Research Article
BibTex RIS Cite

Angiogenic Regulators during Alpine Skiing Training

Year 2024, , 456 - 463, 31.05.2024
https://doi.org/10.30621/jbachs.1401258

Abstract

Purpose: The present study evaluates angiogenesis response through the determination of acute changes in hypoxia inducible factor 1 alpha, vascular endothelial growth factor, erythropoietin and endostatin levels measured after both slalom and giant slalom trainings.
Material and Methods: A total of 20 volunteer male athletes over the age of 18 years with no health problems, and with international alpine skiing competition experience were included in the study. At the outset, the height, body weight and VO2max values of the volunteers was measured, and a giant slalom training lasting 2.5 hours was performed after a week on a giant slalom course. The volunteers were then asked not to exercise for a week, and slalom training was performed lasting 2.5 hours on a slalom course. The endostatin, erythropoietin, hypoxia inducible factor 1 alpha, and vascular endothelial growth factor levels of the volunteers were examined from 5 ml venous blood samples drawn into biochemistry tubes 20 minutes before and as soon as trainings over both the giant slalom and slalom trainings.
Results: A significant increase was determined in the hypoxia inducible factor 1 alpha, vascular endothelial growth factor, erythropoietin and endostatin levels after both the giant slalom and slalom trainings (p < 0.05).
Conclusion: These increases observed in the angiogenesis markers suggests that a single unit giant slalom and slalom trainings induces angiogenesis responses.

Supporting Institution

Erciyes Üniversitesi BAP

Project Number

TYL-2017-7493

Thanks

Erciyes Üniversitesi Bilimsel Araştırma Proje Birimine desteklerinden dolayı teşekkür ederiz.

References

  • White AT, Johnson SC. Physiological Aspects and Injury in Elite Alpine Skiers. Sport Med Eval Res Exerc Sci Sport Med. 1993;15(3):170-178. doi:10.2165/00007256-199315030-00003
  • Szmedra L, Im J, Nioka S, Chance B, Rundell KW. Hemoglobin/myoglobin oxygen desaturation during Alpine skiing. Med Sci Sports Exerc. 2001;33(2):232-236. doi:10.1097/00005768-200102000-00010
  • Andersen RE, Montgomery DL. Physiology of Alpine Skiing. Sport Med An Int J Appl Med Sci Sport Exerc. 1988;6(4):210-221. doi:10.2165/00007256-198806040-00003
  • Tesch PA. Aspects on muscle properties and use in competitive Alpine skiing. Med Sci Sports Exerc. 1995;27(3):310-314. doi:10.1249/00005768-199503000-00004
  • Berg HE, Eiken O, Tesch PA. Involvement of eccentric muscle actions in giant slalom racing. Med Sci Sports Exerc. 1995;27(12):1666-1670. doi:10.1249/00005768-199512000-00013
  • Seifert JG, Kipp RW, Amann M, Gazal O. Muscle damage, fluid ingestion, and energy supplementation during recreational alpine skiing. Int J Sport Nutr Exerc Metab. 2005;15(5):528-536. doi:10.1123/IJSNEM.15.5.528
  • Petrofsky JS, Hendershot DM. The interrelationship between blood pressure, intramuscular pressure, and isometric endurance in fast and slow twitch skeletal muscle in the cat. Eur J Appl Physiol Occup Physiol. 1984;53(2):106-111. doi:10.1007/BF00422571
  • Kyröläinen H, Takala TES, Komi P V. Muscle damage induced by stretch-shortening cycle exercise. Med Sci Sports Exerc. 1998;30(3):415-420. doi:10.1097/00005768-199803000-00012
  • Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009;457(5):963-977. doi:10.1007/S00424-008-0563-9
  • Suhr F, Brixius K, De Marées M, et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol. 2007;103(2):474-483. doi:10.1152/JAPPLPHYSIOL.01160.2006
  • Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol. 2004;97(3):1119-1128. doi:10.1152/JAPPLPHYSIOL.00035.2004
  • Hudlicka O, Milkiewicz M, Cotter MA, Brown MD. Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles. Exp Physiol. 2002;87(3):373-381. doi:10.1113/EPH8702285
  • Høier B, Rufener N, Bojsen-Møller J, Bangsbo J, Hellsten Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol. 2010;588(19):3833-3845. doi:10.1113/jphysiol.2010.190439
  • Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners. Scand J Med Sci Sports. 2015;25(5):e479-e489. doi:10.1111/SMS.12356
  • Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557(Pt 2):571-582. doi:10.1113/JPHYSIOL.2003.057711
  • Cocks M, Shaw CS, Shepherd SO, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol. 2013;591(3):641-656. doi:10.1113/JPHYSIOL.2012.239566
  • Shah I, Malik MO, Khan MJ, Fatima S, Baxendale RH, Habib SH. Endostatin Concentration In Plasma Of Healthy Human Volunteers. J Ayub Med Coll Abbottabad. 2017;29(2):200-206. Accessed August 16, 2022. https://pubmed.ncbi.nlm.nih.gov/28718231/
  • Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292-1301. Accessed August 16, 2022. https://pubmed.ncbi.nlm.nih.gov/8531628/
  • Niemi H, Honkonen K, Korpisalo P, et al. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Invest. 2014;44(10):989-999. doi:10.1111/eci.12333
  • Qutub AA, Popel AS. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. J Cell Sci. 2006;119(16):3467-3480.
  • Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann L V. Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res. 2005;68(1):144-154.
  • De Smet S, D’Hulst G, Poffé C, Van Thienen R, Berardi E, Hespel P. High-intensity interval training in hypoxia does not affect muscle HIF responses to acute hypoxia in humans. Eur J Appl Physiol. 2018;118(4):847-862.
  • Slivka DR, Heesch MWS, Dumke CL, Cuddy JS, Hailes WS, Ruby BC. Human skeletal muscle mRNAResponse to a single hypoxic exercise bout. Wilderness Environ Med. 2014;25(4):462-465.
  • Ameln H, Gustafsson T, Carl ‡, et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J. 2005;19(8):1009-1011. doi:10.1096/FJ.04-2304FJE
  • Sjøgaard G, Savard G, Juel C. Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur J Appl Physiol Occup Physiol 1988 573. 1988;57(3):327-335.
  • Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. 2016;101(1):28-32.
  • Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21(4):301-314. doi:10.1111/MICC.12117
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669-676.
  • Gu JW, Shparago M, Tan W, Bailey AP. Tissue endostatin correlates inversely with capillary network in rat heart and skeletal muscles. Angiogenesis. 2006;9(2):93-99.
  • Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109(2):220-226.
  • Tang K, Breen EC, Gerber HP, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18(1):63-69.
  • Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol. 2005;289(2).
  • Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis. 2003;6(1):1-14.
  • Lundby C, Calbet JAL, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615-3623.
  • Hiscock N, Fischer CP, Pilegaard H, Pedersen BK. Vascular endothelial growth factor mRNA expression and arteriovenous balance in response to prolonged, submaximal exercise in humans. Am J Physiol Heart Circ Physiol. 2003;285(4).
  • Wahl P, Jansen F, Achtzehn S, et al. Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors. PLoS One. 2014;9(4).
  • Polat M. An examination of respiratory and metabolic demands of alpine skiing. J Exerc Sci Fit. 2016;14(2).
  • Mounier R, Pialoux V, Schmitt L, et al. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol. 2009;106(5):713-720.
  • Larsen MS, Vissing K, Thams L, et al. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men. Exp Physiol. 2014;99(10):1409-1420.
  • Thomsen JJ, Rentsch RL, Robach P, et al. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity. Eur J Appl Physiol. 2007;101(4):481-486.
  • Ribatti D. Erythropoietin and tumor angiogenesis. Stem Cells Dev. 2010;19(1):1-4.
  • Wang L, Jia Y, Rogers H, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1α and AMPK activation. Int J Biochem Cell Biol. 2013;45(7):1155-1164.
  • Plenge U, Belhage B, Guadalupe-Grau A, et al. Erythropoietin treatment enhances muscle mitochondrial capacity in humans. Front Physiol. 2012;3.
  • Zeng X, Chen J, Miller YI, Javaherian K, Moulton KS. Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis. J Lipid Res. 2005;46(9):1849-1859.
  • O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277-285.
  • Schmidt A, Wenzel D, Ferring I, et al. Influence of endostatin on embryonic vasculo- and angiogenesis. Dev Dyn. 2004;230(3):468-480.
  • Wenzel D, Schmidt A, Reimann K, et al. Endostatin, the proteolytic fragment of collagen XVIII, induces vasorelaxation. Circ Res. 2006;98(9):1203-1211.
  • Schmidt A, Addicks K, Bloch W. Opposite effects of endostatin on different endothelial cells. Cancer Biol Ther. 2004;3(11):1162-1166.
  • Gu J-W, Gadonski G, Wang J, Makey I, Adair TH. Exercise increases endostatin in circulation of healthy volunteers. BMC Physiol. 2004;4(1):2.
  • Sponder M, Sepiol K, Lankisch S, et al. Endostatin and physical exercise in young female and male athletes and controls. Int J Sports Med. 2014;35(13):1138-1142.

Angiogenic Regulators during Alpine Skiing Training

Year 2024, , 456 - 463, 31.05.2024
https://doi.org/10.30621/jbachs.1401258

Abstract

Project Number

TYL-2017-7493

References

  • White AT, Johnson SC. Physiological Aspects and Injury in Elite Alpine Skiers. Sport Med Eval Res Exerc Sci Sport Med. 1993;15(3):170-178. doi:10.2165/00007256-199315030-00003
  • Szmedra L, Im J, Nioka S, Chance B, Rundell KW. Hemoglobin/myoglobin oxygen desaturation during Alpine skiing. Med Sci Sports Exerc. 2001;33(2):232-236. doi:10.1097/00005768-200102000-00010
  • Andersen RE, Montgomery DL. Physiology of Alpine Skiing. Sport Med An Int J Appl Med Sci Sport Exerc. 1988;6(4):210-221. doi:10.2165/00007256-198806040-00003
  • Tesch PA. Aspects on muscle properties and use in competitive Alpine skiing. Med Sci Sports Exerc. 1995;27(3):310-314. doi:10.1249/00005768-199503000-00004
  • Berg HE, Eiken O, Tesch PA. Involvement of eccentric muscle actions in giant slalom racing. Med Sci Sports Exerc. 1995;27(12):1666-1670. doi:10.1249/00005768-199512000-00013
  • Seifert JG, Kipp RW, Amann M, Gazal O. Muscle damage, fluid ingestion, and energy supplementation during recreational alpine skiing. Int J Sport Nutr Exerc Metab. 2005;15(5):528-536. doi:10.1123/IJSNEM.15.5.528
  • Petrofsky JS, Hendershot DM. The interrelationship between blood pressure, intramuscular pressure, and isometric endurance in fast and slow twitch skeletal muscle in the cat. Eur J Appl Physiol Occup Physiol. 1984;53(2):106-111. doi:10.1007/BF00422571
  • Kyröläinen H, Takala TES, Komi P V. Muscle damage induced by stretch-shortening cycle exercise. Med Sci Sports Exerc. 1998;30(3):415-420. doi:10.1097/00005768-199803000-00012
  • Egginton S. Invited review: activity-induced angiogenesis. Pflugers Arch. 2009;457(5):963-977. doi:10.1007/S00424-008-0563-9
  • Suhr F, Brixius K, De Marées M, et al. Effects of short-term vibration and hypoxia during high-intensity cycling exercise on circulating levels of angiogenic regulators in humans. J Appl Physiol. 2007;103(2):474-483. doi:10.1152/JAPPLPHYSIOL.01160.2006
  • Prior BM, Yang HT, Terjung RL. What makes vessels grow with exercise training? J Appl Physiol. 2004;97(3):1119-1128. doi:10.1152/JAPPLPHYSIOL.00035.2004
  • Hudlicka O, Milkiewicz M, Cotter MA, Brown MD. Hypoxia and expression of VEGF-A protein in relation to capillary growth in electrically stimulated rat and rabbit skeletal muscles. Exp Physiol. 2002;87(3):373-381. doi:10.1113/EPH8702285
  • Høier B, Rufener N, Bojsen-Møller J, Bangsbo J, Hellsten Y. The effect of passive movement training on angiogenic factors and capillary growth in human skeletal muscle. J Physiol. 2010;588(19):3833-3845. doi:10.1113/jphysiol.2010.190439
  • Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners. Scand J Med Sci Sports. 2015;25(5):e479-e489. doi:10.1111/SMS.12356
  • Jensen L, Bangsbo J, Hellsten Y. Effect of high intensity training on capillarization and presence of angiogenic factors in human skeletal muscle. J Physiol. 2004;557(Pt 2):571-582. doi:10.1113/JPHYSIOL.2003.057711
  • Cocks M, Shaw CS, Shepherd SO, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. J Physiol. 2013;591(3):641-656. doi:10.1113/JPHYSIOL.2012.239566
  • Shah I, Malik MO, Khan MJ, Fatima S, Baxendale RH, Habib SH. Endostatin Concentration In Plasma Of Healthy Human Volunteers. J Ayub Med Coll Abbottabad. 2017;29(2):200-206. Accessed August 16, 2022. https://pubmed.ncbi.nlm.nih.gov/28718231/
  • Howley ET, Bassett DR, Welch HG. Criteria for maximal oxygen uptake: review and commentary. Med Sci Sports Exerc. 1995;27(9):1292-1301. Accessed August 16, 2022. https://pubmed.ncbi.nlm.nih.gov/8531628/
  • Niemi H, Honkonen K, Korpisalo P, et al. HIF-1α and HIF-2α induce angiogenesis and improve muscle energy recovery. Eur J Clin Invest. 2014;44(10):989-999. doi:10.1111/eci.12333
  • Qutub AA, Popel AS. A computational model of intracellular oxygen sensing by hypoxia-inducible factor HIF1α. J Cell Sci. 2006;119(16):3467-3480.
  • Patel TH, Kimura H, Weiss CR, Semenza GL, Hofmann L V. Constitutively active HIF-1alpha improves perfusion and arterial remodeling in an endovascular model of limb ischemia. Cardiovasc Res. 2005;68(1):144-154.
  • De Smet S, D’Hulst G, Poffé C, Van Thienen R, Berardi E, Hespel P. High-intensity interval training in hypoxia does not affect muscle HIF responses to acute hypoxia in humans. Eur J Appl Physiol. 2018;118(4):847-862.
  • Slivka DR, Heesch MWS, Dumke CL, Cuddy JS, Hailes WS, Ruby BC. Human skeletal muscle mRNAResponse to a single hypoxic exercise bout. Wilderness Environ Med. 2014;25(4):462-465.
  • Ameln H, Gustafsson T, Carl ‡, et al. Physiological activation of hypoxia inducible factor-1 in human skeletal muscle. FASEB J. 2005;19(8):1009-1011. doi:10.1096/FJ.04-2304FJE
  • Sjøgaard G, Savard G, Juel C. Muscle blood flow during isometric activity and its relation to muscle fatigue. Eur J Appl Physiol Occup Physiol 1988 573. 1988;57(3):327-335.
  • Lindholm ME, Rundqvist H. Skeletal muscle hypoxia-inducible factor-1 and exercise. Exp Physiol. 2016;101(1):28-32.
  • Hoier B, Hellsten Y. Exercise-induced capillary growth in human skeletal muscle and the dynamics of VEGF. Microcirculation. 2014;21(4):301-314. doi:10.1111/MICC.12117
  • Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med. 2003;9(6):669-676.
  • Gu JW, Shparago M, Tan W, Bailey AP. Tissue endostatin correlates inversely with capillary network in rat heart and skeletal muscles. Angiogenesis. 2006;9(2):93-99.
  • Laufs U, Werner N, Link A, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109(2):220-226.
  • Tang K, Breen EC, Gerber HP, Ferrara NMA, Wagner PD. Capillary regression in vascular endothelial growth factor-deficient skeletal muscle. Physiol Genomics. 2004;18(1):63-69.
  • Adair TH. Growth regulation of the vascular system: an emerging role for adenosine. Am J Physiol Regul Integr Comp Physiol. 2005;289(2).
  • Brown MD, Hudlicka O. Modulation of physiological angiogenesis in skeletal muscle by mechanical forces: involvement of VEGF and metalloproteinases. Angiogenesis. 2003;6(1):1-14.
  • Lundby C, Calbet JAL, Robach P. The response of human skeletal muscle tissue to hypoxia. Cell Mol Life Sci. 2009;66(22):3615-3623.
  • Hiscock N, Fischer CP, Pilegaard H, Pedersen BK. Vascular endothelial growth factor mRNA expression and arteriovenous balance in response to prolonged, submaximal exercise in humans. Am J Physiol Heart Circ Physiol. 2003;285(4).
  • Wahl P, Jansen F, Achtzehn S, et al. Effects of high intensity training and high volume training on endothelial microparticles and angiogenic growth factors. PLoS One. 2014;9(4).
  • Polat M. An examination of respiratory and metabolic demands of alpine skiing. J Exerc Sci Fit. 2016;14(2).
  • Mounier R, Pialoux V, Schmitt L, et al. Effects of acute hypoxia tests on blood markers in high-level endurance athletes. Eur J Appl Physiol. 2009;106(5):713-720.
  • Larsen MS, Vissing K, Thams L, et al. Erythropoietin administration alone or in combination with endurance training affects neither skeletal muscle morphology nor angiogenesis in healthy young men. Exp Physiol. 2014;99(10):1409-1420.
  • Thomsen JJ, Rentsch RL, Robach P, et al. Prolonged administration of recombinant human erythropoietin increases submaximal performance more than maximal aerobic capacity. Eur J Appl Physiol. 2007;101(4):481-486.
  • Ribatti D. Erythropoietin and tumor angiogenesis. Stem Cells Dev. 2010;19(1):1-4.
  • Wang L, Jia Y, Rogers H, et al. Erythropoietin contributes to slow oxidative muscle fiber specification via PGC-1α and AMPK activation. Int J Biochem Cell Biol. 2013;45(7):1155-1164.
  • Plenge U, Belhage B, Guadalupe-Grau A, et al. Erythropoietin treatment enhances muscle mitochondrial capacity in humans. Front Physiol. 2012;3.
  • Zeng X, Chen J, Miller YI, Javaherian K, Moulton KS. Endostatin binds biglycan and LDL and interferes with LDL retention to the subendothelial matrix during atherosclerosis. J Lipid Res. 2005;46(9):1849-1859.
  • O’Reilly MS, Boehm T, Shing Y, et al. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277-285.
  • Schmidt A, Wenzel D, Ferring I, et al. Influence of endostatin on embryonic vasculo- and angiogenesis. Dev Dyn. 2004;230(3):468-480.
  • Wenzel D, Schmidt A, Reimann K, et al. Endostatin, the proteolytic fragment of collagen XVIII, induces vasorelaxation. Circ Res. 2006;98(9):1203-1211.
  • Schmidt A, Addicks K, Bloch W. Opposite effects of endostatin on different endothelial cells. Cancer Biol Ther. 2004;3(11):1162-1166.
  • Gu J-W, Gadonski G, Wang J, Makey I, Adair TH. Exercise increases endostatin in circulation of healthy volunteers. BMC Physiol. 2004;4(1):2.
  • Sponder M, Sepiol K, Lankisch S, et al. Endostatin and physical exercise in young female and male athletes and controls. Int J Sports Med. 2014;35(13):1138-1142.
There are 50 citations in total.

Details

Primary Language English
Subjects Sports Medicine
Journal Section Research Article
Authors

Metin Polat 0000-0001-7299-0531

Inayet Gunturk 0000-0002-8299-1359

Duran Demiryürek 0000-0003-3545-1082

Project Number TYL-2017-7493
Publication Date May 31, 2024
Submission Date December 7, 2023
Acceptance Date January 20, 2024
Published in Issue Year 2024

Cite

APA Polat, M., Gunturk, I., & Demiryürek, D. (2024). Angiogenic Regulators during Alpine Skiing Training. Journal of Basic and Clinical Health Sciences, 8(2), 456-463. https://doi.org/10.30621/jbachs.1401258
AMA Polat M, Gunturk I, Demiryürek D. Angiogenic Regulators during Alpine Skiing Training. JBACHS. May 2024;8(2):456-463. doi:10.30621/jbachs.1401258
Chicago Polat, Metin, Inayet Gunturk, and Duran Demiryürek. “Angiogenic Regulators During Alpine Skiing Training”. Journal of Basic and Clinical Health Sciences 8, no. 2 (May 2024): 456-63. https://doi.org/10.30621/jbachs.1401258.
EndNote Polat M, Gunturk I, Demiryürek D (May 1, 2024) Angiogenic Regulators during Alpine Skiing Training. Journal of Basic and Clinical Health Sciences 8 2 456–463.
IEEE M. Polat, I. Gunturk, and D. Demiryürek, “Angiogenic Regulators during Alpine Skiing Training”, JBACHS, vol. 8, no. 2, pp. 456–463, 2024, doi: 10.30621/jbachs.1401258.
ISNAD Polat, Metin et al. “Angiogenic Regulators During Alpine Skiing Training”. Journal of Basic and Clinical Health Sciences 8/2 (May 2024), 456-463. https://doi.org/10.30621/jbachs.1401258.
JAMA Polat M, Gunturk I, Demiryürek D. Angiogenic Regulators during Alpine Skiing Training. JBACHS. 2024;8:456–463.
MLA Polat, Metin et al. “Angiogenic Regulators During Alpine Skiing Training”. Journal of Basic and Clinical Health Sciences, vol. 8, no. 2, 2024, pp. 456-63, doi:10.30621/jbachs.1401258.
Vancouver Polat M, Gunturk I, Demiryürek D. Angiogenic Regulators during Alpine Skiing Training. JBACHS. 2024;8(2):456-63.