt, R., Becker, W., Worden, K., Bond, D. A. and Staszewski, W. J. (2010). Conceptual Design of a Hard Landing Indication System Using a Flight Parameter Sensor Simulation Model. 27th Congress of the International Council of the Aeronautical Sciences, September 19-24, 2010, Nice, France, 3515-3526.
  • Schmidt, R.K. (2009). System and Method for Determining Aircraft Hard Landing Events from Inertial and Aircraft Reference Frame Data. (7,589,645), U.S. Patent.
  • Singh, K. K., Elhoseny, M., Singh, A. and Elngar, A. A. (2021). Machine Learning and The Internet Of Medical Things in Healthcare. Academic Press.
  • Tong, C., Yin, X., Li, J., Zhu, T., Lv, R., Sun, L. and Rodrigues, J. J. (2018). An Innovative Deep Architecture for Aircraft Hard Landing Prediction Based on Time-Series Sensor Data. Applied Soft Computing, 73, 344-349.
  • Uguz, S. (2019). Makine Öğrenmesi Teorik Yönleri ve Python Uygulamaları ile Bir Yapay Zekâ Ekolü, Nobel Akademik Yayıncılık.
  • Ruzgarin Ucaklar Uzerindeki Etkisi. (2020). https://seyruseferim.com/ruzgarin-ucaklar-uzerindeki-etkisi/ (Accessed on April 22, 2025)
  • Wang, L., Wu, C., Sun, R. and Cui, Z. (2014). An Analysis of Hard Landing Incidents Based on Flight QAR Data. International Conference on Engineering Psychology and Cognitive Ergonomics (EPCE 2014), June 22-27, 2014, Heraklion, Crete, Greece, 398-406.
  • Xu-Hui, W., Ping, S., Xiang, R. and Lei, N. (2009). A Decision Support System Based on Support Vector Machine for Hard Landing of Civil Aircraft. International Forum on Computer Science-Technology and Applications, December 25-27, 2009, Chongqing, China, 66-70.
  • Yanaz, E. (2017). Ekip Kaynak Yönetimi ve SHELL Model Anlayışının Havayolu İşletmelerinde Uçuş Emniyeti ve Zamanında Kalkış Performansına Etkileri. Yüksek Lisans Tezi, Arel Üniversitesi, İstanbul, 143p.
There are 25 citations in total.

Details

Primary Language English
Subjects Aircraft Performance and Flight Control Systems
Journal Section Research Articles
Authors

Hatice Doğan Kuzey This is me 0000-0002-4162-1319

Fatma Yıldırım Dalkıran 0000-0001-8663-241X

Early Pub Date October 9, 2025
Publication Date October 15, 2025
Submission Date April 28, 2025
Acceptance Date September 22, 2025
Published in Issue Year 2025 Volume: 9 Issue: 3

Cite

APA Doğan Kuzey, H., & Yıldırım Dalkıran, F. (2025). Machine Learning-Based Approach for Predicting Hard Landings in Commercial Aircraft. Journal of Aviation, 9(3), 609-613. https://doi.org/10.30518/jav.1683966

Journal of Aviation - JAV 


www.javsci.com - editor@javsci.com


9210This journal is licenced under a Creative Commons Attiribution-NonCommerical 4.0 İnternational Licence