Year 2021,
, 102 - 108, 26.02.2021
Elif Barış
,
Mualla Arıcı
Supporting Institution
Derleme türündeki makalemizi destekleyen kurum bulunmamaktadır.
Project Number
Derleme türündeki makalemiz ile ilgili projemiz bulunmamaktadır.
References
- 1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. Published online 2020:1-12.
- 2. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669-684.
- 3. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. Published online April 18, 2020:102763.
- 4. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol. 2020;214(March):108393.
- 5. Mehta P, Mcauley DF, Brown M, et al. Correspondence COVID-19 : consider cytokine storm syndromes and immunosuppression. Lancet. 2020;6736(20):19-20.
- 6. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
- 7. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34.
- 8. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062.
- 9. Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. Published online 2020.
- 10. Gruner L. Covid-19 Illnes in Native and immunosuppressed states. Lung. 2020;21(1):22-25.
- 11. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848.
- 12. Geng Y-J, Wei Z-Y, Qian H-Y, Huang J, Lodato R, Castriotta RJ. Pathophysiological Characteristics and Therapeutic Approaches for Pulmonary Injury and Cardiovascular Complications of Coronavirus Disease 2019. Cardiovasc Pathol. 2020;47:107228.
- 13. Russell B, Moss C, Rigg A, Hemelrijck M Van. COVID-19 and treatment with NSAIDs and corticosteroids : should we be limiting their use in the clinical setting ? ecancer. 2020;14(1023):1-3.
- 14. Fujii T, Mashimo M, Moriwaki Y, et al. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol. 2017;8:1085.
- 15. van Westerloo DJ, Giebelen IA, Florquin S, et al. The Vagus Nerve and Nicotinic Receptors Modulate Experimental Pancreatitis Severity in Mice. Gastroenterology. 2006;130(6):1822-1830.
- 16. McGrath J, McDonald JWD, MacDonald JK. Transdermal nicotine for induction of remission in ulcerative colitis. Cochrane Libr. 2004;18(4):CD004722.
- 17. Pinder N, Bruckner T, Lehmann M, et al. Effect of physostigmine on recovery from septic shock following intra-abdominal infection – Results from a randomized, double-blind, placebo-controlled, monocentric pilot trial (Anticholium® per Se). J Crit Care. 2019;52:126-135.
- 18. Ulloa L. The anti-inflammatory potential of selective cholinergic agonists. Shock. 2011;36(1):97-98.
- 19. Buller K. Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol. 2001;28:581-589.
- 20. Kanashiro A, Sônego F, Ferreira R, et al. Therapeutic Potential and Limitations of Cholinergic Anti-Inflammatory Pathway in Sepsis. Pharmacol Res. 2017;117:1-8.
- 21. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. Published online 2020.
- 22. Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2018;315(5):R895-R906.
- 23. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743-754.
- 24. Changeux J, Amoura Z, Rey F, Miyara M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios. 2020;2:1-11.
- 25. Aldhous M, Prescott R, Roberts S, Samuel K, Waterfall M, Satsangi J. Does Nicotine Influence Cytokine Profile and Subsequent Cell Cycling/Apoptotic Responses in Inflammatory Bowel Disease? Inflamm Bowel Dis. 2008;14:1469-1482.
- 26. Gorelick F, Lerch M. Do Animal Models of Acute Pancreatitis Reproduce Human Disease? Cell Mol Gastroenterol Hepatol. 2017;4(2):251-262.
- 27. Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155-27164.
- 28. Hartmann P, Szabó A, Eros G, et al. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol. 2009;622:58-64.
- 29. Zimmermann JB, Pinder N, Bruckner T, et al. Adjunctive use of physostigmine salicylate (Anticholium®) in perioperative sepsis and septic shock: Study protocol for a randomized, double-blind, placebo-controlled, monocentric trial (Anticholium® per Se). Trials. 2017;18(1):1-10.
- 30. Kox M, Pompe JC, Gordinou De Gouberville MC, Van Der Hoeven JG, Hoedemaekers CW, Pickkers P. Effects of the α7 nicotinic acetylcholine receptor agonist gts-21 on the innate immune response in humans. Shock. 2011;36(1):5-11.
- 31. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14(9-10):567-574.
- 32. Ilcol Y, Yilmaz Z, Cansev M, H. Ulus I. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: Involvement of the peripheral nicotinic acetylcholine receptors. Shock. 2009;32.
- 33. Pavlov VA, Ochani M, Yang LH, et al. Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007;35(4):1139-1144.
- 34. Schmidt K, Frederick Hernekamp J, Doerr M, et al. Cytidine-5-diphosphocholine reduces microvascular permeability during experimental endotoxemia. BMC Anesthesiol. 2015;15:114-122.
- 35. Yilmaz Z, Ilcol Y, Cansev M, Eralp Inan O, Kocatürk M, H Ulus I. Choline or CDP-choline attenuates coagulation abnormalities and prevents the development of acute disseminated intravascular coagulation in dogs during endotoxemia. Blood Coagul Fibrinolysis. 2010;21(4):339-348.
- 36. Ilcol YO, Yilmaz Z, Ulus IH. Endotoxin alters serum-free choline and phospholipid-bound choline concentrations, and choline administration attenuates endotoxin-induced organ injury in dogs. Shock. 2005;24(3):288-293.
- 37. Gonzalez-Rubio J, Navarro-Lopez C, Lopez-Najera E, et al. Cytokine Release Syndrome (CRS) and Nicotine in COVID-19 Patients: Trying to Calm the Storm. Front Immunol. 2020;11(June):4-7.
- 38. Changeux J-P. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Comptes Rendus Biol. 2020;343:1-7.
- 39. C SK, Kumar SA, Wei H. A computational insight of the improved nicotine binding with ACE2-SARS-CoV-2 complex with its clinical impact. Published online 2020:1-11.
- 40. Lagoumintzis G, Chasapis C, Alexandris N, et al. COVID-19 and Cholinergic Anti-inflammatory Pathway: In silico Identification of an Interaction between α7 Nicotinic Acetylcholine Receptor and the Cryptic Epitopes of SARS-CoV and SARS-CoV-2 Spike Glycoproteins. Published online August 22, 2020.
- 41. Farsalinos K, Eliopoulos E, Leonidas DD, Papadopoulos GE, Tzartos S, Poulas K. Nicotinic cholinergic system and covid-19: In silico identification of an interaction between sars-cov-2 and nicotinic receptors with potential therapeutic targeting implications. Int J Mol Sci. 2020;21(16):1-15.
- 42. Pinder N, Zimmermann JB, Gastine S, et al. Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling. Biomed Pharmacother. 2019;118(June):109318.
- 43. Wittebole X, Hahm S, Coyle SM, Kumar A, Calvano SE, Lowry SF. Nicotine exposure alters in vivo human responses to endotoxin. Clin Exp Immunol. 2007;147(1):28-34.
- 44. Pullan RD, Rhodes J, Ganesh S, et al. Transdermal Nicotine for Active Ulcerative Colitis. N Engl J Med. 1994;330(12):811-815.
- 45. Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain--interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis. J Neuroimmunol. 2015;280:49-55.
- 46. Douaoui S, Djidjik R, Boubakeur M, et al. GTS-21, an 7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. Immunobiology. 2020;(April):151950.
- 47. Miyara M, Tubach F, POURCHER V, et al. Low incidence of daily active tobacco smoking in patients with symptomatic COVID-19. Qeios. Published online 2020:1-13.
- 48. Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med. 2020;(0123456789).
- 49. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.
- 50. Krause RM, Buisson B, Bertrand S, et al. Ivermectin: A positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol. 1998;53:283-294.
Possible Therapeutic Role of Cholinergic Agonists on COVID-19 related inflammatory response
Year 2021,
, 102 - 108, 26.02.2021
Elif Barış
,
Mualla Arıcı
Abstract
Severe acute respiratory syndrome-corona virus-2 (SARS-CoV-2) or coronavirus infectious disease (COVID-19) outbreak is continued to spread all over the world recently with the high mortality and morbidity rates. It is also known well coronavirus infectious disease is leading causes of acute lung injury and acute respiratory distress syndrome (ARDS), septic shock and multi organ failure. Current treatment of COVID-19 includes different strategies targeting preventing viral replication or treating secondary infections and decreasing exaggerated immune response. Although antiviral, antimicrobial, immunomodulatory agents including anti-cytokines and glucocorticoids have been currently applied; there is lack of a specific treatment for COVID-19. In this review, possible therapeutic roles of cholinomimetic drugs in the control of COVID-19 are discussed.
Project Number
Derleme türündeki makalemiz ile ilgili projemiz bulunmamaktadır.
References
- 1. Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol. Published online 2020:1-12.
- 2. Chaudhry H, Zhou J, Zhong Y, et al. Role of cytokines as a double-edged sword in sepsis. In Vivo. 2013;27(6):669-684.
- 3. Liu J, Li S, Liu J, et al. Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine. Published online April 18, 2020:102763.
- 4. Zhang W, Zhao Y, Zhang F, et al. The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): The experience of clinical immunologists from China. Clin Immunol. 2020;214(March):108393.
- 5. Mehta P, Mcauley DF, Brown M, et al. Correspondence COVID-19 : consider cytokine storm syndromes and immunosuppression. Lancet. 2020;6736(20):19-20.
- 6. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506.
- 7. Conti P, Ronconi G, Caraffa A, et al. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by COVID-19: anti-inflammatory strategies. J Biol Regul Homeost Agents. 2020;34.
- 8. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062.
- 9. Zhou Y, Fu B, Zheng X, et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storm in severe COVID-19 patients. Natl Sci Rev. Published online 2020.
- 10. Gruner L. Covid-19 Illnes in Native and immunosuppressed states. Lung. 2020;21(1):22-25.
- 11. Ruan Q, Yang K, Wang W, Jiang L, Song J. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020;46(5):846-848.
- 12. Geng Y-J, Wei Z-Y, Qian H-Y, Huang J, Lodato R, Castriotta RJ. Pathophysiological Characteristics and Therapeutic Approaches for Pulmonary Injury and Cardiovascular Complications of Coronavirus Disease 2019. Cardiovasc Pathol. 2020;47:107228.
- 13. Russell B, Moss C, Rigg A, Hemelrijck M Van. COVID-19 and treatment with NSAIDs and corticosteroids : should we be limiting their use in the clinical setting ? ecancer. 2020;14(1023):1-3.
- 14. Fujii T, Mashimo M, Moriwaki Y, et al. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol. 2017;8:1085.
- 15. van Westerloo DJ, Giebelen IA, Florquin S, et al. The Vagus Nerve and Nicotinic Receptors Modulate Experimental Pancreatitis Severity in Mice. Gastroenterology. 2006;130(6):1822-1830.
- 16. McGrath J, McDonald JWD, MacDonald JK. Transdermal nicotine for induction of remission in ulcerative colitis. Cochrane Libr. 2004;18(4):CD004722.
- 17. Pinder N, Bruckner T, Lehmann M, et al. Effect of physostigmine on recovery from septic shock following intra-abdominal infection – Results from a randomized, double-blind, placebo-controlled, monocentric pilot trial (Anticholium® per Se). J Crit Care. 2019;52:126-135.
- 18. Ulloa L. The anti-inflammatory potential of selective cholinergic agonists. Shock. 2011;36(1):97-98.
- 19. Buller K. Role of circumventricular organs in pro-inflammatory cytokine-induced activation of the hypothalamic-pituitary-adrenal axis. Clin Exp Pharmacol Physiol. 2001;28:581-589.
- 20. Kanashiro A, Sônego F, Ferreira R, et al. Therapeutic Potential and Limitations of Cholinergic Anti-Inflammatory Pathway in Sepsis. Pharmacol Res. 2017;117:1-8.
- 21. Lan J, Ge J, Yu J, et al. Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. Published online 2020.
- 22. Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. Am J Physiol Regul Integr Comp Physiol. 2018;315(5):R895-R906.
- 23. Pavlov VA, Tracey KJ. The vagus nerve and the inflammatory reflex--linking immunity and metabolism. Nat Rev Endocrinol. 2012;8(12):743-754.
- 24. Changeux J, Amoura Z, Rey F, Miyara M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Qeios. 2020;2:1-11.
- 25. Aldhous M, Prescott R, Roberts S, Samuel K, Waterfall M, Satsangi J. Does Nicotine Influence Cytokine Profile and Subsequent Cell Cycling/Apoptotic Responses in Inflammatory Bowel Disease? Inflamm Bowel Dis. 2008;14:1469-1482.
- 26. Gorelick F, Lerch M. Do Animal Models of Acute Pancreatitis Reproduce Human Disease? Cell Mol Gastroenterol Hepatol. 2017;4(2):251-262.
- 27. Treede I, Braun A, Sparla R, et al. Anti-inflammatory effects of phosphatidylcholine. J Biol Chem. 2007;282(37):27155-27164.
- 28. Hartmann P, Szabó A, Eros G, et al. Anti-inflammatory effects of phosphatidylcholine in neutrophil leukocyte-dependent acute arthritis in rats. Eur J Pharmacol. 2009;622:58-64.
- 29. Zimmermann JB, Pinder N, Bruckner T, et al. Adjunctive use of physostigmine salicylate (Anticholium®) in perioperative sepsis and septic shock: Study protocol for a randomized, double-blind, placebo-controlled, monocentric trial (Anticholium® per Se). Trials. 2017;18(1):1-10.
- 30. Kox M, Pompe JC, Gordinou De Gouberville MC, Van Der Hoeven JG, Hoedemaekers CW, Pickkers P. Effects of the α7 nicotinic acetylcholine receptor agonist gts-21 on the innate immune response in humans. Shock. 2011;36(1):5-11.
- 31. Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, et al. Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med. 2008;14(9-10):567-574.
- 32. Ilcol Y, Yilmaz Z, Cansev M, H. Ulus I. Choline or CDP-choline alters serum lipid responses to endotoxin in dogs and rats: Involvement of the peripheral nicotinic acetylcholine receptors. Shock. 2009;32.
- 33. Pavlov VA, Ochani M, Yang LH, et al. Selective α7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med. 2007;35(4):1139-1144.
- 34. Schmidt K, Frederick Hernekamp J, Doerr M, et al. Cytidine-5-diphosphocholine reduces microvascular permeability during experimental endotoxemia. BMC Anesthesiol. 2015;15:114-122.
- 35. Yilmaz Z, Ilcol Y, Cansev M, Eralp Inan O, Kocatürk M, H Ulus I. Choline or CDP-choline attenuates coagulation abnormalities and prevents the development of acute disseminated intravascular coagulation in dogs during endotoxemia. Blood Coagul Fibrinolysis. 2010;21(4):339-348.
- 36. Ilcol YO, Yilmaz Z, Ulus IH. Endotoxin alters serum-free choline and phospholipid-bound choline concentrations, and choline administration attenuates endotoxin-induced organ injury in dogs. Shock. 2005;24(3):288-293.
- 37. Gonzalez-Rubio J, Navarro-Lopez C, Lopez-Najera E, et al. Cytokine Release Syndrome (CRS) and Nicotine in COVID-19 Patients: Trying to Calm the Storm. Front Immunol. 2020;11(June):4-7.
- 38. Changeux J-P. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. Comptes Rendus Biol. 2020;343:1-7.
- 39. C SK, Kumar SA, Wei H. A computational insight of the improved nicotine binding with ACE2-SARS-CoV-2 complex with its clinical impact. Published online 2020:1-11.
- 40. Lagoumintzis G, Chasapis C, Alexandris N, et al. COVID-19 and Cholinergic Anti-inflammatory Pathway: In silico Identification of an Interaction between α7 Nicotinic Acetylcholine Receptor and the Cryptic Epitopes of SARS-CoV and SARS-CoV-2 Spike Glycoproteins. Published online August 22, 2020.
- 41. Farsalinos K, Eliopoulos E, Leonidas DD, Papadopoulos GE, Tzartos S, Poulas K. Nicotinic cholinergic system and covid-19: In silico identification of an interaction between sars-cov-2 and nicotinic receptors with potential therapeutic targeting implications. Int J Mol Sci. 2020;21(16):1-15.
- 42. Pinder N, Zimmermann JB, Gastine S, et al. Continuous infusion of physostigmine in patients with perioperative septic shock: A pharmacokinetic/pharmacodynamic study with population pharmacokinetic modeling. Biomed Pharmacother. 2019;118(June):109318.
- 43. Wittebole X, Hahm S, Coyle SM, Kumar A, Calvano SE, Lowry SF. Nicotine exposure alters in vivo human responses to endotoxin. Clin Exp Immunol. 2007;147(1):28-34.
- 44. Pullan RD, Rhodes J, Ganesh S, et al. Transdermal Nicotine for Active Ulcerative Colitis. N Engl J Med. 1994;330(12):811-815.
- 45. Kosek E, Altawil R, Kadetoff D, et al. Evidence of different mediators of central inflammation in dysfunctional and inflammatory pain--interleukin-8 in fibromyalgia and interleukin-1 β in rheumatoid arthritis. J Neuroimmunol. 2015;280:49-55.
- 46. Douaoui S, Djidjik R, Boubakeur M, et al. GTS-21, an 7nAChR agonist, suppressed the production of key inflammatory mediators by PBMCs that are elevated in COPD patients and associated with impaired lung function. Immunobiology. 2020;(April):151950.
- 47. Miyara M, Tubach F, POURCHER V, et al. Low incidence of daily active tobacco smoking in patients with symptomatic COVID-19. Qeios. Published online 2020:1-13.
- 48. Farsalinos K, Barbouni A, Niaura R. Systematic review of the prevalence of current smoking among hospitalized COVID-19 patients in China: could nicotine be a therapeutic option? Intern Emerg Med. 2020;(0123456789).
- 49. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 2020;178:104787.
- 50. Krause RM, Buisson B, Bertrand S, et al. Ivermectin: A positive allosteric effector of the α7 neuronal nicotinic acetylcholine receptor. Mol Pharmacol. 1998;53:283-294.