Research Article
BibTex RIS Cite

In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex

Year 2022, , 415 - 419, 31.05.2022
https://doi.org/10.30621/jbachs.998974

Abstract

This study aimed to investigate the proapoptotic and antioxidant effects of the Thymoquinone (TQ) iron complex on the SW480 cell line. This study investigates the proapoptotic and anti-oxidant effects of the TQ iron complex on the SW480 cell line. The SW480 cells were routinely cultured in a medium for 48 h. and incubated at 37°C in a 5% CO2 in the air. After the incubation period, the cells were washed with buffer, and 100 ml of the denaturing lysis buffer per 0.5 was added to 2x107 cells for 15 min, and supernatants were taken. ELISA test was used to examine the expression and activity of GADD153, Wee1, cleaved Caspase-3, Bax, GRP78, and Bcl-2 proteins in SW480 cells. In this study, to measure activities of total antioxidant capacity (TAS), catalase (CAT), total oxidant capacity (TOS), and superoxide dismutase (SOD) activities were investigated by the ELISA method in cell lines SW480 treated with the TQ iron complex. ELISA test results indicated that the activities of apoptotic proteins Bax, Wee1 Caspase-3, GADD153, GRP78, and Bcl-2 in human SW480 cell lines were significantly increased in the 48-hour treatment. Our results of this study demonstrated that in untreated cultures, high TAS, SOD and CAT activities were found in SW480 cell lines than in control cell lines.

References

  • 1. Lasocki S. Gaillard T. Rineau E. Iron is essential for living! Crit Care. 2014; 18(6): 678.
  • 2. Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med (Milton). 2019;2(2): 82–87.
  • 3. Özbolat G. Yegani AA. Synthesis, characterization, biological activity and electrochemistry studies of iron (III) complex with curcumin‐oxime ligand. Clin Exp Pharmacol Physiol. 2020;47:1834–1842
  • 4. Rodgers GM, Gilreath JA. The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematol. 2019;142(1):13-20.
  • 5. Ludwig H, et al. Iron metabolism and iron supplementation in cancer patients. Wien Klin Wochenschr 127 (2015) 907-919.
  • 6. Winter WE, Bazydlo LA, Harris NS. The Molecular Biology of Human Iron Metabo-lism. Laboratory Medicine 45(2) (2014) 92-102.
  • 7. Özbolat G, Tuli A. Iron chelating ligand for iron overload diseases. Bratisl Med J 119 (5) (2018) 308–311.
  • 8. Kaplan J, Ward DM. The essential nature of iron usage and regulation. Curr Biol. 5; 23(15)(2013) R642–R646.
  • 9. Kohgo Y. Ikuta K. Ohtake T. Torimoto Y. Kato J. Body iron metabolism and pat-hophysiology of iron overload. Int J Hematol. 2008; 88(1): 7–15.
  • 10. Reardon TF. Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94.6 (2019) 720–730.
  • 11. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disea-se. Toxicology. 2011;283(2–3):65–87.
  • 12. Alugoju P. Jestadi DB. Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 2014; 30(1):11-26.
  • 13. Sadeek EA, El-Razek FH. The Chemo-Protective Effect of Turmeric, Chili, Cloves and Cardamom on Correcting Iron Overload-Induced Liver Injury, Oxidative Stress and Serum Lipid Profile in Rat Models. Journal of American Science 6 (2010)10.
  • 14. Shander A. Sweeney JD. Overvıew OF Current Treatment Regimens ın ıron chelatıon therapy. US Hematology, 2009;2(1):56-9.
  • 15. Brittenham GM, Griffith PM, Nienhuis AW, McLaren CE, Young NS, Tucker EE, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331(9):567-73.
  • 16. Olivieri NF, Nathan DG, MacMillan JH, Wayne AS, Liu PP, McGee A, et al. Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med. 1994;331(9):574-8.
  • 17. Cappellini MD, Taher A. Deferasirox (Exjade) for the treatment of iron overload. Acta Haematol. 2009;122:165–73.
  • 18. Grady RW. Galanello R. Randolph RE. Toward optimizing the use of deferasirox: po-tential benefits of combined use with deferoxamine. Haematologica, 2013; 98(1).
  • 19. Tsouana E, Kaya B, Gadong N, Hemmaway C, Newell H, Simmons A, Whitmarsh S, Telfer P. Deferasirox for iron chelation in multitransfused children with sickle cell di-sease; long-term experience in the East London clinical haemoglobinopathy network. Eur J Haematol. 94(4) (2015) 336-42.
  • 20. Marley AR., Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016; 7(3): 105–114.
  • 21. Brenner H. Chen C. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. British Journal of Cancer (2018) 119:785–792.
  • 22. Favoriti P. Carbone G. Greco M. Pirozzi F. Emmanuele R. Pirozzi M. Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg (2016) 68:7–11.
  • 23. Khan MDA. Tania M. Fu S. Fu J. Thymoquinone, as an anticancer molecule: from ba-sic research to clinical investigation. Oncotarget. 2017 1; 8(31): 51907–51919.
  • 24. Darakhshan S. Pour AB. Cologar AH. Sisakhtnezhad S. Thymoquinone and its thera-peutic potentials. Pharmacological Research, 95–96, 138-158,2015.
  • 25. Mostofa AGM. Hossain MDK. Basak D. Sayeed MSB. Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies.
  • 26. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti in-flammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41:40–59.
  • 27. Park, M.Y, Jeong,YJ, Kang G.C, et al. Nitric oxide-induced apoptosis of human den-tal pulp cells is mediated by the mitochondria-dependent pathway. Korean J Physiol Pharmacol 18: 25-32.
  • 28. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999) Nature 397, 441-446
  • 29. Hassan, S. A., Ahmed, W. A., Galeb, F. M., El-Taweeld, M. A., Abu-Bedair, F. A. In vitro challenge using thymoquinone on hepatocellular carcinoma (HepG2) cell line. Iranian Journal of Pharmaceutical Research, 2008;7(4), 283–290.
  • 30. Gloeckner, H., Jonuleit, T., Lemke, H.D. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue (TM). J Immunol Methods. 2001; 252:131-38.
  • 31. Bajpai, V.K, Sharma, A. Kim, S.H, Baek, K.H. Phenolic content and antioxidant ca-pacity of essential oil obtained fromsawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation. Food Technol Biotechnol. 2013; 51:360–369.
  • 32. Hadwan, H, Abed, H.N. Data supporting the spectrophotometric method for the es-timation of catalase activity. Mahmoud. Data in Brief; 2016;6 :194–199.
  • 33. Dinis Tcp, Madeira Vmc, Almeida Mlm. Action of phenolic derivates (acetoamino-phen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994;315: 161-169.
Year 2022, , 415 - 419, 31.05.2022
https://doi.org/10.30621/jbachs.998974

Abstract

References

  • 1. Lasocki S. Gaillard T. Rineau E. Iron is essential for living! Crit Care. 2014; 18(6): 678.
  • 2. Zhao Z. Iron and oxidizing species in oxidative stress and Alzheimer's disease. Aging Med (Milton). 2019;2(2): 82–87.
  • 3. Özbolat G. Yegani AA. Synthesis, characterization, biological activity and electrochemistry studies of iron (III) complex with curcumin‐oxime ligand. Clin Exp Pharmacol Physiol. 2020;47:1834–1842
  • 4. Rodgers GM, Gilreath JA. The Role of Intravenous Iron in the Treatment of Anemia Associated with Cancer and Chemotherapy. Acta Haematol. 2019;142(1):13-20.
  • 5. Ludwig H, et al. Iron metabolism and iron supplementation in cancer patients. Wien Klin Wochenschr 127 (2015) 907-919.
  • 6. Winter WE, Bazydlo LA, Harris NS. The Molecular Biology of Human Iron Metabo-lism. Laboratory Medicine 45(2) (2014) 92-102.
  • 7. Özbolat G, Tuli A. Iron chelating ligand for iron overload diseases. Bratisl Med J 119 (5) (2018) 308–311.
  • 8. Kaplan J, Ward DM. The essential nature of iron usage and regulation. Curr Biol. 5; 23(15)(2013) R642–R646.
  • 9. Kohgo Y. Ikuta K. Ohtake T. Torimoto Y. Kato J. Body iron metabolism and pat-hophysiology of iron overload. Int J Hematol. 2008; 88(1): 7–15.
  • 10. Reardon TF. Allen DG. Iron injections in mice increase skeletal muscle iron content, induce oxidative stress and reduce exercise performance. Exp Physiol 94.6 (2019) 720–730.
  • 11. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disea-se. Toxicology. 2011;283(2–3):65–87.
  • 12. Alugoju P. Jestadi DB. Periyasamy L. Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases. Indian Journal of Clinical Biochemistry, 2014; 30(1):11-26.
  • 13. Sadeek EA, El-Razek FH. The Chemo-Protective Effect of Turmeric, Chili, Cloves and Cardamom on Correcting Iron Overload-Induced Liver Injury, Oxidative Stress and Serum Lipid Profile in Rat Models. Journal of American Science 6 (2010)10.
  • 14. Shander A. Sweeney JD. Overvıew OF Current Treatment Regimens ın ıron chelatıon therapy. US Hematology, 2009;2(1):56-9.
  • 15. Brittenham GM, Griffith PM, Nienhuis AW, McLaren CE, Young NS, Tucker EE, et al. Efficacy of deferoxamine in preventing complications of iron overload in patients with thalassemia major. N Engl J Med. 1994;331(9):567-73.
  • 16. Olivieri NF, Nathan DG, MacMillan JH, Wayne AS, Liu PP, McGee A, et al. Survival in medically treated patients with homozygous beta-thalassemia. N Engl J Med. 1994;331(9):574-8.
  • 17. Cappellini MD, Taher A. Deferasirox (Exjade) for the treatment of iron overload. Acta Haematol. 2009;122:165–73.
  • 18. Grady RW. Galanello R. Randolph RE. Toward optimizing the use of deferasirox: po-tential benefits of combined use with deferoxamine. Haematologica, 2013; 98(1).
  • 19. Tsouana E, Kaya B, Gadong N, Hemmaway C, Newell H, Simmons A, Whitmarsh S, Telfer P. Deferasirox for iron chelation in multitransfused children with sickle cell di-sease; long-term experience in the East London clinical haemoglobinopathy network. Eur J Haematol. 94(4) (2015) 336-42.
  • 20. Marley AR., Nan H. Epidemiology of colorectal cancer. Int J Mol Epidemiol Genet. 2016; 7(3): 105–114.
  • 21. Brenner H. Chen C. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. British Journal of Cancer (2018) 119:785–792.
  • 22. Favoriti P. Carbone G. Greco M. Pirozzi F. Emmanuele R. Pirozzi M. Corcione F. Worldwide burden of colorectal cancer: a review. Updates Surg (2016) 68:7–11.
  • 23. Khan MDA. Tania M. Fu S. Fu J. Thymoquinone, as an anticancer molecule: from ba-sic research to clinical investigation. Oncotarget. 2017 1; 8(31): 51907–51919.
  • 24. Darakhshan S. Pour AB. Cologar AH. Sisakhtnezhad S. Thymoquinone and its thera-peutic potentials. Pharmacological Research, 95–96, 138-158,2015.
  • 25. Mostofa AGM. Hossain MDK. Basak D. Sayeed MSB. Thymoquinone as a Potential Adjuvant Therapy for Cancer Treatment: Evidence from Preclinical Studies.
  • 26. Aggarwal BB, Harikumar KB. Potential therapeutic effects of curcumin, the anti in-flammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int J Biochem Cell Biol. 2009;41:40–59.
  • 27. Park, M.Y, Jeong,YJ, Kang G.C, et al. Nitric oxide-induced apoptosis of human den-tal pulp cells is mediated by the mitochondria-dependent pathway. Korean J Physiol Pharmacol 18: 25-32.
  • 28. Susin, S. A., Lorenzo, H. K., Zamzami, N., Marzo, I., Snow, B. E., Brothers, G. M., Mangion, J., Jacotot, E., Costantini, P., Loeffler, M., Larochette, N., Goodlett, D. R., Aebersold, R., Siderovski, D. P., Penninger, J. M., and Kroemer, G. (1999) Nature 397, 441-446
  • 29. Hassan, S. A., Ahmed, W. A., Galeb, F. M., El-Taweeld, M. A., Abu-Bedair, F. A. In vitro challenge using thymoquinone on hepatocellular carcinoma (HepG2) cell line. Iranian Journal of Pharmaceutical Research, 2008;7(4), 283–290.
  • 30. Gloeckner, H., Jonuleit, T., Lemke, H.D. Monitoring of cell viability and cell growth in a hollow-fiber bioreactor by use of the dye Alamar Blue (TM). J Immunol Methods. 2001; 252:131-38.
  • 31. Bajpai, V.K, Sharma, A. Kim, S.H, Baek, K.H. Phenolic content and antioxidant ca-pacity of essential oil obtained fromsawdust of Chamaecyparis obtusa by microwave-assisted hydrodistillation. Food Technol Biotechnol. 2013; 51:360–369.
  • 32. Hadwan, H, Abed, H.N. Data supporting the spectrophotometric method for the es-timation of catalase activity. Mahmoud. Data in Brief; 2016;6 :194–199.
  • 33. Dinis Tcp, Madeira Vmc, Almeida Mlm. Action of phenolic derivates (acetoamino-phen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994;315: 161-169.
There are 33 citations in total.

Details

Primary Language English
Subjects Health Care Administration
Journal Section Research Article
Authors

Gülüzar Özbolat 0000-0002-3487-1088

Ares Alizade 0000-0003-0334-8152

Publication Date May 31, 2022
Submission Date September 22, 2021
Published in Issue Year 2022

Cite

APA Özbolat, G., & Alizade, A. (2022). In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex. Journal of Basic and Clinical Health Sciences, 6(2), 415-419. https://doi.org/10.30621/jbachs.998974
AMA Özbolat G, Alizade A. In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex. JBACHS. May 2022;6(2):415-419. doi:10.30621/jbachs.998974
Chicago Özbolat, Gülüzar, and Ares Alizade. “In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex”. Journal of Basic and Clinical Health Sciences 6, no. 2 (May 2022): 415-19. https://doi.org/10.30621/jbachs.998974.
EndNote Özbolat G, Alizade A (May 1, 2022) In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex. Journal of Basic and Clinical Health Sciences 6 2 415–419.
IEEE G. Özbolat and A. Alizade, “In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex”, JBACHS, vol. 6, no. 2, pp. 415–419, 2022, doi: 10.30621/jbachs.998974.
ISNAD Özbolat, Gülüzar - Alizade, Ares. “In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex”. Journal of Basic and Clinical Health Sciences 6/2 (May 2022), 415-419. https://doi.org/10.30621/jbachs.998974.
JAMA Özbolat G, Alizade A. In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex. JBACHS. 2022;6:415–419.
MLA Özbolat, Gülüzar and Ares Alizade. “In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex”. Journal of Basic and Clinical Health Sciences, vol. 6, no. 2, 2022, pp. 415-9, doi:10.30621/jbachs.998974.
Vancouver Özbolat G, Alizade A. In Vitro Effects of Antioxidant and Proapoptotic Activities of Thymoquinone Iron Complex. JBACHS. 2022;6(2):415-9.