Research Article
BibTex RIS Cite

The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration

Year 2022, , 569 - 578, 31.05.2022
https://doi.org/10.30621/jbachs.1056769

Abstract

Background and Purpose: The aim of this study is to examine the migration, wound healing, colony formation and cytotoxic effects of reynotrin, quercetin derivative, in breast cancer cells.
Methods: In our study, CRL-4010, MCF7 and MDA-MB-231 cells were used to evaluate the different effects of reynoutrin on breast cancer. The IC50 concentration (400 µg/ml) of reynotrin, quercetin and cisplatin in the cells was determined. For cytotoxicity assessments, varying concentrations of quercetin, reynoutrin and cisplatin were applied and incubated 24h and 48h. In addition, to examine its effects on migration, cells were seeded in 6-well plates and incubated for 24 hours. Morever, to assess colony formation, test cells were seeded in 12-well plates at a concentration of 1000 cells/well and incubated overnight.
Results: These results indicated that Reynoutrin markedly inhibit the cell viability in breast cancer.
Conclusion: We firstly revealed that Reynoutrin suppressed the progression of breast cancer induction and may provide a potential therapeutic target for breast cancer treatment. More detailed studies are needed to show this effect of reynoutrin.

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
  • 2. Mokbel K, Mokbel K. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review. In Vivo. 2019;33(4):983-97.
  • 3. Sopik V. International variation in breast cancer incidence and mortality in young women. Breast Cancer Res Tr. 2021;186(2):497-507.
  • 4. Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: Markers and models. Nat Rev Cancer. 2005;5(8):591-602.
  • 5. Chaffer CL, Weinberg RA. A Perspective on Cancer Cell Metastasis. Science. 2011;331(6024):1559-64.
  • 6. Liang YR, Zhang HW, Song XJ, Yang QF. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14-27.
  • 7. Fisusi FA, Akala EO. Drug Combinations in Breast Cancer Therapy. Pharm Nanotechnol. 2019;7(1):3-23.
  • 8. Fong EL, Harrington DA, Farach-Carson MC, Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 2016;108:197-213.
  • 9. Chew HK. Adjuvant therapy for breast cancer: who should get what? West J Med. 2001;174(4):284-7.
  • 10. de Matteis A, Nuzzo F, D'Aiuto G, et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast: a single-center, phase II study. Cancer. 2002;94(4):895-901.
  • 11. Senkus E, Kyriakides S, Ohno S, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v8-30.
  • 12. Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr. 2017;56(4):1409-20.
  • 13. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29(3):323-31.
  • 14. Kongpichitchoke T, Hsu JL, Huang TC. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCdelta C1B Domain: In Vitro and in Silico Studies. J Agric Food Chem. 2015;63(18):4580-6.
  • 15. Sait S, Hamri-Zeghichi S, Boulekbache-Makhlouf L, et al. HPLC-UV/DAD and ESI-MS(n) analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. J Pharm Biomed Anal. 2015;111:231-40.
  • 16. Akhavan M, Jahangiri S, Shafaghat A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind Crop Prod. 2015;63:114-8.
  • 17. Ku SK, Kim TH, Lee S, Kim SM, Bae JS. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem Toxicol. 2013;53:197-204.
  • 18. Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45(12):2821-31.
  • 19. Choi JH, Kim DW, Yun N, et al. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J Nat Prod. 2011;74(5):1055-60.
  • 20. Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol. 2014;80(9):2754-62.
  • 21. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2-3):325-37.
  • 22. Li Z, Meng F, Zhang Y, et al. Simultaneous quantification of hyperin, reynoutrin and guaijaverin in mice plasma by LC-MS/MS: application to a pharmacokinetic study. Biomed Chromatogr. 2016;30(7):1124-30.
  • 23. Rehman S, Ashfaq UA, Ijaz B, Riazuddin S. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb Pathog. 2018;121:198-209.
  • 24. Butkeviciute A, Liaudanskas M, Kviklys D, Gelvonauskiene D, Janulis V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules. 2020;25(22).
  • 25. Yang W, Tu H, Tang K, Huang H, Ou S, Wu J. Reynoutrin Improves Ischemic Heart Failure in Rats Via Targeting S100A1. Front Pharmacol. 2021;12:703962.
  • 26. Calzada F, Cerda-Garcia-Rojas CM, Meckes M, Cedillo-Rivera R, Bye R, Mata R. Geranins A and B, new antiprotozoal A-type proanthocyanidins from Geranium niveum. J Nat Prod. 1999;62(5):705-9.
  • 27. Shen M, Duan WM, Wu MY, et al. Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol Rep. 2015;34(1):359-67.
  • 28. Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW, Liu RS. STAT3/NF-kappaB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer. Theranostics. 2017;7(3):647-63.
  • 29. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.
  • 30. Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer. 2018;124(13):2785-800.
  • 31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
  • 32. Ali HR, Rueda OM, Chin S-F, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome biology. 2014;15(8):1-14.
  • 33. Wang SY, Zhang Q, Yu CL, Cao YY, Zuo YC, Yang L. Immune cell infiltration-based signature for prognosis and immunogenomic analysis in breast cancer. Brief Bioinform. 2021;22(2):2020-31.
  • 34. Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):e7695.
  • 35. Hoag H. Molecular biology: Marked progress. Nature. 2015;527(7578):S114-5.
  • 36. Zheng N, Zhang P, Huang H, et al. ERalpha down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci. 2015;128(3):97-107.
  • 37. Levenson AS, Jordan VC. MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res. 1997;57(15):3071-8.
  • 38. Comsa S, Cimpean AM, Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015;35(6):3147-54.
  • 39. Pereira L, Ferreira MT, Lima AGF, et al. Biological effects induced by doses of mammographic screening. Phys Med. 2021;87:90-8.
  • 40. Gest C, Joimel U, Huang L, et al. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13:63.
  • 41. Rockwell S, Liu Y, Higgins SA. Alteration of the effects of cancer therapy agents on breast cancer cells by the herbal medicine black cohosh. Breast Cancer Res Treat. 2005;90(3):233-9.
  • 42. Greenwell M, Rahman P. Medicinal plants: their use in anticancer treatment. International journal of pharmaceutical sciences and research. 2015;6(10):4103.
  • 43. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604.
  • 44. Alraouji NN, Al-Mohanna FH, Ghebeh H, et al. Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple-negative breast cancer. Mol Carcinog. 2020;59(9):1041-51.
  • 45. Nadal-Serrano M, Sastre-Serra J, Valle A, Roca P, Oliver J. Chronic-leptin attenuates Cisplatin cytotoxicity in MCF-7 breast cancer cell line. Cell Physiol Biochem. 2015;36(1):221-32.
  • 46. Choi JA, Kim JY, Lee JY, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19(4):837-44.
  • 47. Kabala-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 - a comparative study. Cell Mol Biol (Noisy-le-grand). 2018;64(8):1-10.
  • 48. Umar SM, Patra S, Kashyap A, Dev JRA, Kumar L, Prasad CP. Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells. Nutr Cancer. 2021:1-14.
  • 49. Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018;208:123-30.
Year 2022, , 569 - 578, 31.05.2022
https://doi.org/10.30621/jbachs.1056769

Abstract

References

  • 1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
  • 2. Mokbel K, Mokbel K. Chemoprevention of Breast Cancer With Vitamins and Micronutrients: A Concise Review. In Vivo. 2019;33(4):983-97.
  • 3. Sopik V. International variation in breast cancer incidence and mortality in young women. Breast Cancer Res Tr. 2021;186(2):497-507.
  • 4. Weigelt B, Peterse JL, van't Veer LJ. Breast cancer metastasis: Markers and models. Nat Rev Cancer. 2005;5(8):591-602.
  • 5. Chaffer CL, Weinberg RA. A Perspective on Cancer Cell Metastasis. Science. 2011;331(6024):1559-64.
  • 6. Liang YR, Zhang HW, Song XJ, Yang QF. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol. 2020;60:14-27.
  • 7. Fisusi FA, Akala EO. Drug Combinations in Breast Cancer Therapy. Pharm Nanotechnol. 2019;7(1):3-23.
  • 8. Fong EL, Harrington DA, Farach-Carson MC, Yu H. Heralding a new paradigm in 3D tumor modeling. Biomaterials. 2016;108:197-213.
  • 9. Chew HK. Adjuvant therapy for breast cancer: who should get what? West J Med. 2001;174(4):284-7.
  • 10. de Matteis A, Nuzzo F, D'Aiuto G, et al. Docetaxel plus epidoxorubicin as neoadjuvant treatment in patients with large operable or locally advanced carcinoma of the breast: a single-center, phase II study. Cancer. 2002;94(4):895-901.
  • 11. Senkus E, Kyriakides S, Ohno S, et al. Primary breast cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26 Suppl 5:v8-30.
  • 12. Grosso G, Stepaniak U, Micek A, Stefler D, Bobak M, Pajak A. Dietary polyphenols are inversely associated with metabolic syndrome in Polish adults of the HAPIEE study. Eur J Nutr. 2017;56(4):1409-20.
  • 13. Parhiz H, Roohbakhsh A, Soltani F, Rezaee R, Iranshahi M. Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother Res. 2015;29(3):323-31.
  • 14. Kongpichitchoke T, Hsu JL, Huang TC. Number of Hydroxyl Groups on the B-Ring of Flavonoids Affects Their Antioxidant Activity and Interaction with Phorbol Ester Binding Site of PKCdelta C1B Domain: In Vitro and in Silico Studies. J Agric Food Chem. 2015;63(18):4580-6.
  • 15. Sait S, Hamri-Zeghichi S, Boulekbache-Makhlouf L, et al. HPLC-UV/DAD and ESI-MS(n) analysis of flavonoids and antioxidant activity of an Algerian medicinal plant: Paronychia argentea Lam. J Pharm Biomed Anal. 2015;111:231-40.
  • 16. Akhavan M, Jahangiri S, Shafaghat A. Studies on the antioxidant and antimicrobial activity and flavonoid derivatives from the fruit of Trigonosciadium brachytaenium (Boiss.) Alava. Ind Crop Prod. 2015;63:114-8.
  • 17. Ku SK, Kim TH, Lee S, Kim SM, Bae JS. Antithrombotic and profibrinolytic activities of isorhamnetin-3-O-galactoside and hyperoside. Food Chem Toxicol. 2013;53:197-204.
  • 18. Ravishankar D, Rajora AK, Greco F, Osborn HM. Flavonoids as prospective compounds for anti-cancer therapy. Int J Biochem Cell Biol. 2013;45(12):2821-31.
  • 19. Choi JH, Kim DW, Yun N, et al. Protective effects of hyperoside against carbon tetrachloride-induced liver damage in mice. J Nat Prod. 2011;74(5):1055-60.
  • 20. Han SH, Kim BG, Yoon JA, Chong Y, Ahn JH. Synthesis of flavonoid O-pentosides by Escherichia coli through engineering of nucleotide sugar pathways and glycosyltransferase. Appl Environ Microbiol. 2014;80(9):2754-62.
  • 21. Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2-3):325-37.
  • 22. Li Z, Meng F, Zhang Y, et al. Simultaneous quantification of hyperin, reynoutrin and guaijaverin in mice plasma by LC-MS/MS: application to a pharmacokinetic study. Biomed Chromatogr. 2016;30(7):1124-30.
  • 23. Rehman S, Ashfaq UA, Ijaz B, Riazuddin S. Anti-hepatitis C virus activity and synergistic effect of Nymphaea alba extracts and bioactive constituents in liver infected cells. Microb Pathog. 2018;121:198-209.
  • 24. Butkeviciute A, Liaudanskas M, Kviklys D, Gelvonauskiene D, Janulis V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules. 2020;25(22).
  • 25. Yang W, Tu H, Tang K, Huang H, Ou S, Wu J. Reynoutrin Improves Ischemic Heart Failure in Rats Via Targeting S100A1. Front Pharmacol. 2021;12:703962.
  • 26. Calzada F, Cerda-Garcia-Rojas CM, Meckes M, Cedillo-Rivera R, Bye R, Mata R. Geranins A and B, new antiprotozoal A-type proanthocyanidins from Geranium niveum. J Nat Prod. 1999;62(5):705-9.
  • 27. Shen M, Duan WM, Wu MY, et al. Participation of autophagy in the cytotoxicity against breast cancer cells by cisplatin. Oncol Rep. 2015;34(1):359-67.
  • 28. Kuo WY, Hwu L, Wu CY, Lee JS, Chang CW, Liu RS. STAT3/NF-kappaB-Regulated Lentiviral TK/GCV Suicide Gene Therapy for Cisplatin-Resistant Triple-Negative Breast Cancer. Theranostics. 2017;7(3):647-63.
  • 29. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87-108.
  • 30. Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer. 2018;124(13):2785-800.
  • 31. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.
  • 32. Ali HR, Rueda OM, Chin S-F, et al. Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome biology. 2014;15(8):1-14.
  • 33. Wang SY, Zhang Q, Yu CL, Cao YY, Zuo YC, Yang L. Immune cell infiltration-based signature for prognosis and immunogenomic analysis in breast cancer. Brief Bioinform. 2021;22(2):2020-31.
  • 34. Fredholm H, Eaker S, Frisell J, Holmberg L, Fredriksson I, Lindman H. Breast cancer in young women: poor survival despite intensive treatment. PLoS One. 2009;4(11):e7695.
  • 35. Hoag H. Molecular biology: Marked progress. Nature. 2015;527(7578):S114-5.
  • 36. Zheng N, Zhang P, Huang H, et al. ERalpha down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J Pharmacol Sci. 2015;128(3):97-107.
  • 37. Levenson AS, Jordan VC. MCF-7: the first hormone-responsive breast cancer cell line. Cancer Res. 1997;57(15):3071-8.
  • 38. Comsa S, Cimpean AM, Raica M. The Story of MCF-7 Breast Cancer Cell Line: 40 years of Experience in Research. Anticancer Res. 2015;35(6):3147-54.
  • 39. Pereira L, Ferreira MT, Lima AGF, et al. Biological effects induced by doses of mammographic screening. Phys Med. 2021;87:90-8.
  • 40. Gest C, Joimel U, Huang L, et al. Rac3 induces a molecular pathway triggering breast cancer cell aggressiveness: differences in MDA-MB-231 and MCF-7 breast cancer cell lines. BMC Cancer. 2013;13:63.
  • 41. Rockwell S, Liu Y, Higgins SA. Alteration of the effects of cancer therapy agents on breast cancer cells by the herbal medicine black cohosh. Breast Cancer Res Treat. 2005;90(3):233-9.
  • 42. Greenwell M, Rahman P. Medicinal plants: their use in anticancer treatment. International journal of pharmaceutical sciences and research. 2015;6(10):4103.
  • 43. Tang SM, Deng XT, Zhou J, Li QP, Ge XX, Miao L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed Pharmacother. 2020;121:109604.
  • 44. Alraouji NN, Al-Mohanna FH, Ghebeh H, et al. Tocilizumab potentiates cisplatin cytotoxicity and targets cancer stem cells in triple-negative breast cancer. Mol Carcinog. 2020;59(9):1041-51.
  • 45. Nadal-Serrano M, Sastre-Serra J, Valle A, Roca P, Oliver J. Chronic-leptin attenuates Cisplatin cytotoxicity in MCF-7 breast cancer cell line. Cell Physiol Biochem. 2015;36(1):221-32.
  • 46. Choi JA, Kim JY, Lee JY, et al. Induction of cell cycle arrest and apoptosis in human breast cancer cells by quercetin. Int J Oncol. 2001;19(4):837-44.
  • 47. Kabala-Dzik A, Rzepecka-Stojko A, Kubina R, et al. Flavonoids, bioactive components of propolis, exhibit cytotoxic activity and induce cell cycle arrest and apoptosis in human breast cancer cells MDA-MB-231 and MCF-7 - a comparative study. Cell Mol Biol (Noisy-le-grand). 2018;64(8):1-10.
  • 48. Umar SM, Patra S, Kashyap A, Dev JRA, Kumar L, Prasad CP. Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells. Nutr Cancer. 2021:1-14.
  • 49. Jia L, Huang S, Yin X, Zan Y, Guo Y, Han L. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life Sci. 2018;208:123-30.
There are 49 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Tuğba Nurcan Yüksel 0000-0001-5092-1674

Esra Bozgeyik 0000-0002-8726-3182

Muhammed Yayla 0000-0002-0659-3084

Publication Date May 31, 2022
Submission Date January 12, 2022
Published in Issue Year 2022

Cite

APA Yüksel, T. N., Bozgeyik, E., & Yayla, M. (2022). The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration. Journal of Basic and Clinical Health Sciences, 6(2), 569-578. https://doi.org/10.30621/jbachs.1056769
AMA Yüksel TN, Bozgeyik E, Yayla M. The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration. JBACHS. May 2022;6(2):569-578. doi:10.30621/jbachs.1056769
Chicago Yüksel, Tuğba Nurcan, Esra Bozgeyik, and Muhammed Yayla. “The Effect of Quercetin and Quercetin-3-D-Xyloside on Breast Cancer Proliferation and Migration”. Journal of Basic and Clinical Health Sciences 6, no. 2 (May 2022): 569-78. https://doi.org/10.30621/jbachs.1056769.
EndNote Yüksel TN, Bozgeyik E, Yayla M (May 1, 2022) The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration. Journal of Basic and Clinical Health Sciences 6 2 569–578.
IEEE T. N. Yüksel, E. Bozgeyik, and M. Yayla, “The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration”, JBACHS, vol. 6, no. 2, pp. 569–578, 2022, doi: 10.30621/jbachs.1056769.
ISNAD Yüksel, Tuğba Nurcan et al. “The Effect of Quercetin and Quercetin-3-D-Xyloside on Breast Cancer Proliferation and Migration”. Journal of Basic and Clinical Health Sciences 6/2 (May 2022), 569-578. https://doi.org/10.30621/jbachs.1056769.
JAMA Yüksel TN, Bozgeyik E, Yayla M. The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration. JBACHS. 2022;6:569–578.
MLA Yüksel, Tuğba Nurcan et al. “The Effect of Quercetin and Quercetin-3-D-Xyloside on Breast Cancer Proliferation and Migration”. Journal of Basic and Clinical Health Sciences, vol. 6, no. 2, 2022, pp. 569-78, doi:10.30621/jbachs.1056769.
Vancouver Yüksel TN, Bozgeyik E, Yayla M. The Effect of Quercetin and Quercetin-3-d-xyloside on Breast Cancer Proliferation and Migration. JBACHS. 2022;6(2):569-78.