Research Article
BibTex RIS Cite

Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study

Year 2022, , 791 - 797, 29.09.2022
https://doi.org/10.30621/jbachs.1037333

Abstract

Purpose: This study aims to assess the effect of voxel size on trabecular microstructural evaluation onhuman cadaver mandiblesusing cone beam computed tomography (CBCT) images.
Methods: Twenty two Volumes of Interest were obtained from to human cadaver mandibles which were scanned in three different voxel sizes using CBCT. Scanning performed in 0.125 mm (Group 1), 0.2 mm (Group 2) and 0.3 mm (Group 3) voxel sizes. Regions of interest are calculated in both mandibles for both voxel sizes which are adjusted from apical third of all interdental alveolar trabecular bone from anterior and posterior mandible. Trabecular thickness (Tb. Th); trabecular separation (Tb. Sp); Bone Volume/Total Volume (BV/TV) values were obtained using plug in BoneJ of the software ImageJ. The results were evaluated statistically in software IBM SPSS Statistics 21.
Results: Trabecular thickness and trabecular separation showed significant difference between first and the third and the second and the third groups (p=0.000), while first and second group did not. BV/TV values showed no significant difference between whole groups.
Conclusion: Beside microstructural analysis is not their first purpose CBCT images carry knowledge about trabecular bone microstructure could be a valuable bone quality assessment tool. High correlation between values with 0.125 mm and 0.2 mm and low correlation between values with 0.125 mm and 0.3 mm voxel sizes suggest that; this knowledge is clinically more valuable when voxel size is 0.2 mm or thinner.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Tosoni GM, Lurie AG, Cowan AE, Burleson JA (2006) Pixel intensity and fractal analysis: Detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102: 235-241.
  • Vaz MF, Canhão H, Fonseca JE (2011) Bone: A composite natural material. Advances in Composite Materials – Analysis of Natural and Man-Made Materials 1: 195-228.
  • Matsunaga S, Naito H, Tamatsu Y, Takano N, Abe S, Ide Y (2013) Consideration of shear modulus in biomechanical analysis of peri-implant jaw bone: Accuracy verification using image-based multi-scale simulation. Dental Materials Journal 32(3): 425–432.
  • Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42: 30-35.
  • Kong L, Gu Z, Li T, Wu J, Hu K, Liu Y, Zhou H, Liu B (2009) Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. Int J Prosthodont 22: 607-615.
  • Mys K, Stockmans F, Vereecke E, van Lenthe GH (2018) Quantification of bone microstructure in the wrist using cone-beam computed tomography. Bone 114:206-214.
  • Ho JT, Wu J, Huang HL, Chen MYC, Fuh LJ, Hsu JT (2013) Trabecular bone structural parameteres evaluated using dental cone-beam computed tomography: cellular synthetic bones. BioMed Eng Online 12: 115: 1-10.
  • Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R (2013). A comparative evaluation of cone beam ct and micro-ct on trabecular bone structures in the human mandible. Journal of Dentomaxillofacial Radiology 42: 1-7.
  • Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, et al. (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23: 59–66.
  • Gijbels F, Jacobs R, Bogaerts R, Debaveye D, Verlinden S (2005) Dosimetry of digital panoramic imaging, part I: patient exposure. DMFR 34: 145-149.
  • Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K (1999) Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 28: 245–248.
  • Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of conebeam computed tomography in dental practice. J Can Dent Assoc 72: 75–80.
  • Lofthag-Hansen S, Huumonen S, Grondahl K, Grondahl HG (2007) Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103: 114–119.
  • Szabo BT, Dobo/Nagy C, Mikusi R. Assessment of trabecular bone microstructure by two differing cone beam ct comparison with the gold standart micro-ct. Conference Paper 45th Meeting of the Continental European Division of the International Association of Dental Research (2011). https://www.bruker.com.cn/fileadmin/user_upload/8-PDF-Docs/PreclinicalImaging/microCT/2011/MicroCT_User_Meeting2011_Parte1.pdf
  • Doube M, Kłosowski MM, Arganda-Careras I, Cordelières FP, Dougherty RP, Jackson JS et al. (2010) BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47: 1076–1079.
  • Sakka S, Coulthard P (2009) Bone quality: a reality for the process of osseointegration. Implant Dent 18: 480–485.
  • Sievanen H, Kannus P, Jarvinen TLN (2007) Bone quality: an empty term. PLoS Med; 4: e27.
  • Nishiyama KK, Campbell GM, Klinck RJ, Boyd SK (2010) Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration. Bone Journal 46: 155-161.
  • Parsa A, Ibrahim N, Hassan B, Van der Stelt P, Wismeijer D (2013) Bone quality evaluation at dental implant site using multislice CT, micro-CT and cone beam CT. Clin Oral Impl Res 1-7.
  • Ibrahim N, Parsa A, Hassan B, van der Stelt P, Wismeijer D. (2013) Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Impl Res 00:1-5.
  • Blok Y, Gravesteijn FA, Van Ruijven LJ, Koolstra JH (2013) Micro-architecture and mineralization of human alveolar bone obtained with microCT. Arch Oral Bio 58: 621-627.
Year 2022, , 791 - 797, 29.09.2022
https://doi.org/10.30621/jbachs.1037333

Abstract

Project Number

-

References

  • Tosoni GM, Lurie AG, Cowan AE, Burleson JA (2006) Pixel intensity and fractal analysis: Detecting osteoporosis in perimenopausal and postmenopausal women by using digital panoramic images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 102: 235-241.
  • Vaz MF, Canhão H, Fonseca JE (2011) Bone: A composite natural material. Advances in Composite Materials – Analysis of Natural and Man-Made Materials 1: 195-228.
  • Matsunaga S, Naito H, Tamatsu Y, Takano N, Abe S, Ide Y (2013) Consideration of shear modulus in biomechanical analysis of peri-implant jaw bone: Accuracy verification using image-based multi-scale simulation. Dental Materials Journal 32(3): 425–432.
  • Verhulp E, van Rietbergen B, Huiskes R (2008) Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side. Bone 42: 30-35.
  • Kong L, Gu Z, Li T, Wu J, Hu K, Liu Y, Zhou H, Liu B (2009) Biomechanical optimization of implant diameter and length for immediate loading: a nonlinear finite element analysis. Int J Prosthodont 22: 607-615.
  • Mys K, Stockmans F, Vereecke E, van Lenthe GH (2018) Quantification of bone microstructure in the wrist using cone-beam computed tomography. Bone 114:206-214.
  • Ho JT, Wu J, Huang HL, Chen MYC, Fuh LJ, Hsu JT (2013) Trabecular bone structural parameteres evaluated using dental cone-beam computed tomography: cellular synthetic bones. BioMed Eng Online 12: 115: 1-10.
  • Van Dessel J, Huang Y, Depypere M, Rubira-Bullen I, Maes F, Jacobs R (2013). A comparative evaluation of cone beam ct and micro-ct on trabecular bone structures in the human mandible. Journal of Dentomaxillofacial Radiology 42: 1-7.
  • Müller R, Van Campenhout H, Van Damme B, Van Der Perre G, Dequeker J, Hildebrand T, et al. (1998) Morphometric analysis of human bone biopsies: a quantitative structural comparison of histological sections and micro-computed tomography. Bone 23: 59–66.
  • Gijbels F, Jacobs R, Bogaerts R, Debaveye D, Verlinden S (2005) Dosimetry of digital panoramic imaging, part I: patient exposure. DMFR 34: 145-149.
  • Arai Y, Tammisalo E, Iwai K, Hashimoto K, Shinoda K (1999) Development of a compact computed tomographic apparatus for dental use. Dentomaxillofac Radiol 28: 245–248.
  • Scarfe WC, Farman AG, Sukovic P (2006) Clinical applications of conebeam computed tomography in dental practice. J Can Dent Assoc 72: 75–80.
  • Lofthag-Hansen S, Huumonen S, Grondahl K, Grondahl HG (2007) Limited cone-beam CT and intraoral radiography for the diagnosis of periapical pathology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103: 114–119.
  • Szabo BT, Dobo/Nagy C, Mikusi R. Assessment of trabecular bone microstructure by two differing cone beam ct comparison with the gold standart micro-ct. Conference Paper 45th Meeting of the Continental European Division of the International Association of Dental Research (2011). https://www.bruker.com.cn/fileadmin/user_upload/8-PDF-Docs/PreclinicalImaging/microCT/2011/MicroCT_User_Meeting2011_Parte1.pdf
  • Doube M, Kłosowski MM, Arganda-Careras I, Cordelières FP, Dougherty RP, Jackson JS et al. (2010) BoneJ: Free and extensible bone image analysis in ImageJ. Bone 47: 1076–1079.
  • Sakka S, Coulthard P (2009) Bone quality: a reality for the process of osseointegration. Implant Dent 18: 480–485.
  • Sievanen H, Kannus P, Jarvinen TLN (2007) Bone quality: an empty term. PLoS Med; 4: e27.
  • Nishiyama KK, Campbell GM, Klinck RJ, Boyd SK (2010) Reproducibility of bone micro-architecture measurements in rodents by in vivo micro-computed tomography is maximized with three-dimensional image registration. Bone Journal 46: 155-161.
  • Parsa A, Ibrahim N, Hassan B, Van der Stelt P, Wismeijer D (2013) Bone quality evaluation at dental implant site using multislice CT, micro-CT and cone beam CT. Clin Oral Impl Res 1-7.
  • Ibrahim N, Parsa A, Hassan B, van der Stelt P, Wismeijer D. (2013) Accuracy of trabecular bone microstructural measurement at planned dental implant sites using cone-beam CT datasets. Clin Oral Impl Res 00:1-5.
  • Blok Y, Gravesteijn FA, Van Ruijven LJ, Koolstra JH (2013) Micro-architecture and mineralization of human alveolar bone obtained with microCT. Arch Oral Bio 58: 621-627.
There are 21 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Ersen Bilgili 0000-0002-3342-4382

Project Number -
Publication Date September 29, 2022
Submission Date December 16, 2021
Published in Issue Year 2022

Cite

APA Bilgili, E. (2022). Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. Journal of Basic and Clinical Health Sciences, 6(3), 791-797. https://doi.org/10.30621/jbachs.1037333
AMA Bilgili E. Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. JBACHS. September 2022;6(3):791-797. doi:10.30621/jbachs.1037333
Chicago Bilgili, Ersen. “Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT Study”. Journal of Basic and Clinical Health Sciences 6, no. 3 (September 2022): 791-97. https://doi.org/10.30621/jbachs.1037333.
EndNote Bilgili E (September 1, 2022) Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. Journal of Basic and Clinical Health Sciences 6 3 791–797.
IEEE E. Bilgili, “Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study”, JBACHS, vol. 6, no. 3, pp. 791–797, 2022, doi: 10.30621/jbachs.1037333.
ISNAD Bilgili, Ersen. “Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT Study”. Journal of Basic and Clinical Health Sciences 6/3 (September 2022), 791-797. https://doi.org/10.30621/jbachs.1037333.
JAMA Bilgili E. Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. JBACHS. 2022;6:791–797.
MLA Bilgili, Ersen. “Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT Study”. Journal of Basic and Clinical Health Sciences, vol. 6, no. 3, 2022, pp. 791-7, doi:10.30621/jbachs.1037333.
Vancouver Bilgili E. Influence of Voxel Size on Evaluation of Trabecular Bone Microstructure on Human Mandibles: A CBCT study. JBACHS. 2022;6(3):791-7.