Review Article
BibTex RIS Cite

Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise

Year 2022, , 682 - 688, 31.05.2022
https://doi.org/10.30621/jbachs.1057262

Abstract

Abstract

Background: Vertical head-out water immersion has different physiological effects on the human body system due to hydrostatic pressure and different water temperatures. This review examines the changes in cerebral blood flow and metabolism during head-out water immersion and in-water exercise

Method: Systematic research was conducted in PubMed, ScienceDirect, Scopus databases, by binary research methods. It included 11 articles that met the inclusion criteria.

Results: Studies have shown that acutely vertical head-out immersion in thermoneutral water and in-water exercise positively affects the circulation and metabolism of the brain.

Conclusion: In healthy people, vertical immersion in thermoneutral water increases brain activity by increasing cerebral artery velocity and oxygenation. But acutely immersion in hot and cold water does not have a positive effect on cerebral circulation.

References

  • 1. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017;67(3):345–51.
  • 2. Smith KJ, Ainslie PN. The regulation of cerebral blood flow and metabolism during exercise: Cerebral blood flow and metabolism during exercise. Exp Physiol. 2017;102(11):1356–71.
  • 3. Tsuji B, Filingeri D, Honda Y, Eguchi T, Fujii N, Kondo N, vd. The effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. J Appl Physiol. 2018;124(1):225–33.
  • 4. Worley ML, Reed EL, J. Kueck P, Dirr J, Klaes N, J. Schlader Z, vd. Hot head-out water immersion does not acutely alter dynamic cerebral autoregulation or cerebrovascular reactivity to hypercapnia. Temperature. 2021;1–21.
  • 5. Christie JL, Sheldahl LM, Tristani FE, Wann LS, Sagar KB, Levandoski SG, vd. The cardiovascular regulation during head-out water immersion exercise. J Appl Physiol. 01 Ağustos 1990;69(2):657–64.
  • 6. David R. Pendergast, Richard E. Moon, Krasney JJ, Heather E. Held, Paola Zamparo. Human Physiology in an Aquatic Environment. Compr Physiol. 2011;5(4):1705–50.
  • 7. Wilcock IM, Cronin JB, Hing WA. Physiological Response to Water Immersion: A Method for Sport Recovery? Sports Med. 2006;36(9):747-765.
  • 8. Carter HH, Spence AL, Pugh CJA, Ainslie P, Naylor LH, Green DJ. Cardiovascular responses to water immersion in humans: impact on cerebral perfusion. Am J Physiol-Regul Integr Comp Physiol. 01 Mayıs 2014;306(9):R636-40.
  • 9. Sackett JR, Schlader ZJ, Cruz C, Hostler D, Johnson BD. The effect of water immersion and acute hypercapnia on ventilatory sensitivity and cerebrovascular reactivity. Physiol Rep. 2018;6(20).
  • 10. PRISMA-P Group, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, vd. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
  • 11. Sato D, Onishi H, Yamashiro K, Iwabe T, Shimoyama Y, Maruyama A. Water immersion to the Femur-Level Affects Cerebral Cortical Activity in Humans: Functional Near-Infrared Spectroscopy Study. Brain Topogr. 2012;25(2):220–7.
  • 12. Sato D, Yamashiro K, Yamazaki Y, Tsubaki A, Onishi H, Takehara N, vd. Site Specificity of Changes in Cortical oxy-hemoglobin Concentration Induced by Water Immersion. Oxyg Transp Tissue XXXIX. 2017;977:233-40.
  • 13. Tsuji B, Hoshi Y, Honda Y, Fujii N, Sasaki Y, Cheung SS, vd. Respiratory mechanics and cerebral blood flow during heat-induced hyperventilation and its voluntary suppression in passively heated humans. Physiol Rep. 2019;7(1):e13967.
  • 14. Mantoni T, Belhage B, Pedersen LM, Pott FC. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning. Aviat Space Environ Med. 2007;78(4):374–6.
  • 15. Mantoni T, Rasmussen JH, Belhage B, Pott FC. Voluntary Respiratory Control and Cerebral Blood Flow Velocity upon Ice-Water Immersion. Aviat Space Environ Med. 2008;79(8):765–8.
  • 16. Pugh CJA, Sprung VS, Ono K, Spence AL, Thijssen DHJ, Carter HH, vd. The Effect of Water Immersion during Exercise on Cerebral Blood Flow. Med Sci Sports Exerc. 2015;47(2):299–306.
  • 17. Parfitt R, Hensman MY, Lucas SJE. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise. Med Sci Sports Exerc. 2017;49(7):1305–12.
  • 18. Miwa C, Mano T, Saito M, Iwase S, Matsukawa T, Sugiyama Y, vd. Aging reduces sympatho-suppressive response to head-out water immersion in humans. Acta Physiol Scand. Ağustos 1996;158(1):15–20.
  • 19. Sato D, Seko C, Hashitomi T, Sengoku Y, Nomura T. Differential effects of water-based exercise on the cognitive function in independent elderly adults. Aging Clin Exp Res. 2015;27(2):149–59.
  • 20. Sackett JR, Schlader ZJ, O’Leary MC, Chapman CL, Johnson BD. Central chemosensitivity is augmented during 2 h of thermoneutral head-out water immersion in healthy men and women. Exp Physiol. 2018;103(5):714–27.
  • 21. Sackett JR, Schlader ZJ, Sarker S, Chapman CL, Johnson BD. Peripheral chemosensitivity is not blunted during 2 h of thermoneutral head out water immersion in healthy men and women. Physiol Rep. 2017;5(20):e13472.
  • 22. Miyamoto T, Bailey DM, Nakahara H, Ueda S, Inagaki M, Ogoh S. Manipulation of central blood volume and implications for respiratory control function. Am J Physiol-Heart Circ Physiol. 2014;306(12):H1669-78.
  • 23. Zhang Y, Liao B, Li M, Cheng M, Fu Y, Liu Q, vd. Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway. Cardiovasc Ther. 2016;34(5):308–13.
  • 24. Bailey T, Cable N, Miller G, Sprung V, Low D, Jones H. Repeated Warm Water Immersion Induces Similar Cerebrovascular Adaptations to 8 Weeks of Moderate-Intensity Exercise Training in Females. Int J Sports Med. 2016;37(10):757–65.
  • 25. Tipton MJ. The Initial Responses to Cold-Water Immersion in Man. Clin Sci. 1989;77(6):581–8.
  • 26. Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat: Cooling for recovery in the heat. Scand J Med Sci Sports. 2014;24(4):656–66.
  • 27. Subudhi AW, Olin JT, Dimmen AC, Polaner DM, Kayser B, RC. Does cerebral oxygen delivery limit incremental exercise performance? J Appl Physiol. 2011;111(6):1727–34.
  • 28. Shoemaker LN, Wilson LC, Lucas SJE, Machado L, Thomas KN, Cotter JD. Swimming‐related effects on cerebrovascular and cognitive function. Physiol Rep. 2019;7(20).
Year 2022, , 682 - 688, 31.05.2022
https://doi.org/10.30621/jbachs.1057262

Abstract

References

  • 1. Ogoh S. Relationship between cognitive function and regulation of cerebral blood flow. J Physiol Sci. 2017;67(3):345–51.
  • 2. Smith KJ, Ainslie PN. The regulation of cerebral blood flow and metabolism during exercise: Cerebral blood flow and metabolism during exercise. Exp Physiol. 2017;102(11):1356–71.
  • 3. Tsuji B, Filingeri D, Honda Y, Eguchi T, Fujii N, Kondo N, vd. The effect of hypocapnia on the sensitivity of hyperthermic hyperventilation and the cerebrovascular response in resting heated humans. J Appl Physiol. 2018;124(1):225–33.
  • 4. Worley ML, Reed EL, J. Kueck P, Dirr J, Klaes N, J. Schlader Z, vd. Hot head-out water immersion does not acutely alter dynamic cerebral autoregulation or cerebrovascular reactivity to hypercapnia. Temperature. 2021;1–21.
  • 5. Christie JL, Sheldahl LM, Tristani FE, Wann LS, Sagar KB, Levandoski SG, vd. The cardiovascular regulation during head-out water immersion exercise. J Appl Physiol. 01 Ağustos 1990;69(2):657–64.
  • 6. David R. Pendergast, Richard E. Moon, Krasney JJ, Heather E. Held, Paola Zamparo. Human Physiology in an Aquatic Environment. Compr Physiol. 2011;5(4):1705–50.
  • 7. Wilcock IM, Cronin JB, Hing WA. Physiological Response to Water Immersion: A Method for Sport Recovery? Sports Med. 2006;36(9):747-765.
  • 8. Carter HH, Spence AL, Pugh CJA, Ainslie P, Naylor LH, Green DJ. Cardiovascular responses to water immersion in humans: impact on cerebral perfusion. Am J Physiol-Regul Integr Comp Physiol. 01 Mayıs 2014;306(9):R636-40.
  • 9. Sackett JR, Schlader ZJ, Cruz C, Hostler D, Johnson BD. The effect of water immersion and acute hypercapnia on ventilatory sensitivity and cerebrovascular reactivity. Physiol Rep. 2018;6(20).
  • 10. PRISMA-P Group, Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, vd. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.
  • 11. Sato D, Onishi H, Yamashiro K, Iwabe T, Shimoyama Y, Maruyama A. Water immersion to the Femur-Level Affects Cerebral Cortical Activity in Humans: Functional Near-Infrared Spectroscopy Study. Brain Topogr. 2012;25(2):220–7.
  • 12. Sato D, Yamashiro K, Yamazaki Y, Tsubaki A, Onishi H, Takehara N, vd. Site Specificity of Changes in Cortical oxy-hemoglobin Concentration Induced by Water Immersion. Oxyg Transp Tissue XXXIX. 2017;977:233-40.
  • 13. Tsuji B, Hoshi Y, Honda Y, Fujii N, Sasaki Y, Cheung SS, vd. Respiratory mechanics and cerebral blood flow during heat-induced hyperventilation and its voluntary suppression in passively heated humans. Physiol Rep. 2019;7(1):e13967.
  • 14. Mantoni T, Belhage B, Pedersen LM, Pott FC. Reduced cerebral perfusion on sudden immersion in ice water: a possible cause of drowning. Aviat Space Environ Med. 2007;78(4):374–6.
  • 15. Mantoni T, Rasmussen JH, Belhage B, Pott FC. Voluntary Respiratory Control and Cerebral Blood Flow Velocity upon Ice-Water Immersion. Aviat Space Environ Med. 2008;79(8):765–8.
  • 16. Pugh CJA, Sprung VS, Ono K, Spence AL, Thijssen DHJ, Carter HH, vd. The Effect of Water Immersion during Exercise on Cerebral Blood Flow. Med Sci Sports Exerc. 2015;47(2):299–306.
  • 17. Parfitt R, Hensman MY, Lucas SJE. Cerebral Blood Flow Responses to Aquatic Treadmill Exercise. Med Sci Sports Exerc. 2017;49(7):1305–12.
  • 18. Miwa C, Mano T, Saito M, Iwase S, Matsukawa T, Sugiyama Y, vd. Aging reduces sympatho-suppressive response to head-out water immersion in humans. Acta Physiol Scand. Ağustos 1996;158(1):15–20.
  • 19. Sato D, Seko C, Hashitomi T, Sengoku Y, Nomura T. Differential effects of water-based exercise on the cognitive function in independent elderly adults. Aging Clin Exp Res. 2015;27(2):149–59.
  • 20. Sackett JR, Schlader ZJ, O’Leary MC, Chapman CL, Johnson BD. Central chemosensitivity is augmented during 2 h of thermoneutral head-out water immersion in healthy men and women. Exp Physiol. 2018;103(5):714–27.
  • 21. Sackett JR, Schlader ZJ, Sarker S, Chapman CL, Johnson BD. Peripheral chemosensitivity is not blunted during 2 h of thermoneutral head out water immersion in healthy men and women. Physiol Rep. 2017;5(20):e13472.
  • 22. Miyamoto T, Bailey DM, Nakahara H, Ueda S, Inagaki M, Ogoh S. Manipulation of central blood volume and implications for respiratory control function. Am J Physiol-Heart Circ Physiol. 2014;306(12):H1669-78.
  • 23. Zhang Y, Liao B, Li M, Cheng M, Fu Y, Liu Q, vd. Shear stress regulates endothelial cell function through SRB1-eNOS signaling pathway. Cardiovasc Ther. 2016;34(5):308–13.
  • 24. Bailey T, Cable N, Miller G, Sprung V, Low D, Jones H. Repeated Warm Water Immersion Induces Similar Cerebrovascular Adaptations to 8 Weeks of Moderate-Intensity Exercise Training in Females. Int J Sports Med. 2016;37(10):757–65.
  • 25. Tipton MJ. The Initial Responses to Cold-Water Immersion in Man. Clin Sci. 1989;77(6):581–8.
  • 26. Minett GM, Duffield R, Billaut F, Cannon J, Portus MR, Marino FE. Cold-water immersion decreases cerebral oxygenation but improves recovery after intermittent-sprint exercise in the heat: Cooling for recovery in the heat. Scand J Med Sci Sports. 2014;24(4):656–66.
  • 27. Subudhi AW, Olin JT, Dimmen AC, Polaner DM, Kayser B, RC. Does cerebral oxygen delivery limit incremental exercise performance? J Appl Physiol. 2011;111(6):1727–34.
  • 28. Shoemaker LN, Wilson LC, Lucas SJE, Machado L, Thomas KN, Cotter JD. Swimming‐related effects on cerebrovascular and cognitive function. Physiol Rep. 2019;7(20).
There are 28 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Reviews
Authors

Denizhan Türkmen 0000-0002-1538-9501

Çağdaş Güdücü 0000-0002-7735-4048

Cem Bediz 0000-0002-2491-4259

Erkan Günay 0000-0003-2199-9987

Publication Date May 31, 2022
Submission Date January 17, 2022
Published in Issue Year 2022

Cite

APA Türkmen, D., Güdücü, Ç., Bediz, C., Günay, E. (2022). Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. Journal of Basic and Clinical Health Sciences, 6(2), 682-688. https://doi.org/10.30621/jbachs.1057262
AMA Türkmen D, Güdücü Ç, Bediz C, Günay E. Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. JBACHS. May 2022;6(2):682-688. doi:10.30621/jbachs.1057262
Chicago Türkmen, Denizhan, Çağdaş Güdücü, Cem Bediz, and Erkan Günay. “Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise”. Journal of Basic and Clinical Health Sciences 6, no. 2 (May 2022): 682-88. https://doi.org/10.30621/jbachs.1057262.
EndNote Türkmen D, Güdücü Ç, Bediz C, Günay E (May 1, 2022) Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. Journal of Basic and Clinical Health Sciences 6 2 682–688.
IEEE D. Türkmen, Ç. Güdücü, C. Bediz, and E. Günay, “Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise”, JBACHS, vol. 6, no. 2, pp. 682–688, 2022, doi: 10.30621/jbachs.1057262.
ISNAD Türkmen, Denizhan et al. “Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise”. Journal of Basic and Clinical Health Sciences 6/2 (May 2022), 682-688. https://doi.org/10.30621/jbachs.1057262.
JAMA Türkmen D, Güdücü Ç, Bediz C, Günay E. Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. JBACHS. 2022;6:682–688.
MLA Türkmen, Denizhan et al. “Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise”. Journal of Basic and Clinical Health Sciences, vol. 6, no. 2, 2022, pp. 682-8, doi:10.30621/jbachs.1057262.
Vancouver Türkmen D, Güdücü Ç, Bediz C, Günay E. Cerebral Blood Flow and Metabolism During Vertical Immersion and In-Water Exercise. JBACHS. 2022;6(2):682-8.